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Part I: Exact numerics for spectrum and dynamics

The goal of this part of the project is to obtain, numerically, the energy spectrum of the
Schwinger model with open boundary conditions (OBC) for a given set of parameters, and
to evaluate both the continuous and the Trotterized evolution of the Schwinger model.
Consider the Schwinger Hamiltonian in the purely fermionic formulation:

H = x
N−2∑
n=0

[
ψ†(n)ψ(n+ 1) + h.c.

]
+ µ

N−1∑
n=0

(−1)nψ†(n)ψ(n)+

N−2∑
n=0

{
ϵ0 +

n∑
m=0

[
−ψ†(m)ψ(m) +

1− (−1)m

2

]}2

. (1)

Part (a) Show that after a Jordan-Wigner transformation, one can map the fermionic
Hamiltonian to a qubit Hamiltonian of the form:

H = x
N−2∑
n=0

(
σ+
n σ

−
n+1 + h.c.

)
+
µ

2

N−1∑
n=0

(−1)n+1σz
n+

N−2∑
n=0

{
ϵ0 +

1

2

n∑
m=0

[σz
m − (−1)m]

}2

(2)

:=
N−2∑
n=0

H
(XX)
n,n+1 +

N−2∑
n=0

H
(YY)
n,n+1 +H(ZZ) +H(Z). (3)

Make sure to identify H
(XX)
n,n+1, H

(YY)
n,n+1, H

(ZZ), and H(Z), where H
(XX/YY)
n,n+1 are terms pro-

portional to the product of two Pauli-X/Y matrices on qubits n and n+ 1, H(ZZ) are all
terms proportional to the product of two Pauli-Z matrices on two distinct qubits, while
H(Z) are all terms proportional to a Pauli-Z matrix on a single qubit.

Part (b) Consider a system of N = 4 staggered sites. Construct the Hamiltonian matrix
associated with the Hamiltonian in Part (a). This means that you have to find all the
matrix elements in terms of x, µ, and ϵ0. Now try to diagonalize the Hamiltonian to find
the energy eigenvalues for the following model parameters: ϵ0 = 0, x = 0.6, and µ = 0.1.

Part (c) Consider the strong-coupling vacuum (i.e., the eigenstate of the Hamiltonian
in the limit x = 0) and call it |ψ(0)⟩. Apply the time-evolution operator e−itH onto this
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state for the total evolution time t = 5. For all other parameters, use the values given in
Part (b). This procedure gives you |ψ(t)⟩ = e−itH |ψ(0)⟩. Evaluate and plot, as a function
of time, the Loschmidt echo, i.e., the survival probability the initial state, defined as

P(t) := |⟨ψ(0)|ψ(t)⟩|2 , (4)

What do you learn from this quantity?

Part (c) For the same procedure and parameters as in the previous part, evaluate and
plot, as a function of time, the staggered fermion density defined as

ν(t) :=
1

N

N−1∑
n=0

νn(t), (5)

where

νn(t) := ⟨ψ(t)|(−1)n+1σz
n + 1

2
|ψ(t)⟩ . (6)

How many electron-positron pairs do you have in the initial state? (Recall the mapping
we talked about in the lecture.) Does the dynamics generate electron-positron pairs? The
phenomenon of pair production out of “vacuum” is one of the hallmarks of a relativistic
quantum field theory, which can be seen in nonequilibrium dynamics as simple as the one
you just studied! Compare your results to the lower panel in fig.6 of 2112.14262.

Part (d) Now divide the time evolution for duration t = 5 into NT = 10 Trotter steps.
Hence, the evolution time for each step is δt = 0.5. Apply the first-order Trotter-Suzuki
approximation

V (t) =

NT∏
i=1

(
e−iδtH(Z)

e−iδtH(ZZ)
N−2∏
n=0

e−iδtH
(XX)
n,n+1

N−2∏
n=0

e−iδtH
(Y Y )
n,n+1

)
(7)

to evolve the strong-coupling vacuum state |ψ(0)⟩ as in Part (c) for time t. Notice that
there are more than one way to do the term decomposition, but we are going to adopt
the form above. Plot both the Loschmidt echo and the staggered fermion density defined
in the previous parts as a function of Trotterized time. Overlay your plots with the
continuous time evolution you saw previously to clearly see any deviation from exact
result. If you are up for it, change the Trotter step size to explore how Trotter error
responds to this change.

Part (e) [Bonus] First show that the total charge operator

Q :=
N−1∑
n=0

σz
n + (−1)n+1

2
(8)

commutes with the Hamiltonian. What are the eigenvalues of this operator? Since
[H,Q] = 0, the eigenvalues of Q are conserved quantities: if you start the evolution in
a given Q-eigenvalue sector, Hamiltonian time dynamics should not take you out of this
sector. Does the Trotter-Suzuki expansion we picked in the previous part conserve the
total charge Q? If yes, argue why. If no, can you come up with a decomposition that
conserves the total charge? This example shows that approximate algorithms can break
the symmetries of the model!
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Part II: Circuit design and implementation of time dynamics

For this part of the project, we continue to work with the qubit Hamiltonian:

H = x
N−2∑
n=0

(
σ+
n σ

−
n+1 + h.c.

)
+
µ

2

N−1∑
n=0

(−1)n+1σz
n+

N−2∑
n=0

{
ϵ0 +

1

2

n∑
m=0

[σz
m − (−1)m]

}2

(9)

:=
N−2∑
n=0

H
(XX)
n,n+1 +

N−2∑
n=0

H
(YY)
n,n+1 +H(ZZ) +H(Z), (10)

associated with the lattice Schwinger model with open boundary conditions (OBC). We
further consider Trotterized time evolution using the first-order Trotter-Suzuki formula
using the decomposition:

V (t) =

NT=t/δt∏
i=1

(
e−iδtH(Z)

e−iδtH(ZZ)
N−2∏
n=0

e−iδtH
(XX)
n,n+1

N−2∏
n=0

e−iδtH
(Y Y )
n,n+1

)
. (11)

The initial state, |ψ(0)⟩, of this evolution is the strong-coupling vacuum, and the time-
evolved state is |ψ(t)⟩ := V (t) |ψ(0)⟩. The system size and parameters are as in the
previous exercise: N = 4, ϵ0 = 0, x = 0.6, µ = 0.1, t = 5, δt = 0.5 (or NT = 10).

Part (a) Pictorially draw the quantum-circuit elements that evaluate each Trotter step
of the evolution. Make sure to identify the gates to the level they can be implemented
on a quantum hardware. Identify all the gate angles.

Part (b) Write a Qiskit code that implements your circuit in part (a). If you are not
yet comfortable with writing the code from scratch, use the IBMQ automated tool.

Part (c) Evaluate the Loschmidt echo

P(t) := |⟨ψ(0)|ψ(t)⟩|2 , (12)

and the staggered fermion density

ν(t) :=
1

N

N−1∑
n=0

⟨ψ(t)|(−1)n+1σz
n + 1

2
|ψ(t)⟩ , (13)

as defined in the previous exercise. To do this, run the circuit for 1,000 times and
measure the outcome in the computational basis (the Pauli-Z basis). Then reconstruct
the observables using these measurements. Note that the labeling in Qiskit is such that
the first (0th) qubit represents the least significant digit. Try to explore the dependence of
observables on the number of shots by changing the shot count. In particular, you should
be able to see the convergence to the numerically evaluated Trotterized time evolution
in the previous exercise by increasing the shot count. Think about how you would you
assign statistical uncertainty to the observables.

Part (d) [Bonus] Make appropriate measurements to obtain the energy of the time-
evolved state:

E(t) := ⟨ψ(t)|H|ψ(t)⟩, (14)
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at t = 5. To do this, you need to measure all the Hamiltonian operators and sum them
up. For non-diagonal operators in the computational basis, i.e., H

(XX/YY)
n,n+1 , you need

to first perform a change of basis from Z to X/Y, then measure the associated qubits.
Compare your results to the numerically evaluated result. Importantly note that energy is
a conserved quantity, so any deviation from the initial-state’s energy should be attributed
to the errors in the implementation. Explore the dependence of the error on the shot
count and Trotter error.
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