

Spectroscopy and Scattering: Formalism (Lecture 1/3)

Maxwell T. Hansen July 21-22, 2025

Lattice field theory

- Non-perturbative regulator of quantum field theory (QFT)
- Systematically improvable numerical method for extracting QFT's properties
- Exciting, vibrant, highly active research community
- Technical field that challenges all of us to be great communicators

University of Adelaide, CSSM

Recipe for strong force predictions

1. Lagrangian defining QCD

- $\mathcal{L}_{\text{QCD}} = \sum_{f} \overline{\Psi}_{f} (i \not \!\!\!D m_{f}) \Psi_{f} \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$
- 2. Formal / numerical machinery (lattice field theory)
- 3. A few experimental inputs (e.g. M_{π}, M_K, M_{Ω})

Wide range of precision pre-/post-dictions

Overwhelming evidence for QCD ✓

Tool for new-physics searches ✓

Lattice QCD

- a non-perturbative regularization of QCD
- a definition that is well-suited to numerical evaluation

render the quantum path-integral finite-dimensional → evaluate using Monte Carlo importance sampling

Lattice QCD

- a non-perturbative regularization of QCD
- a definition that is well-suited to numerical evaluation

render the quantum path-integral finite-dimensional → evaluate using Monte Carlo importance sampling

Limitations of lattice QCD

observable
$$= \int \! \mathcal{D} \phi \; e^{iS} \! \left[\! \begin{array}{c} \text{interpolator} \\ \text{for observable} \end{array} \right]$$

Limitations of lattice QCD

observable? =
$$\int d^{N}\!\!\phi\,e^{-S} \begin{bmatrix} \text{interpolator} \\ \text{for observable} \end{bmatrix}$$

To proceed we have to make three modifications

Also... $M_{\pi, \text{lattice}} > M_{\pi, \text{our universe}}$ (but physical masses \rightarrow increasingly common)

QCD (and QED) in a Euclidean finite volume

Sometimes the finite-volume is an unwanted artifact (extrapolate $L \to \infty$)...

... but it can also be a useful tool (fit data to predicted L dependence)

Using the volume as a tool often resolves the issue of Euclidean signature

☐ Warm-up and definition	ns $\square 2 + \mathcal{J} \rightarrow 2$ formalism
Meaning of Euclidean	Derivation
Finite-volume set-up	Testing the result
$\square e^{-mL}$ round one	Numerical explorations
$lacksquare$ Mass in $\lambda\phi^4$	Non-local matrix elements
Mass/matrix element in	$\Box g\phi^3$ \Box Derivation
$\square 2 \rightarrow 2$ formalism	☐ Applications
Scattering basics	\square 3 \rightarrow 3 formalism
Derivation	☐ New complications
Example application	\square Derivation ($E_n(L)$ to $\mathcal{H}_{df,3}$)
Generalizations	\square Integral equations ($\mathcal{K}_{\mathrm{df,3}}$ to \mathcal{M}_3)
$\Box e^{-mL}$ round two	Testing the result
	Numerical explorations/calculations
\square LO-HVP for $(g-2)_{\mu}$	
Bethe-Salpeter kernel	Conclusion and outlook
\square $(1+)\mathcal{J} \to 2$ formalism \square Derivation \square Example application	

Warm-up and definitionsMeaning of EuclideanFinite-volume set-up	$\square 2 + \mathcal{J} \rightarrow 2 \text{ fo}$ $\square \text{ Derivation}$ $\square \text{ Testing the results}$
\Box e^{-mL} round one \Box Mass in $\lambda \phi^4$ \Box Mass/matrix element in $g\phi^3$	Numerical exNon-local matDerivationApplications
 □ 2 → 2 formalism □ Scattering basics □ Derivation □ Example application □ Generalizations 	☐ 3 → 3 formaliand New complication (A) ☐ Derivation (A) ☐ Integral equation Testing the residuation (A)
$\square e^{-mL}$ round two \square LO-HVP for $(g-2)_{\mu}$ \square Bethe-Salpeter kernel	☐ Numerical ex☐ Conclusion an

$2 + \mathcal{J} \rightarrow 2$ formalism Derivation Testing the result Numerical explorations
Non-local matrix elements Derivation Applications
3 → 3 formalism New complications Derivation $(E_n(L) \text{ to } \mathcal{K}_{df,3})$ Integral equations $(\mathcal{K}_{df,3} \text{ to } \mathcal{M}_3)$ Testing the result Numerical explorations/calculations
Conclusion and outlook

Euclidean vs Minkowski

Four-vector basics

$$X_{M}^{\alpha} = (t, \vec{x})^{\alpha}$$
 $X_{M} = (t, \vec{x})^{\alpha}$
 $X_{M} = (t, \vec{x})^{\alpha}$
 $X_{M} = (E, \vec{p})^{\alpha}$
 $X_{M} = (E, \vec{p})^{\alpha}$

Minkowski two-point function (generic scalar theory)

$$\begin{aligned}
&\widetilde{G}_{M}(P_{m}) = \int_{0}^{d^{2}} d^{2} e^{iP_{m} \times m} \left\langle c|T \xi \phi(x_{m}) \phi(c) \tilde{S}|c \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}{2}})} \left\langle c|\widetilde{P}_{c}|^{2} \left\langle c|\widetilde{P}_{c}|^{2} \right\rangle \\
&= \int_{0}^{d} d e^{i(E^{\frac{1}$$

Meaning of Euclidean

When asked "Is it Euclidean or Minkowski?" first think: "Is the question well-posed?"

Sometimes it is	Often it is not
Correlation functions	Masses
Four-vectors	Decay constants
QFT path integral	Finite-volume energies
	Scattering amplitudes
	Local matrix elements
	Spectral densities

For the case of correlation functions, Minkowski vs Euclidean is...

Important when we have limited knowledge (e.g. numerical estimate for real Euclidean momenta)

Irrelevant when we have full analytic knowledge

Analytic knowledge

Suppose the Euclidean correlator is

$$G_{\mathsf{E}}(x_{\mathsf{E}}) = anh(x_{\mathsf{E}})$$
 and we have complete analytic knowledge

... analytic continuation gives the Minkowski correlator

$$G_{\mathsf{M}}(x_{\mathsf{M}}) = i \tan(x_{\mathsf{M}})$$

but this is just a relabeling of the same information

Limited numerical knowledge

Suppose the Euclidean correlator is

$$G_{\mathsf{E}}(x_{\mathsf{E}}) = anh(x_{\mathsf{E}})$$
 and we have a numerical estimate

Now the analytic continuation is ill-conditioned

Meaning of Euclidean

Mostly the lectures are

concerned with these

quantities

When asked "Is it Euclidean or Minkowski?" first think: "Is the question well-posed?"

Sometimes it is	Often it is not
Correlation functions	☐ Masses
☐ Four-vectors	Decay constants
QFT path integral	Finite-volume energies
	Scattering amplitudes
	Local matrix elements
	☐ Spectral densities

Correlators (where M vs. E is meaningful) are often used to access observables (where M vs. E is not meaningful)

Finite-volume setup

cubic, spatial volume (extent L)

periodic boundary conditions*

$$q(\tau, \mathbf{x}) = q(\tau, \mathbf{x} + L\mathbf{e}_i)$$
 $\pi(\tau, \mathbf{x}) = \pi(\tau, \mathbf{x} + L\mathbf{e}_i)$

time direction infinite*

continuum theory

*will also briefly consider finite T effects, alternative boundary conditions

$$\tilde{\pi}(\tau, \mathbf{p}) = \int_{L} d^{3}\mathbf{x} \ e^{-i\mathbf{p}\cdot\mathbf{x}} \, \pi(\tau, \mathbf{x})$$

$$= \int_{L} d^{3}\mathbf{x} \ e^{-i\mathbf{p}\cdot\mathbf{x}} \, \pi(\tau, \mathbf{x} + L\mathbf{e}_{i})$$

$$= \int_{L} d^{3}\mathbf{x} \ e^{-i\mathbf{p}\cdot(\mathbf{x} - L\mathbf{e}_{i})} \, \pi(\tau, \mathbf{x})$$

$$e^{-i\mathbf{p}\cdot L\mathbf{e}_i} = 1 \implies p_i L = 2\pi n_i$$

Quantization of momentum

$$\mathbf{p} = \frac{2\pi}{L} \mathbf{n}, \quad \mathbf{n} \in \mathbb{Z}^3$$

Begin in infinite volume

$$\mathcal{F}\mathcal{T}^{-1}\left[\mathcal{F}\mathcal{T}[f]\right] = f \qquad \int \frac{dp}{N} e^{ipx} \left[\int \frac{dx'}{N'} e^{-ipx'} f(x')\right] \stackrel{!}{=} f(x)$$

Begin in infinite volume

$$\mathcal{FT}^{-1}\Big[\mathcal{FT}\big[f\big]\Big] = f \qquad \int \frac{dp}{N} \, e^{ipx} \bigg[\int \frac{dx'}{N'} \, e^{-ipx'} f(x')\bigg] = \underbrace{\frac{2\pi f(x)}{NN'}}_{NN'} = \underbrace{\frac{\sin p \| f(x) - x' - x'}{n} = 2\pi \delta(x - x')}_{=2\pi \delta(x - x')}$$

Begin in infinite volume

$$\mathcal{F}\mathcal{T}^{-1}\Big[\mathcal{F}\mathcal{T}\big[f\big]\Big] = f \qquad \int \frac{dp}{2\pi} e^{ipx} \left[\int dx' e^{-ipx'} f(x')\right] = f(x)$$

Begin in infinite volume

$$\mathcal{F}\mathcal{T}^{-1}\Big[\mathcal{F}\mathcal{T}\big[f\big]\Big] = f \qquad \int \frac{dp}{2\pi} e^{ipx} \left[\int dx' e^{-ipx'} f(x')\right] = f(x)$$

Now repeat in a finite volume

$$\frac{1}{N} \sum_{n} e^{ix(2\pi n/L)} \left[\int_{0}^{L} dx' \, e^{-ix'(2\pi n/L)} f(x') \right]$$

Rewrite this using
$$\sum_n e^{2\pi i z} = \sum_{n'} \delta(z+n')$$

Begin in infinite volume

$$\mathcal{F}\mathcal{T}^{-1}\Big[\mathcal{F}\mathcal{T}[f]\Big] = f \int \int \frac{dp}{2\pi} e^{ipx} \left| \int dx' e^{-ipx'} f(x') \right| = f(x)$$

Now repeat in a finite volume

$$\frac{1}{N} \sum_{n} e^{ix(2\pi n/L)} \left[\int_{0}^{L} dx' \, e^{-ix'(2\pi n/L)} f(x') \right] = \int_{0}^{L} dx' \, \sum_{n'} \frac{\delta \left[(x'-x)/L - n' \right]}{N} f(x') = \underbrace{\frac{Lf(x)}{N}}_{N} f(x') = \underbrace{\frac{Lf(x)}{N}}_{N}$$

Rewrite this using
$$\sum_n e^{2\pi i z} = \sum_{n'} \delta(z+n')$$

argument can only vanish when n'=0 =1

Begin in infinite volume

$$\mathcal{F}\mathcal{T}^{-1}\Big[\mathcal{F}\mathcal{T}\big[f\big]\Big] = f \qquad \int \frac{dp}{2\pi} e^{ipx} \left[\int dx' e^{-ipx'} f(x')\right] = f(x)$$

Now repeat in a finite volume

$$\mathcal{F}\mathcal{T}_{L}^{-1}\left[\mathcal{F}\mathcal{T}_{L}\left[f\right]\right] = f \qquad \frac{1}{L} \sum_{p} e^{ipx} \left[\int_{L} dx' \, e^{-ipx'} f(x') \right] = f(x)$$

$$p = 2\pi n/L$$

Begin in infinite volume

$$\mathcal{F}\mathcal{T}^{-1}\Big[\mathcal{F}\mathcal{T}\big[f\big]\Big] = f \qquad \int \frac{dp}{2\pi} e^{ipx} \left[\int dx' e^{-ipx'} f(x')\right] = f(x)$$

Now repeat in a finite volume

$$\mathcal{F}\mathcal{T}_{L}^{-1}\left[\mathcal{F}\mathcal{T}_{L}\left[f\right]\right] = f$$

$$\frac{1}{L}\sum_{p}e^{ipx}\left[\int_{L}dx'\,e^{-ipx'}f(x')\right] = f(x)$$

$$p = 2\pi n/L$$

Take the infinite-volume limit as a sanity check

$$\lim_{L\to\infty}\frac{1}{L}\sum_{p}f(p)=\lim_{L\to\infty}\frac{1}{L}\sum_{n}f(2\pi n/L)=\lim_{L\to\infty}\frac{1}{L}\int dn\,f(2\pi n/L)=\lim_{L\to\infty}\frac{1}{L}\int dp\frac{L}{2\pi}\,f(p)=\int\frac{dp}{2\pi}f(p)$$

For a smooth function we can replace the sum with an integral

Begin in infinite volume

$$\mathcal{F}\mathcal{T}^{-1}\Big[\mathcal{F}\mathcal{T}[f]\Big] = f \int \int \frac{dp}{2\pi} e^{ipx} \left| \int dx' e^{-ipx'} f(x') \right| = f(x)$$

Now repeat in a finite volume

$$\mathcal{F}\mathcal{T}_{L}^{-1}\left[\mathcal{F}\mathcal{T}_{L}\left[f\right]\right] = f$$

$$\frac{1}{L}\sum_{p}e^{ipx}\left[\int_{L}dx'\,e^{-ipx'}f(x')\right] = f(x)$$

$$p = 2\pi n/L$$

Take the infinite-volume limit as a sanity check

$$\lim_{L\to\infty}\frac{1}{L}\sum_p f(p)=\lim_{L\to\infty}\frac{1}{L}\sum_n f(2\pi n/L)=\lim_{L\to\infty}\frac{1}{L}\int dn\,f(2\pi n/L)=\lim_{L\to\infty}\frac{1}{L}\int dp\frac{L}{2\pi}\,f(p)=\int\frac{dp}{2\pi}f(p)$$

$$\lim_{L \to \infty} \left[\frac{1}{L} \sum_{p} - \int \frac{dp}{2\pi} \right] f(p) = 0$$

	arm-up and definitions Meaning of Euclidean Finite-volume set-up
	mL round one Mass in $\lambda\phi^4$ Mass/matrix element in $g\phi^3$
	→ 2 formalism Scattering basics Derivation Example application Generalizations
	mL round two LO-HVP for $(g-2)_{\mu}$ Bethe-Salpeter kernel
	$+)\mathcal{J} \rightarrow 2$ formalism Derivation Example application

$\square 2 + \mathcal{J} \rightarrow 2$ formalism \square Derivation \square Testing the result \square Numerical explorations
Non-local matrix elementsDerivationApplications
☐ 3 → 3 formalism ☐ New complications ☐ Derivation $(E_n(L) \text{ to } \mathcal{K}_{df,3})$ ☐ Integral equations $(\mathcal{K}_{df,3} \text{ to } \mathcal{M}_3)$ ☐ Testing the result ☐ Numerical explorations/calculations
Conclusion and outlook

Finite-volume set-up - 4-dimensional (T3 x R)

$$Q = \frac{(-i\lambda)}{2} \frac{1}{i} \left(\frac{dk^{0}}{2\pi} \frac{1}{2^{2}} \sum_{k} -\frac{1}{(k^{0})^{2} + k^{2} + M^{2} - i\epsilon} \right)$$

$$M(L)^2 = M^2 + \Omega + O(\chi^2)$$

$$(X = \text{propagator})$$

$$(X = \text{vertex})$$

$$\frac{Q}{2} = \frac{(-i\lambda)}{2} \frac{1}{i} \left(\frac{dk^{0}}{2\pi} \frac{1}{2} \sum_{k} \frac{1}{-(k^{0})^{2} + k^{2} + M^{2} - i\epsilon} \right)$$

$$= \frac{1}{32\pi^2} + M^2 \frac{\lambda}{32\pi^2} \sum_{\substack{n \neq 0 \\ 0}} \frac{1}{32\pi^2} \frac{-\lambda^2}{\sqrt{2}} \left[\frac{M^2 L^2 n^2}{4} \right]$$

$$\frac{M(L)^2 - M_{phy}^2}{M_{phy}^2} = \frac{\lambda}{32\pi^2} \sum_{\Delta \neq 0} \frac{K_1(ML|\Delta I)}{ML|\Delta I} = \frac{6\lambda}{32\pi^2} \frac{1}{ML} \sqrt{\frac{\pi}{2}} \frac{1}{ML} e^{-ML}$$

Particle mass in $\lambda \phi^4$

 \square Leading order volume correction $(\Delta m^2(L) = m(L)^2 - m^2 > 0)$

$$\frac{\Delta m^{2}(L)}{m^{2}} = \frac{\lambda_{0}}{32\pi^{2}} \sum_{\boldsymbol{n}\neq\boldsymbol{0}} \frac{K_{1}(|\boldsymbol{n}|mL)}{|\boldsymbol{n}|mL} = \frac{3\lambda_{0}}{16\pi\sqrt{2\pi}} \frac{e^{-mL}}{(mL)^{3/2}} \left[1 + \mathcal{O}(1/L, e^{-\beta mL})\right]$$

☐ To the order we work: coupling = threshold scattering amplitude

Warm-up and definitions Meaning of Euclidean Finite-volume set-up $\mathbf{Q} e^{-mL}$ round one $leftif{M}$ Mass in $\lambda \phi^4$ lacktrleft Mass/matrix element in $g\phi^3$ \square 2 \rightarrow 2 formalism Scattering basics Derivation Example application Generalizations $\Box e^{-mL}$ round two \square LO-HVP for $(g-2)_u$ Bethe-Salpeter kernel \square (1+) $\mathcal{J} \rightarrow 2$ formalism Derivation Example application

 $\square 2 + \mathcal{J} \rightarrow 2$ formalism Derivation Testing the result Numerical explorations ■ Non-local matrix elements Derivation Applications \square 3 \rightarrow 3 formalism New complications \square Derivation ($E_n(L)$ to $\mathcal{K}_{df,3}$) Integral equations ($\mathcal{K}_{df,3}$ to \mathcal{M}_3) Testing the result Numerical explorations/calculations Conclusion and outlook

Multi-hadron observables

Exotics, XYZs, tetra- and penta-quarks, H dibaryon

e.g. X(3872)
$$\sim |D^0\overline{D}^{*0} + \overline{D}^0D^{*0}
angle ?$$

Eletroweak, CP violation, resonant enhancement

CP violation in charm
$$D o \pi\pi, K\overline{K}$$

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

• LHCb (PRL, 2019) •

$$f_0(1710)$$
 could enhance ΔA_{CP} · Soni (2017) ·

Resonant B decays

$$B \to K^* \, \ell\ell \to K\pi \, \ell\ell$$

$$|X\rangle, |
ho\rangle\,, |K^*\rangle\,, |f_0\rangle \quad
ot\in \quad \text{QCD Fock space}$$

QCD Fock space

 \Box At low-energies QCD = hadronic degrees of freedom $\pi \sim \bar{u}d, \ K \sim \bar{s}u, \ p \sim uud$

Overlaps of multi-hadron asymptotic states → S matrix

depends on $s=E_{\rm cm}^2$ and angular variables

diagonal in angular momentum

$$\mathcal{M}_{\ell}(s) \propto e^{2i\delta_{\ell}(s)} - 1$$

☐ An enormous space of information

$$|\pi\pi\pi\pi, \text{in}\rangle |K\overline{K}, \text{in}\rangle \cdots$$

QCD resonances

 \square Roughly speaking, a bump in: $|\mathcal{M}_\ell(s)|^2 \propto |e^{2i\delta_\ell(s)}-1|^2 \propto \sin^2\delta_\ell(s)$ scattering rate

$$\pi\pi \to \pi\pi$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

QCD resonances

 \square Roughly speaking, a bump in: $|\mathcal{M}_\ell(s)|^2 \propto |e^{2i\delta_\ell(s)}-1|^2 \propto \sin^2\delta_\ell(s)$ scattering rate

QCD resonances

 \square Roughly speaking, a bump in: $|\mathcal{M}_\ell(s)|^2 \propto |e^{2i\delta_\ell(s)}-1|^2 \propto \sin^2\delta_\ell(s)$ scattering rate

Analyticity

 \square Instead of $|\mathcal{M}(s)|^2 \to \text{analytically continue the } amplitude itself$

For two-particle energies $(2m)^2 < s < (4m)^2$, what is the analytic structure?

☐ The optical theorem tells us...

$$\rho(s)|\mathcal{M}_{\ell}(s)|^2 = \operatorname{Im} \mathcal{M}_{\ell}(s)$$

where
$$\; \rho(s) = \frac{\sqrt{1-4m^2/s}}{32\pi} \;$$
 is the two-particle phase space

$$lacksquare$$
 Unique solution is... $\mathcal{M}_\ell(s) = rac{1}{\mathcal{K}_\ell(s)^{-1} - i
ho(s)}$

K matrix (short distance)

phase-space cut (long distance)

Key message: The scattering amplitude has a square-root branch cut

Bethe Salpeter equation

☐ All orders diagrammatic expansion

$$\mathcal{M} = \times \times \times$$

$$\mathcal{M} = \times \times$$

- ☐ Construct ☐ and such that this is true
- $\bigcirc =$

- ☐ Construct ☐ and such that this is true
- $\bigcirc = \times$

$$\bigcirc = \times$$

☐ All orders diagrammatic expansion

☐ Construct ☐ and — such that this is true

$$\bigcirc = \times \bigvee$$

$$\bullet = \times \emptyset \Rightarrow$$

☐ All orders diagrammatic expansion

☐ Construct ☐ and — such that this is true

$$\bullet = \times \emptyset \Rightarrow$$

Bethe Salpeter kernel (2PI in the s-channel)

Fully dressed propagator

Bethe Salpeter kernel

$$\bigcirc = \times \bigcirc = B(s)$$

☐ Analyticity of B.S. kernel

time-ordered (old fashioned) perturbation theory

$$\int_{\boldsymbol{p}_{1},\boldsymbol{p}_{2}} \frac{1}{E - \omega_{\boldsymbol{p}_{1}} - \omega_{\boldsymbol{p}_{2}} - \omega_{\boldsymbol{P}-\boldsymbol{p}_{1}-\boldsymbol{p}_{2}}} \qquad \int_{\boldsymbol{p}_{1},\boldsymbol{p}_{2}} \frac{1}{-E - \omega_{\boldsymbol{p}_{1}} - \omega_{\boldsymbol{p}_{2}} - \omega_{\boldsymbol{P}-\boldsymbol{p}_{1}-\boldsymbol{p}_{2}}}$$

 \square Real and analytic for $s < (3m)^2$

no $i\epsilon$ needed if pole is not satisfied

Analyticity of \mathcal{M} (from B.S. kernel)

For two-particle energies $(2m)^2 < s < (3m)^2$, what is the analytic structure?

propagating pion

$$\mathcal{M}(s) \equiv \mathbf{Y} + \mathbf{i} \underbrace{i \epsilon}_{\text{non-analytic:}} + \mathbf{i} \underbrace{i \epsilon}_{\text{ion-analytic:}} + \cdots$$

on-shell particles = singularities

$$\underbrace{\text{O}i\epsilon\text{O}} = \underbrace{\text{OPVO}} + \underbrace{\text{O}}_{\rho(s)}$$
 cutting rule
$$\rho(s) \propto \sqrt{s - (2m)^2}$$

$$= \left[\begin{array}{c} \begin{array}{c} \\ \\ \end{array} + \begin{array}{c} \\ \times$$

$$= \mathcal{K}(s) + \mathcal{K}(s)i\rho(s)\mathcal{K}(s) + \cdots = \frac{1}{\mathcal{K}(s)^{-1} - i\rho(s)} \quad \text{branch-cut singularity} \quad \sqrt{s - (2m)^2}$$

Cuts and sheets

$$\mathcal{M}_{\ell}(s) = \frac{1}{\mathcal{K}_{\ell}(s)^{-1} - i\rho(s)} \propto \frac{1}{p \cot \delta_{\ell}(s) - ip} \propto e^{2i\delta_{\ell}(s)} - 1 \qquad \rho(s) \propto \sqrt{s - (2m)^2}$$

 \square Each channel generates a square-root cut \rightarrow doubles the number of sheets

Cuts and sheets

$$\mathcal{M}_{\ell}(s) = \frac{1}{\mathcal{K}_{\ell}(s)^{-1} - i\rho(s)} \propto \frac{1}{p \cot \delta_{\ell}(s) - ip} \propto e^{2i\delta_{\ell}(s)} - 1 \qquad \rho(s) \propto \sqrt{s - (2m)^2}$$

 \square Each channel generates a square-root cut \rightarrow doubles the number of sheets

☐ Important lessons:

Details of analyticity = important for quantitative understanding

Possible to separate...

- (i) long-distance kinematic singularities
- (ii) short-distance/microscopic physics (depending on interaction details)

Warm-up and definitions Meaning of Euclidean Finite-volume set-up $\mathbf{Q} e^{-mL}$ round one $leftif{ Mass in } \lambda \phi^4$ lacktrleft Mass/matrix element in $g\phi^3$ \bigcirc 2 \rightarrow 2 formalism Scattering basics Derivation Example application Generalizations $\Box e^{-mL}$ round two \square LO-HVP for $(g-2)_u$ Bethe-Salpeter kernel \square (1+) $\mathcal{J} \rightarrow 2$ formalism Derivation Example application

 $\square 2 + \mathcal{J} \rightarrow 2$ formalism Derivation Testing the result Numerical explorations Non-local matrix elements Derivation Applications \square 3 \rightarrow 3 formalism New complications \square Derivation ($E_n(L)$ to $\mathcal{K}_{df,3}$) Integral equations ($\mathcal{K}_{df,3}$ to \mathcal{M}_3) Testing the result Numerical explorations/calculations Conclusion and outlook