
Tutorial Problems for Quantum Computing

Dorota M. Grabowska∗

(Dated: July 22, 2025)

CONTENTS

Running Circuits on the IBM Quantum Platform 1

I. GHZ State 1

II. Quantum Simulation of the Quantum Harmonic Oscillator 2

III. Hints 6

RUNNING CIRCUITS ON THE IBM QUANTUM PLATFORM

IBM allows anyone to run quantum circuits on some of their digital quantum computers, as well as quantum
simulators, for free. In order to do so, you will need to register via IBM’s Quantum Experience. Once you do so, you
can run up to 10minutes of circuits per month.

The language that IBM uses to construct and communicate with their machine is Qiskit. You can find documentation
here: Introduction to Qiskit. Qiskit is a Python-based software specifically built to write machine code for quantum
computers. To learn how to write circuits, the tutorial on circuit construction is quite useful: Constructing Circuits.
I provide hints to the problems on the very last page (after an empty page). Feel free to refer to this, though I

encourage you to do so only after giving yourself a day to ruminate on the problems.

I. GHZ STATE

Recall from Monday’s lecture that it is possible to construct an entangled state on a quantum computer. In
particular, we constructed a Bell State, a two-qubit entangled state,

|ψ⟩Bell =
|00⟩+ |11⟩√

2
(1)

This was done via the following circuit

|0⟩ H •

|0⟩

(2)

In this problem, you will construct the Greenberger–Horne–Zeilinger (GHZ) state, a three-particle entangled
state and run it on a quantum computer, to determine the effects of noise.

1. Construct a circuit that creates the GHZ state,

|ψ⟩GHZ =
|000⟩+ |111⟩√

2
(3)

Is there an alternative circuit that can create this state?

Bonus question: can you generalize this to a GHZ state with an arbitary number of qubits, ie

|ψ⟩(n)GHZ =
|0⟩ ⊗ |0⟩ ⊗ |0⟩ · · · ⊗ |0⟩+ |1⟩ ⊗ |1⟩ ⊗ |1⟩ · · · ⊗ |1⟩√

2
(4)

where n is the total number of qubits.
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2. For three qubits, what are the eight states that fully span the Hilbert space? What is the probability of measuring
these states?

3. Now, run this circuit on a (real) quantum device. Remember to repeat the circuit sufficiently many times to have
your result be statistically sufficient (this is controlled by altering the number of shots). What are the measured
probabilities of each of the states from above? Do they match your prediction? Why or why not?

II. QUANTUM SIMULATION OF THE QUANTUM HARMONIC OSCILLATOR

Whenever I begin working with a new tool or technique, I find it incredibly illuminating to first apply it to a
situation where I already know what the answer should be. Often times, the quantum harmonic oscillator is perfect for
this. The goal of this problem is to help you start thinking about Hamiltonian formulations, the connections between
matrix representations and quantum circuits and the various considerations you must weigh when trying to simulate
quantum field theories on quantum computers.

1. Recall that the Hamiltonian for a Quantum Harmonic Oscillator (QHO) can be written in one of two forms

Ĥ =
p̂2

2
+
x̂2

2

= n̂+
1

2
(5)

The form of the Hamiltonian that we will work with is the first, as it will be easiest to generalize the methods
you develop here to other systems. Since quantum circuits (and quantum simulation) is nothing more than
matrix multiplication, the first step is to convert this Hamiltonian into a matrix. In order to do this, we must
choose a basis. For simplicity, let us work in the position basis.

What is the form of the operators x̂ and p̂ in the position basis? As written, can this matrix be implemented on
a (digital) finite computer, with a finite number of qubits?

I am putting a page break here as the next questions provide the answer to this question. I strongly encourage
you to NOT read ahead until you have thought about this question
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2. In order to implement this system onto a quantum computer, the operators x̂ and p̂ must be discretized and
truncated. This is somewhat analagous to how spacetime is discretized when writing a lattice gauge theory, but
notice that we are already having to do this for a 0 + 1 QFT (as quantum mechanics is simply 0 + 1 QFT). Since
we have decided to work in the position basis, it is easiest to discretize x̂ first.

What are the eigenvalues of a discretized and trunacted x̂, assuming that you are working with nq qubits? What
is the matrix representation in the position basis of the operator x̂2? Your answer should only depend on xmax

and nq.

3. What are the eigenvalues of the operator p̂. Are there different possibilities for the eigenvalues? How do you
justify which set of eigenvalues you would like to choose? Regardless of your choice, your expression should only
depend on xmax and nq. Next, what is the form of the operator p̂2 in position space?

4. We are going to make use of a classical machine to check our choices and assumptions. You can use whatever
computing program you are most comfortable with (ie Python, Mathematica, Matlab or anything else), as long
as it can do numerically evaluate the eigenvalues of matrices.

Combining your forms of x̂2 and p̂, find the eigenvalues of the Hamiltonian for nq = 3, for a choice of xmax (do
not stress about choosing a good value at this point, just evaluate and see what happens). For your choice in
xmax, do your eigenvalues match the known results for a QHO? If not, carry out a scan over xmax and see if you
can find an optimal value for xmax, defined as the value for xmax that gives you an eigenvalue closest to the
(continuous) QHO:

En = n+
1

2
(6)

5. Repeat this exercise for the other choice for the digitization and truncation of the momentum operator p̂. Is
there an optimal choice for xmax for this choice of the momentum operator?

Note that the difference between these two choices is not the boundary conditions you choose, but whether the
ratio of the eigenvalues is a polynomial or not. If this comment does not make sense, please come ask me - I am
trying to not give away the answer.

6. Repeat this process with nq = 4. You could also go to more qubits if you would like, but you should see a pattern
emerging already and it is quite time-consuming to do nq = 5.1

7. Next, we are going to implement this Hamiltonian onto a quantum computer and look at the time evolution of
a state that is not an eigenstate of the system. If you would like, please feel free to check the form of x̂2 and
p̂2 with me. We will begin with x̂2. Since we are working in the position basis, this operator is diagonal. To
implement onto a quantum device, we are going to decompose this diagonal operator into a sum of Kronecker
products of the Identity matrix and Z gates.2. Extend our definition of the Pauli matrices to have σ0 be the
identity matrix. To be more explicit, assuming three qubits, decompose the operator x̂2 into the basis

x̂2 = c0 σ0 ⊗ σ0 ⊗ σ0 + c1 σ3 ⊗ σ0 ⊗ σ0 + c2 σ3 ⊗ σ3 ⊗ σ0 + c3 σ3 ⊗ σ0 ⊗ σ0

+ c4 σ0 ⊗ σ3 ⊗3 +c5 σ3 ⊗ σ3 ⊗ σ3 + c6 σ3 ⊗ σ0 ⊗ σ3 + c7 σ0 ⊗ σ0 ⊗ σ3 (7)

Calculate the value of the coefficients ci using the fact that this basis is orthonormal and complete.

8. Do the same procedure for the p̂2 operator in the momentum basis ie the basis in which p̂2 is diagonal. Do
you notice anything about how the operator x̂2 and p̂2 are decomposed in their own basis? If you do not see
something striking, come check with me.

9. In order to carry out time evolution, we must exponentiate the Hamiltonian to create the time evolution operator.
Since the position basis and the momentum basis are related by a Fourier transform and there exists an efficient
implementation of this on quantum devices, called a Quantum Fourier Transform (QFT), we will separate the
Hamiltonian into two components:

Ĥ = Ĥx + Ĥp (8)

1 There is a really lovely physics explanation for why the optimal value of xmax it is. If you are curious, take a look at the how the
(continuous) ground state wavefunction in both (discretized) position and momentum space. Notice anything?

2 Note that, for an arbitrary number of qubits, this basis forms a complete and orthonormal basis. This is related to Walsh-Hadamard
matrices, but that goes beyond the scope of this exercise. I only mention it because it is just cool.
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The exponentiation can then be realized via the Lie Product formula,

eA+B = lim
n→∞

(
eA/neB/n

)n

. (9)

Using these two pieces of information, construct a quantum circuit schematically, using the components

Hx Hp QFT

(10)

where Hx and Hp are defined in their own bases. The following questions will explicitly construct the circuit for
Hx and Hp; QFT is built into Qiskit.

10. Convince yourself that all eight diagonal matrices, σi ⊗ σj ⊗ σk, with i, j, k = 0, 3 commute with each other. This
implies that they can be independently exponentiated. Construct the quantum circuit for each σi ⊗ σj ⊗ σk
(again restricted to i, j, k = 0, 3). Limit yourself to the single qubit gate rotations {Rx,Ry,Rz} and CNOT.
Note that

Rz(θ) = e−i θ
2Z (11)

and that Qiskit has an implementation for Rx,Ry,Rz, so we are free to use them for circuit construction.

11. Combine the results above to create the circuit for Hx and Hp

12. We are going to simulate what happens when the system starts off in a state that is not an eigenstate. In
particular, the state that we start off in is

|ψ⟩ = |0⟩+ |1⟩
2

(12)

where here, the kets correspond to the eigenstate labels of the harmonic oscillator, not qubits in your system.
What is the time-dependence of the probability density of this system if it starts off in this state?

13. Repeat this exercise on a quantum simulator, ie your laptop. You can write the initial state as a vector and
Hx, Hp and QFT as a matrix. Matrix multiplication should be all that you need. Use the optimal value for
xmax you found above.

14. Lastly, repeat this for a quantum computer. Please note, this is actually an incredibly challenging
question and my goal in asking it is not for you to actually find a solution, but for you to realize
just how differently quantum computers work and how what might seem simple to do is actually
quite challenging.

If you do want to attempt this, note that you are going to have to figure out how to initialize the quantum device
with this initial state. This is somewhat non-trivial, but Qiskit documentation plus results from previous sections
will be quite helpful. You are also going to have to figure out how to access the probability density on a quantum
computer. This is actually quite non-trivial and one approach that i see involves a completely separate algorithm
to try to access intermediate information needed for that calculation. There also may be another approach but I
have not yet fully worked out the details. I would be happy to chat about this more if anyone is curious.
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III. HINTS

• Problem One

1. Recall the Bell State construction. While the CNOT gate is called an entangling gate, what is the role of
the H gate in the circuit?

• Problem Two

1. As written, is the position basis, |x⟩ continuous or discrete? What is the size of the Hilbert space that a
quantum computer with nq qubits?

2. Assume that your sampling of x is uniform and goes up to some eigenvalue xmax.

3. One possible choice is related to defining the momentum in terms of a finite-difference operator. Another
choice is related to the undiscretized and undigitzed momentum operator. Recall also the commutation
relation between x̂ and p̂ and what this implies about the relationship between the position and momentum
basis.

4. For the rest of this problem, it is hard to give hints (unfortunately). However, the solutions can be found in
this paper: Digitization of Scalar Fields for Quantum Computing

https://arxiv.org/pdf/1808.10378
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