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Lattice field theory

Non-perturbative regulator of quantum field theory (QFT)
Systematically improvable numerical method for extracting QFT’s properties

Exciting, vibrant, highly active research community

O 0 4dgd

Technical field that challenges all of us to be great communicators

University of Adelaide, CSSM




Recipe for strong force predictions
1. Lagrangian defining QCD Locn = S Tp(ilh) —mp) ¥y - iGZvGZW
2. Formal / numerical machinery (lattice field theory) g ﬁ

3. A few experimental inputs (e.g. M, My, M)

Wide range of precision pre-/post-dictions

MS

e NO FLA =

m \ Flavour Lattice Averaging Group (N

n -

ga i i oz%(MZ) = 0.1182(8) lattice average
e fk al®) (Mz) = 0.1174(16)  PDG I8 (non-lattice)
HVP

(9 — z)u ID

/B
C Overwhelming evidence for QCD Vv Tool for new-physics searches v )




Lattice QCD

[J a non-perturbative regularization of QCD

[J a definition that is well-suited to numerical evaluation

render the quantum path-integral finite-dimensional — evaluate using Monte Carlo importance sampling
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Limitations of lattice QCD

observable — /D¢ Gis

interpolator

for observable




Limitations of lattice QCD

dN e S | interpolator

observable! —
for observable |

To proceed we have to make three modifications

Im F4 :

] e 1l nonzero lattice spacing
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signature <

2 finite volume, L

Also... Mw,lattice > Mw,our universe

(but physical masses — increasingly common)
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QCD (and QED) in a Euclidean finite volume
AN A
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® O O ¢ o o o o o o
I3 xT

Sometimes the finite-volume is an unwanted artifact (extrapolate L — ©0)...

... but it can also be a useful tool (fit data to predicted L dependence)

Using the volume as a tool often resolves the issue of Euclidean signature




[J Warm-up and definitions

]
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| Meaning of Euclidean

O d

—mlL

| Finite-volume set-up

round one
| Mass in 1¢*

| Mass/matrix element in g¢3

2 — 2 formalism

a8

QN

.
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| Scattering basics
| Derivation
| Example application
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| Generalizations

round two
| LO-HVP for (g — Z)ﬂ

| Bethe-Salpeter kernel

+) f — 2 formalism

| Derivation

| Example application

d2+ 7 — 2 formalism

[J Derivation
[J Testing the result
[J Numerical explorations

[J Non-local matrix elements
[0 Derivation
[ Applications

] 3 — 3 formalism
[ New complications
[ Derivation (E, (L) to Z 45)
] Integral equations (F 43 to . 5)

] Testing the result
[J Numerical explorations/calculations

[J Conclusion and outlook
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Euclidean vs Minkowski

Four-vector basics .
el a\* ¢s (s \23
b 3(‘&,*\ " L s ﬁa«"(’& c.t\—(x,t\* =\,2,3,
pu=(ER

Minkowski two-point function (generic scalar theory)
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Meaning of Euclidean

When asked “Is it Euclidean or Minkowski?”’ first think:
“Is the question well-posed?”

Sometimes it is Often it is not
[J Correlation functions ] Masses
[J Four-vectors ] Decay constants
J QFT path integral [J Finite-volume energies

[J Scattering amplitudes
[J Local matrix elements
[J Spectral densities

For the case of correlation functions, Minkowski vs Euclidean is...

K\\;\‘T\“\ Important when we have Irrelevant when we have full

W ;

limited knowledge analytic knowledge
(e.g. numerical estimate for
real Euclidean momenta)




Analytic knowledge

Suppose the Euclidean correlator is Re(GEe(zg))

and we have complete
analytic knowledge

GE (ZIZ‘E) — tanh(a:E)

Gm(zym) = itan(awm)

but this is just a relabeling
of the same information




Limited numerical knowledge

Suppose the Euclidean correlator is

and we have a
numerical estimate

Ge(xg) = tanh(xg)

Now the analytic continuation
is ill-conditioned

ot
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Meaning of Euclidean

When asked “Is it Euclidean or Minkowski?”’ first think:
“Is the question well-posed?”

Sometimes it is Often it is not

[0 Correlation functions

[J Four-vectors
J QFT path integral

Masses

Decay constants |
Finite-volume energies |
Scattering amplitudes ||
Local matrix elements |

[ Spectral densities

Mostly the lectures are _~
concerned with these
quantities

Correlators (where M vs. E is meaningful) are often used to
access observables (where M vs. E is not meaningful)
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Finite-volume setup

cubic, spatial volume (extent L) Pt AR

periodic boundary conditions™

------------------

q(7,x) =q(7,x + Le;) ’ w(1,x) = w(7,x + Le;)

time direction infinite™ L
< >

continuum theory

*will also briefly consider finite T effects,
alternative boundary conditions

> e Plei — 1 — 9. [ =2,

— / d’x e "P* 1(1,x + Le;) k)
L
J

Quantization of momentum

dBx e~ P (= Led) () b— 2_7Tn, he 75

L
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Fourier transform conventions (here in one-dimension)

Begin in infinite volume

FTHFTI| = F W/dp W{ %ew‘f( )};f(w)
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Fourier transform conventions (here in one-dimension)

Begin in infinite volume

FT T =1y 2] [ i)

simplify via...
/dp eP(r =) — 210 (x — x')
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Fourier transform conventions (here in one-dimension)

Begin in infinite volume

T =y [ | [ ] e




Fourier transform conventions (here in one-dimension)

Begin in infinite volume

FT1 []—"T[ f]} = f ~ ¥ ;Z—f:e’w { / da' e """ f (w’)} = f(@)

Now repeat in a finite volume
1 : L -
N Z 6@:6(27rn/L) [/0 dr e~ (27Tn/L)f(£IZ‘/)]

Rewrite this using Z e* ™ = Z 6(z+n')
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Fourier transform conventions (here in one-dimension)
Begin in infinite volume

FTUFTIA] =1 o

e [ e ja)| = ga)

Now repeat in a finite volume
x)/L —n }

1 | (o —
T tx(2mn/L) 1 _—ixz' (27n/L)
v [Laremngen] - L SHES

Rewrite this using Z e°T = Z 6(z+n') argument can only
/ vanish when n’ =0




Fourier transform conventions (here in one-dimension)

Begin in infinite volume

FTHFTIf| = F -

[ e @] = g

Now repeat in a finite volume

FTOFTLS| =1

—-— l ip:c[ d ! _—ipx’ /] _
y 12 [ do' e p(a)| = (o)

p=2mn/L
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Fourier transform conventions (here in one-dimension)

Begin in infinite volume

FTHFTIf| = F -

[ o] = s

Now repeat in a finite volume

FTOFTLS| =1

%Z [ st e )] = s

p=2mn/L

Take the infinite-volume limit as a sanity check

1 1 L

lim lZf(p): lim lZf(QTFTL/L): lim Z/dnf(an/L): lim —/dp% f(p) = ;—if(p)

L—oo L

L—oo L L—00 L—oo L

For a smooth function we can
replace the sum with an integral




Fourier transform conventions (here in one-dimension)

Begin in infinite volume

FTHFTIf| = F -

Now repeat in a finite volume

FTOFTLS| =1

Take the infinite-volume limit as a sanity check

1 1 L d
Lh_)II;OZZf :Lhngosz 2mn/L) = hm Z/dnf(an/L): lim —/dp% f(p) = %f(p)

s |3 o)

L—oo L
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Multi-hadron observables . LHCb (PRD92, 2015) -

160

[ Exotics, XYZs, tetra- and penta-quarks, H dibaryon _ 140
2 120
5 100

e.g. X(3872)
~ DD + D D*)?

80
60

Candidates per

40

20

AR P A l“‘u .......
740 760 780 800 820

AM = Mr'mdly) - M(J/y) [MeV]

[0 Eletroweak, CP violation, resonant enhancement

— — (— 4+ —4
CP violation in charm D — T, KK AAcp = (-15.44+2.9) x 10

. LHCb (PRL, 2019) -

f0(171()) could enhance AACP
e Soni (2017) -

Resonant B decays B — K* ff —> Kﬂ' M

X)), 1p),|K*),|fo) € QCD Fock space
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QCD Fock space

[J At low-energies QCD = hadronic degrees of freedom 7 ~ ud, K ~ su, p ~ uud

[ Overlaps of multi-hadron asymptotic states — S matrix

|77, in)

.g. |

dependson § = Egm
and angular variables

diagonal in angular momentum

L%
S(s) = <7T7T»0“t|%o
Ve

[J An enormous space of information nrnm,in)  |KK,in)

My(s) ox €2¥¢0s) — 1

_
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QCD resonances
[J Roughly speaking,a bump in: |./\/lg(8)‘2 X ‘62i5£(8) — 1‘2 X Sin2 55(8)

scattering rate
0.6 0.8 1

60 .
o, O =17(177) T — T
—‘_‘40 nﬂ p ncn . 6
= el >
o g ‘ pions 6
0 Protopopescu et al. (1972)

0.6 0.8 1
E (GeV)
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QCD resonances
[J Roughly speaking,a bump in: ‘./\/lg(s)‘z X ‘62i5€(8) — 1‘2 X Sin2 5g(8)

scattering rate

60 0.6 0.8 1
e, [O(JTO) =17 (177) T — T
—‘_‘40 nﬂ [0 Unn .‘}\/.‘,
DY x O ® "o _
— 20 o Pw<:o, Ttz 9/pivo>!z
0 ; Protopopescu et al. (1972)

0.6 0.8 1

Extend to the
complex plane
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QCD resonances
[J Roughly speaking,a bump in: ‘./\/lg(s)‘Z X ‘6%52(8) — 1‘2 X Sin2 5g(8)

scattering rate
0.6 0.8 1

60 .
G(TPCY _ 14+ (1——
e M) =1 T — T
—‘_‘40 un p nn !} .‘,
z a @ ';3<I./00 a _ | \/ «'
o X “ pions ¥
Protopopescu et al. (1972)
0.8 1
E (GeV)
A Analytic continuation reveals a complex pole
< O
@ bound state
Ep = Mp

Er = Mg+ il'g/2

resonance @ :>¢C<:.
9




Analyticity

[ Instead of |M(s)|* — analytically continue the amplitude itself 6> <:C

For two-particle energies (2m)? < s < (4m)?, what is the analytic structure! @

[0 The optical theorem tells us...
p(s)|Me(s)]* = Im M,(s)

/1 —4m?/s
B 327

where p(s) is the two-particle phase space

1
[ Unique solution is... M(s) = KE(S)_l — ip(S)

K matrix (short distance) phase-space cut (long distance)

C Key message: The scattering amplitude has a square-root branch cut )




Bethe Salpeter equation

[J All orders diagrammatic expansion

M= > XX I
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M= > X< § >@<>& é
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Bethe Salpeter equation

[J All orders diagrammatic expansion

M= > X< § >@<>& é
O P X< X< XX X
OO XX X




Bethe Salpeter equation

[J All orders diagrammatic expansion

M:><><><:O: >@'<>£>< é
<O D X< KB o< o

[ Construct O and —e— such that this is true
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Bethe Salpeter equation

[J All orders diagrammatic expansion

N\ . ¢ ~ N\ \}l/ \}L_/
/\/l: > < /()\ D e e e AR

[ Construct O and —e— such that this is true

0= =




Bethe Salpeter equation

[J All orders diagrammatic expansion
N
RN }L N & S
M= > [XOx] § Xo< X< XX
N

[ Construct O and —e— such that this is true

0= =
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Bethe Salpeter equation

[J All orders diagrammatic expansion
e B

[ Construct O and —e— such that this is true

0 == [




Bethe Salpeter equation

[J All orders diagrammatic expansion

M:

‘@eZe)elelo

[ Construct O and —e— such that this is true

o:xﬁeé

o Q




Bethe Salpeter equation

[J All orders diagrammatic expansion

M= > X< § >@<>& >é<
SO P X< B >0 6K

[ Construct O and —e— such that this is true

Bethe Salpeter kernel
O == Q X é( (2P in the s-channel)

Fully dressed propagator
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Bethe Salpeter kernel

.:xg@-()é( = B(s)

[J Analyticity of B.S. kernel

time-ordered (old fashioned) perturbation theory

<X Z

/ ; / 1
D1:P> b — wpl o wPQ o wP_pl_p2 P1,P> —b — wpl o wp2 o wP—pl—p2

[J Real and analytic for s < (3m)?

no i€ needed if pole is not satisfied




Analyticity of / (from B.S. kernel)
C> <:C
For two-particle energies ( (2m)* < s < (3m)? what is the analytic structure? @ L

) =0+ QO+ )‘l‘( —— propagatng on

non-analytic:
on-shell particles = singularities

DﬁECI +
) \/s— (2m)?

cutting rule

defines the K matrix

:lm+---l+lm+---1ilm+---l+---

p(s)

1 ranch-cut singulari
= K(s) + K(s)ip(s)K(s) +--- = branch-cut singularity

K(s)=1 — Z'p(g) Vs = (2m)?

_
b
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Cuts and sheets

1 1 2665(s) '
— 10¢\S) 1 . 2
Ke(s) "L —ip(s)  peotoss) —ip p(s) o< /s — (2m)

M(s)
[J Each channel generates a square-root cut = doubles the number of sheets

A A
physical sheet g — Egm unphysical sheet

@ o,
sp=(Mgr+1'r/2)
< e S i
® >e<lo

resonance poles only on 2nd sheet
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Cuts and sheets

1 1 2665(s) '
— 10p(S) 1 - 2
Ko(s) "L —ip(s) peotonls)—ip p(s) o< /5 — (2m)

My(s)

[J Each channel generates a square-root cut = doubles the number of sheets

A A
physical sheet g — Egm unphysical sheet

SR — (MRo—l— iFR/2)2
< o e e e aaaaa s I oA AAAAAAAAALAL
S —9<,

v v

resonance poles only on 2nd sheet

[J Important lessons:

Details of analyticity = important for quantitative understanding

Possible to separate...
(i) long-distance kinematic singularities

(ii) short-distance/microscopic physics (depending on interaction details)
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