Excercises for MITP Summer School: Frontiers and Challenges in Lattice Gauge Theory

Scattering and Spectroscopy: Formalism Day 1

M. T. Hansen

July 21st and 22nd, 2025

1 Euclidean vs. Minkowski two-point function

1.1 Minkowski

Begin with the definition

$$\widetilde{G}_M(p_M) = \int d^4x_M \, e^{-ip_M \cdot x_M} \langle 0 | \mathrm{T}\{\phi(x_M)\phi(0)\} | 0 \rangle, \tag{1}$$

where $p_M \cdot x_M = -p^0 x^0 + \mathbf{p} \cdot \mathbf{x}$ and

$$\langle 0|T\{\phi(x_M)\phi(0)\}|0\rangle = \langle 0|\phi(0,\mathbf{x})e^{-i\hat{H}x^0 - \epsilon x^0}\phi(0)|0\rangle, \qquad \text{for } x^0 > 0,$$
 (2)

$$\langle 0|T\{\phi(x_M)\phi(0)\}|0\rangle = \langle 0|\phi(0)e^{+i\hat{H}x^0 + \epsilon x^0}\phi(0,\mathbf{x})|0\rangle, \qquad \text{for } x^0 < 0.$$
 (3)

Insert the identity, defined as

$$\mathbb{I} = \sum_{N} \frac{1}{N!} \prod_{i=1}^{N} \int \frac{d^{3} \mathbf{p}_{i}}{(2\pi)^{3} 2\omega_{\mathbf{p}_{i}}} |\mathbf{p}_{1}, \cdots, \mathbf{p}_{N}\rangle \langle \mathbf{p}_{1}, \cdots, \mathbf{p}_{N}|$$
(4)

$$= \int d\alpha \int \frac{d^3 \mathbf{P}}{(2\pi)^3 2\omega_{\mathbf{P},\alpha}} |\alpha, \mathbf{P}\rangle \langle \alpha, \mathbf{P}|,$$
 (5)

where α is a collective index and

$$\hat{H}|\alpha, \mathbf{P}\rangle = |\alpha, \mathbf{P}\rangle\sqrt{M_{\alpha}^2 + \mathbf{P}^2} = |\alpha, \mathbf{P}\rangle\omega_{\alpha, \mathbf{P}},$$
 (6)

$$\hat{\mathbf{P}}|\alpha, \mathbf{P}\rangle = |\alpha, \mathbf{P}\rangle \mathbf{P}.\tag{7}$$

Thereby demonstrate

$$\widetilde{G}_M(p_M) = \frac{1}{i} \int d\alpha \frac{|Z(\alpha, \mathbf{p})|^2}{p_M^2 + M_\alpha^2 - i\epsilon},\tag{8}$$

and give the expression for $Z(\alpha, \mathbf{p})$ and M_{α} .

1.2 Euclidean

Now take

$$\widetilde{G}_E(p_E) = \int d^4x_E \, e^{-ip_E \cdot x_E} \langle 0 | T\{\phi(x_E)\phi(0)\} | 0 \rangle, \tag{9}$$

where $p_E \cdot x_E = p_4 x_4 + \mathbf{p} \cdot \mathbf{x}$ and

$$\langle 0|T\{\phi(x_E)\phi(0)\}|0\rangle = \langle 0|\phi(0,\mathbf{x})e^{-\hat{H}x_4}\phi(0)|0\rangle, \qquad \text{for } x_4 > 0, \tag{10}$$

$$\langle 0|T\{\phi(x_E)\phi(0)\}|0\rangle = \langle 0|\phi(0)e^{+\hat{H}x_4}\phi(0,\mathbf{x})|0\rangle,$$
 for $x_4 < 0.$ (11)

and derive the analogous result to that given in the previous subsection.

2 Twisted, asymmetric boundary conditions

Suppose we take the boundary conditions

$$\pi(\tau, \mathbf{x})e^{i\theta_i} = \pi(\tau, \mathbf{x} + L_i\mathbf{e}_i), \tag{12}$$

where \mathbf{e}_i is a unit vector in the *i*th direction, $i \in \{x, y, z\}$. Derive the discrete set of momenta, \mathbf{p} , such that the Fourier transform respects the boundary conditions.

3 Volume dependence of the mass in $g\phi^3$

Begin with the Lagrangian density

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_0 \, \partial^{\mu} \phi_0 - \frac{1}{2} m_0^2 \phi^2 - \frac{g_0}{3!} \phi_0^3 \,, \tag{13}$$

where we are using bare fields and bare couplings.

- Give an expression for the $\mathcal{O}(g^2)$ correction in the relation between the physical finite-volume mass squared $m(L)^2$ and the bare mass squared m_0^2 .
- Work out and simplify the expression for the mass shift

$$\Delta m(L)^2 = m(L)^2 - m^2$$

where m is the infinite-volume physical mass.

• Show that the finite-volume correction decays exponentially with L as

$$\Delta m(L)^2 \sim e^{-\sqrt{3/4} \, mL}.$$

4 Single-particle matrix element in $g\phi^3$

4.1 Finite-volume decay constant

Define $j(x) = Z_j \phi(x)$ and define

$$f_{\phi}(L)^2 = |\langle 0|j(0)|\phi, \mathbf{p} = 0\rangle_L|^2, \tag{14}$$

$$f_{\phi}(\infty)^2 = |\langle 0|j(0)|\phi, \mathbf{p} = \mathbf{0}\rangle_{\infty}|^2. \tag{15}$$

Determine how to extract $f_{\phi}(L)^2$ from

$$\widetilde{G}_{L}^{f}(p^{0}) = Z_{j}^{2} \int d^{3}x \int dx^{0} e^{ip^{0}x^{0}} \langle 0|T\{\phi(x^{0}, \mathbf{x})\phi(0)\}|0\rangle_{L}, \tag{16}$$

and give the analogous expression for $f_{\phi}(\infty)$.

4.2 Self energy summation

Show that the sum of all diagrams, to all orders can be written as

$$\widetilde{G}_L^f(p^0) = \frac{1}{i} \frac{Z_j^2}{-(p^0)^2 + m_0^2 + \Sigma_L(-(p^0)^2)},\tag{17}$$

and define Σ_L .

4.3 Volume effects

Show that

$$\frac{f_{\phi}(L)^2}{f_{\phi}(\infty)^2} = 1 - \left[\Sigma_L'(-m^2) - \Sigma_\infty'(-m^2)\right] + \mathcal{O}(g^3),\tag{18}$$

and evaluate the g^2 result.

5 Two-particle phase space

Define the two-particle phase space as

$$\rho(s) = \frac{1}{2} \operatorname{Im} \frac{1}{i} \int \frac{d^4k}{(2\pi)^4} \left[\frac{1}{k^2 + m^2 - i\epsilon} \frac{1}{(P - k)^2 + m^2 - i\epsilon} \right], \tag{19}$$

where $s = -P^2 = (P^0)^2 - \mathbf{P}^2$. Evaluate this to identify the square-root function that depends on s.