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_[ SIMULATION STRATEGIES: FEW QUESTIONS
)

Q1: What is the best breakdown of Hamiltonian term to H; terms such that:

i) each term can be simulated with the least resources,
i) the number of terms to be simulated is minimized,
iii) the Trotter error is minimized,

iv) as many symmetries as possible are retained?

We may not be able to simultaneously satisfy all these conditions so we need to seek a
balance.

Q2: How to simulate each e ™ ? This amounts to:

i) finding the unitary transformation that diagonalizes e ™ in the computational basis,

.., i [’
i) circuitizing the unitary transformation %,
it

i

iii) circuitizing the diagonal form e~

If e~ g already diagonal, steps i) and ii) are not needed.




Q3: What quantum resources should we minimize given those choices in the previous Qs?

i) In the near-term scenario,
- the hardware systems are small so the less ancillary qubits the better,
- single-qubit gates are almost free but two-qubit gates (CNOT) are of low fidelity.

ii) In the far-term scenario,
- we likely do not have qubit-resource constraints,
- compilation of all Clifford gates (including CNOT) is less costly but non-Clifford (T
gates) have high fault-tolerant implementation cost.

Q4: Given all these consideration, which Hamiltonian formulation and basis states of the
theory are most suitable? We may need to consider formulations that:

i) give the desired continuum physics faster with the least resources,
ii) have the least encoding overhead,

ii) have less complex terms,

iii) respect more symmetries by construction.

We are not considering state preparation and measurements here, but those often enter our
considerations of what the most suitable formulation is given the observable of interest.




RESOURCE ANALYSIS

an -] <

Given the accuracy € on the time evolution operator, how many ancilla qubits and costly
gates are needed for simulating a Hamiltonian with given parameters for time T using the
p™-order product formula?

For a LGT Hamiltonian, these are volume,
lattice spacing, couplings, masses, and
truncation scale of the bosonic fields.

The errors that accumulate to add up to the total error € include:

i) Trotter error,

i) function-evaluation approximation error,

iii) gate-synthesis error,

iv) measurement error, and

v) theoretical errors (finite-volume, discretization, truncation, etc.).

The p"-order product formula requires O Trotter steps. Near-optimal

1
algorithms based on completely different digitization strategies achieve O <T, log <—> >
£




,[ (IMPROVED) THEORY OF PRODUCT FORMULAS }

Consider the Hamiltonian

First-order product formula

Vl (t) — e—itHle—’itHQ .

is bounded by:

[Vi(t) —

Second-order formula
Va(t) = (e™"/%

is bounded by:
r

—itH <t3
el < 132

Va(t) — -
[Va(t) 3093

&

P

A general bound also exist, see:

—itHr

r
e—itHH t2 Z

|

[Z H;, H;
71=1+1

—itH2/26—z’tH1/2)(e—itHl/Qe—itH2/2 o e—ith/Q)

T 3 L r
> a3 mon] || [ fm > m
=1+ 71=1+1 1=1 J=1+1

Childs, Su, Tran, Wiebe, Zhu, Phys. Rev. X 11, 011020 (2021).
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(RESCALED HENCE DIMENSIONLESS)
LATTICE SCHWINGER MODEL HAMILTONIAN
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Fermion hopping via gauge links  Staggered mass term SIS Gl

Jordan-Wigner
transformation

N—1 N-2 n 2
1
H=x (0:0,,;& + h.C.) + g Z:O (—1)n+107z,b—|—2% {60 T 5 z:o [Ofn - (1)m]}

An effective
magnetic field Long range spin-spin interactions

Spin-spin interactions plus an effective magnetic field

Nearest neighbor




LET'S START SIMPLE: THE FULLY FERMIONIC REPRESENTATION
WITH FIRTS-ORDER PRODUCT FORMULA.

N—1 N-2 n
1
H=x (0:0,,;1 + h.c.) + g Z% (_1)n+1afb+z% €0 + 5 E:O o, — (=)™

:HX_|_HZZ_|_HZ or H(XX)—|—H(YY)—|—HZZ—|—HZ

Two time orderings, one that respects the global charge conservation:

(N/2)—1 N/2
Vi ((5?5) _ e—i(St I:.[Ze—idt H?% H e_iét Hy 2k41 H e_iét Hjy 1,2k
k=1 k=1
and one that breaks it!
N-—-1 N—1

. ~ . (YY) . (X X)
k=1 k=1

and many more!




What is the global conserved charge in the Schwinger-model Hamiltonian?
Why is one of the schemes in the previous slide conserves the global charge
and the other does not?




- RF= e '%%% can be implemented either directly (like in trapped ions) or by two CNOTs
and one single-qubit rotation since e ~i00io] — CNOT;; RA(0) CNOT;;.

—ifo?c?

~ifojo} i can be implemented similarly by rotating to the eigenstates of ¢

o le and e

« e %I is already an elementary gate and can be applied directly.

Example of circuit structure for a six-site theory in each Trotter step:

.......................
..................................................................................................................

........................................................................................................

K < Fermion mass term

Fermion-gauge interactions Electric-field energy

This Trotter block will be repeated N = #/6¢ times.




RELA-DEVICE IMPLEMENTATIONS

Martinez et al, Nature
534, 516 EP (2016).
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Nguyen,
Quantum 3 (2022) 2, 020324.

Tran, Zhu, Green, Huerta Alderete, 2ZD, Linke, PRX

RELA-DEVICE IMPLEMENTATIONS

Martinez et al, Nature
534, 516 EP (2016).
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NOW WHAT ABOUT FERMIONIC-BOSONIC REPRESENTATION
WITH THE SECOND-ORDER PRODUCT FORMULA?

H = XZ [a:UnJ;_l + h.c.} — g Z( 1)tlg? + ZEQ

One can split the terms in the Hamiltonian as: Shaw, Lougovski, Stryker, Wiebe, Quantum 4, 306 (2020).

H=Y (T.+D,), with D,:=D®M + D"

and do the following ordering of the terms

4
_ D) 1) M) 7 (@) _ D)
Vg(t) _ H H e iD, t/2He iT,7t/2 e iDy 't H He iT,7t/2 H e iD,"'t/2

x ke{M,E} j=1 x j=4 ke{E,M}

In reverse order




Example

/

This example concerns finding a quantum circuit for implementing

N
N 2
UE) — H U = o—it o B
i1
in the time-evolution of lattice Schwinger model in a near-term scenario that avoids introducing
any ancilla qubits. Consider E; € [-A, A] and encode the electric-field Hilbert space on each link
I into n = [log,(2A) + 1] qubits. Given this, find a circuit representation for Ul.(E) in terms of only

single-qubit rotations around the z axis of Bloch sphere as well as two-qubit CNOT gates. Verify
your answer by explicitly working out a small example.

It is easy to show that the electric-field operator at each link acting on the computational (binary)
basis is: F 5

1 el
g —_ n_ - Y4
E=-Al+—|@"=DI 226].

- ]:O
Therefore, i
2 2 | (= _ 1 | 2 (= (e _
o o | 1 I | i
E2=A21-A|@7= 1D 221 of| +5 [ Q7= D -2 1)22] of + Z 24 6267
j=0 j=0 joJ'=0

Consequently, the operator U®) can be written as a product of Ny R® rotations and
Nn(n — 1)/2 R* rotations with rotation angles that can be read off from the expression above.
Note that each R* gate amounts to two CNOT gates and one R* gate.




Example

/

This example concerns finding a quantum circuit for implementing

N
N 2
UE) — H U = o—it o B
i1
in the time-evolution of lattice Schwinger model in a near-term scenario that avoids introducing
any ancilla qubits. Consider E; € [-A, A] and encode the electric-field Hilbert space on each link
I into n = [log,(2A) + 1] qubits. Given this, find a circuit representation for Ul.(E) in terms of only

single-qubit rotations around the z axis of Bloch sphere as well as two-qubit CNOT gates. Verify
your answer by explicitly working out a small example.

An n = 4 example:




The previous example requires O(Np?) number of R* gates, which are costly operations in the
fault-tolerant regime as they need to be synthesized up to accuracy € using roughly log(1/¢) T
gates. Can one reduce the R? cost of electric-field evolution to O(Nn)? The answer is yes, but at
the cost of extra O(n) ancillas that are, nonetheless, available in the fault-tolerant era. One such
circuit can be constructed using the so-called phase-kickback routine. For each Ul.(E):

..............................................

n
‘Ez > 7 > — "—% ‘El >
2 = o o,
n o] |2 E| NS
0) —~ o . = =l 10)
10) 20 2n—1 . 1 ok—3 A2 0
7 > [[.L, exp(it2°°0y) < 0)

..............................................

Register that

temporarily holds the Logic gates Phase gets Logic gates

. ) ' : 2
computing E?. implemented here uncomputing E°.

based on the El-2 value

El.2 value at each link

The logical copy and multiplication routines are known circuits and overall cost O(n?) T gates.
The ancilla qubits are reset in the end and can be used in the remainder of the circuit.




How do you implement arbitrary diagonal operator e 2 in the computational

. . y n+1
basis? [Think about two examples: i) D |n) = n|n) and ii) D |n) = | n)!]

n—1




Circuit and recourse analysis \
Shaw, Lougovski, Stryker, Wiebe, Quantum 4, 306 (2020).
+1 -1
Sample gauge-fermion L TTT
interaction block /_\ o |
Part of electric field |
interactions acting on L - e
gauge DOF registers I I . i1 }
6g =107 6g =104 6g = 107" 5y =107° 5y =101
¢ | CNOT €2 CNOT €2 CNOT €2 CNOT €2 CNOT
Near term cost r=10"% | — | 7.3e4 — 1.6e5 — 3.4eb — 7.3¢5 | 5.6e-2 | 1.6e6
r=10"1 | — | 1.6e4 — 3.5e4 — 7.5e4 | 5.9e-2 | 1.6edb | 2.7e-3 | 3.5€ed
T = — | 4.6e3 — 9.9e3 | 1.0e-1 | 2.1ed | 4.7e-3 | 4.6e4 | 2.2e-4 | 9.9e4
r=10%2 | — | 2.8¢3 | 83el | 6.1e3 | 3.8¢-:2 | 1.3e4 | 1.8¢-3 | 2.8¢4 | 8.2e-5 | 6.0e4




COMPARISON BETWEEN THE TWO FORMULATIONS FOR THE SECOND-ORDER FORMULA

Purely fermionic (non-local) Fermionic-bosonic (local)
Qubit cost N N+ N 10g2 (N)
Gate 9/2,3/2 5/2,3/2
complexity* O(N™/=¢°77) O(N>=t7/7)

*Detined at the required number of Trotter steps for simulation time t, system
size N ~ A, and at fixed x and y, given a fixed error tolerance.



COMPARISON BETWEEN THE TWO FORMULATIONS FOR THE SECOND-ORDER FORMULA

Qubit cost

Gate

complexity*

Purely fermionic (non-local)

N

C)(pJ9/2t3/2)

Fermionic-bosonic (local)

N + N logy(N)

C)(PJ5/2t3/2)

*Detined at the required number of Trotter steps for simulation time t, system
size N ~ A, and at fixed x and y, given a fixed error tolerance.

Nonetheless, empirically it seems like the
non-local formulation performs as well as
the bound on the local formulation!

Number of two-qubit gates

Alderete, ZD, Linke,
Quantum 3 (2022) 2,

Nguyen, Tran, Zhu, Green,

PRX
020324.

Huerta

I
=

10°

p—t
-
\]

—_
-
(o]

10° |

® Commutator bound
O Exact commutator bound x N2

® Empirical

1 | 1 1 1 ]

4 6 8 10 12
Number of sites N




Explain the qubit and gate scalings of the second-order Trotter simulation of
the lattice Schwinger model in both formulations, as given in the previous slide.
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Abelian vs. non-Abelian

Since we do not have the option of removing the gauge links generally, let us focus on the
fermionic-bosonic formulations in the electric-field basis. So what are the major differences
between simulating digitally Abelian and non-Abelian LGTs? Let is compare U(1) and SU(N) LGTs.

i) There are more degrees of freedom involved for SU(N) LGTs. For example, at each site,
there are N-component fermions, and at each link there are multiple bosonic variables.

ii) As a result, there are more terms that need to be simulated, hence more complexity and
generally more Trotter error.

iii) The diagnozalization procedure for hopping and magnetic terms generally follow the
same rules but is more gate-intensive for SU(N).

iv) The diagonal operators in an Abelian theory like U(1) are trivial while for SU(N), they
require evaluating phases that are non-trivial functions of bosonic occupation-number

operators. These require expensive function-evaluation routines (in the E basis).

A|gorithmic progress for U(1), SU(2), and |shaw, Lougovski, Stryker, Wiebe, Quantum 4, 306 (2020).
Ciavarella, Klco, and Savage, Phys. Rev. D 103, 094501 (2021).

SU(3) theories can be fOUﬂd iﬂ, €.g.: Kan and Nam, arXiv:2107.12769 [quant-ph].
ZD, Shaw, and Stryker, Quantum 7, 1213 (2023),
Rhodes, Kreshchuk, Pathak, arXiv:2405.10416 [quant-ph]




QUESTIONS?




