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Quantum chromodynamics

Elementary quantum field theory describing the strong nuclear force.
▶ 𝑆𝑈 (3) gauge symmetry, “colour”
▶ gluons: massless gauge bosons (colour octet)
▶ quarks: massive fermions (colour triplets)

Confinement: only colour singlets appear in the QCD spectrum.

Hadrons described by quark model:
▶ mesons typically 𝑞𝑞
▶ baryons typically 𝑞𝑞𝑞

Anything else is considered “exotic”.

Useful to classify into multiplets of
approximate flavour symmetry.
SU(3) octets: 𝐽𝑃 = 0− mesons and 1

2
+ baryons.
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Decays of hadrons

Except for proton and some nuclei, hadrons are unstable. It matters how they decay.
▶ Weak, e.g. 𝑛 → 𝑝𝑒−𝜈 (𝜏 ≈ 900 s), 𝐾+ → 𝜇+𝜈 or 𝐾+ → 𝜋+𝜋0 (𝜏 ≈ 10−8 s).
▶ Electromagnetic, e.g. 𝜋0 → 𝛾𝛾 (𝜏 ≈ 10−16 s), Σ0 → Λ𝛾 (𝜏 ≈ 10−19 s).
▶ Strong, e.g. 𝜌 (770) → 𝜋𝜋 (𝜏 ≈ 10−24 s).

Key distinction: whether or not a hadron can decay via the strong interaction.
If yes, then name includes approximate mass: 𝜌 (770), Δ(1232), 𝑓0(500), etc.

A particle that decays strongly is not an asymptotic state within QCD.
It is a resonance.
E.g. 𝜌 (770) is a resonance in 𝑝-wave 𝜋𝜋 scattering.

Most hadrons are resonances. The rest are stable within QCD.

This can change as quark masses are varied. If 2𝑚𝜋 > 𝑚𝜌 , then the 𝜌 becomes stable.
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Quark content in hadrons

0 quarks glueball — no clear identification

1 quark no colour singlet possible

2 quarks 𝑞𝑞 ordinary mesons

3 quarks 𝑞𝑞𝑞 ordinary baryons

4 quarks 𝑞𝑞𝑞𝑞 tetraquark or mesonic molecule
▶ 𝑇 +

𝑐𝑐 (𝑐𝑐𝑢𝑑)
▶ 𝑍𝑐 charged charmonium (𝑐𝑐𝑢𝑑)
▶ 𝑋 and 𝑌 states, which don’t fit in quark model

5 quarks 𝑞𝑞𝑞𝑞𝑞 pentaquark or baryon-meson molecule
▶ 𝑃𝑐 (𝑢𝑢𝑑𝑐𝑐)

6 quarks 𝑞𝑞𝑞𝑞𝑞𝑞 “hexaquark” dibaryon
▶ deuteron (𝑢𝑢𝑢𝑑𝑑𝑑) “𝑝𝑛 molecule” 𝐵𝑑 = 2.2 MeV
▶ conjectured 𝐻 dibaryon (𝑢𝑢𝑑𝑑𝑠𝑠)
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Ordinary and exotic hadrons at the LHC
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Questions in nuclear physics

𝑁𝑁 interaction (and 𝑁𝑁𝑁 ) leads to nuclei.
How fine tuned is the universe?

Hoyle state (7.65 MeV excitation of 12C) plays essential role in triple-alpha process
for stellar nucleosynthesis of carbon.
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(By Pamputt [CC-BY-SA-4.0], via
Wikimedia Commons)

Big Bang nucleosynthesis has deuterium bottleneck:
low deuteron binding energy 2.2 MeV delays onset of
nucleosynthesis.
→ controls abundances of light elements.

How strongly does deuteron binding depend on quark masses?
Could 𝑝𝑝 or 𝑛𝑛 bind?
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Hyperon interactions

𝑁𝑁 interaction thoroughly studied in experiments. What about strange baryons (hyperons)?
Hyperon interactions with 𝑆 = −1 or −2 less well known.

I. Vidaña, EPJ Web Conf. 271, 09001 (2022)

Λ baryons can reduce Fermi pressure
in neutron stars.

Contradicted by detection of neutron
stars with𝑀 ≈ 2𝑀⊙ .

Do hyperon-hyperon (𝑌𝑌 ) or 𝑁𝑁𝑌 interactions play a role?
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Lattice QCD in 2012: stable hadrons
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© 2012 Andreas Kronfeld/Fermi Natl Accelerator Lab. Calculations by different
collaborations using
different actions.

Some include𝑚𝜋 →𝑚
phys
𝜋

and 𝑎 → 0 extrapolations.

Open symbols: inputs.

Grey bands: resonance
widths from experiment.
Uncontrolled approximation
on the lattice!

A. S. Kronfeld, Ann. Rev. Nucl. Part. Sci. 62, 265–284 (2012) [1203.1204]

(𝐵 mesons shifted by −4 GeV.)
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Lattice QCD in 2012: unstable hadron
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J. J. Dudek, R. G. Edwards, C. E. Thomas (Hadron Spectrum Collaboration),
Phys. Rev. D 87, 034505 (2013); 90, 099902(E) (2014) [1212.0830]

𝜌 meson as resonance in
𝑝-wave 𝜋𝜋 scattering.

Single lattice spacing,
single pion mass.
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Chalkboard notes

Two-point correlation functions
▶ spectral decomposition
▶ variance
▶ variational method

Interpolating operators
▶ quantum numbers in rest frame and moving frames
▶ single-hadron interpolators
▶ smearing
▶ two-hadron interpolators

Computing correlation functions
▶ example Wick contraction
▶ distillation
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