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Bragg beamsplitters
b)

hk

a)

Use AC Stark effect to
create potential from laser

L0
zha\lf(:p, t) = U(x,t)

V(z,t) = 2hQeq(t) cos® (kz — 6t/2)
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Simultaneous conjugate interferometer geometry

2
pOSitiOn Wy = imy? — fix

Y

2m

h

Dlaser = N(k1 — k2)z — n(wy — wo)t

1 T
¢free — _/ Ldt
0

(I)RBI — 8n2er — nme -+ ¢gravity
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Simultaneous conjugate interferometer geometry
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Simultaneous conjugate interferometer geometry

2
pOSitiOn Wy = imy? — fix

Y
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Simultaneous conjugate interferometer geometry

pOSiti()Il (I)SCRBI :167L(Tl N)er — 2nme
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 Review of systematic effects
* Approach to negating/understanding difficult systematics
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Overview of systematic effects

“Straightforward”
Laser frequency
Acceleration gradient

Beam alignment

Gouy phase -2.60 = 0.03

Bloch oscillation light shift
Density shift

Index of refraction

Sagnac effect Speckle phase shift 4B 0+0.04
Modulation frequency wavenumber

Thermal motion Of atomS e i 0£00s8

Non-Gaussian waveform 13 O £ 0.03
«“Difficult” D

Parasitic interferometers 14 0O £0.03

Gouy phase
Speckle phase

Thermal motion of atoms
Non-Gaussian waveform
Parasitic interferometers
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“Straightforward” systematics

* |aser frequency | -0.24 +0.03 ppb mes k2

* Acceleration gradient

* Beam alignment 0(h/mcs) _ , Oiaser

 |Index of refraction
New comb will allow constant
frequency monitoring
Aside: blind measurement of k
8
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“Straightforward” systematics

| by
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: |12n+ N, :
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“Straightforward” systematics

o Laserfregueney | -0.24 +0.03 ppb
* Aceeteration-graatent | —1.79 + 0.02 ppb Kdown nkup

 Beam alignment ket = Ko — Ko e

* |ndex of refraction k2e = 4k? — k*6° *

Backfiber coupling
constrains 6 to 12 urad . ‘
‘ ~
|

A
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“Straightforward” systematics

¢ I:aselLﬁFequHey —0.24 £ 0.03 ppb Dispersion of laser due to background
Cesium atoms changes the refractive index
» Acceleration-gradient | —1.79 = 0.02 ppb
- n—1=
 Beamalighrment| 0.05+0.03 ppb 4k A

* Index of refraction Bounded by assuming all vacuum
pressure is due to cesium.
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Overview of systematic effects

“Straightforward”

Laser frequency
AcceleratiOn gradient Measurements of

LKB-111 . ‘h/m (*"Rb)

Harvard-08 | e
RIKEN-19

Modulation fre§fiency wavenumber Berkeley-18{  h/m (***Cs)

LKB-20- h/m (*"Rb)

“Difficult”

Gouy phase .
Speckle phase Northwestern-22 - | | | e | |
Thermal motion of atoms 8.9 9.0 9.1 9.2 9.3 9.4

(a1 —137.035990) x 10°

Non-Gaussian waveform
Parasitic interferometers
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Bragg beamsplitter problems

H = o - hwe |eXe| + E(t) - d |e)g| + h.c.

e e = = -
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Bragg beamsplitter problems
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Bragg beamsplitter problems

(2nhk
H = ) hwe leXe|l + E(t) - d|eXg| + h.c.
— —— 2m
70 S B
) / \
—— # 0 N B T ! ! .
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. . . . . . . | Problem #1: dynamics during pulse will effect imparted phase
-4 -3 -2 -1 0 1 2 3 Z

n Problem #2: beamsplitter outputs unwanted momentum states
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Anomalous phase
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Anomalous phase
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Anomalous ph ase 2018 measurement systematic uncertainty of 120ppt

at d, ., corresponds to ellipse angle to 3mRad
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Anomalous phase previous analysis

O_'

|
p—t
-

w

fm(T) o fm(oo)l [HZ]
|

Relative Uncertainty [ppb]

T |ms]
Source: Zack Pagel

Source: Brian Estey thesis work

Zero O
(I)SCI :]—Gn(n + N)WTT — anmT + ¢diffraction M’ Wy = 8(7”& -+ N)OJT- |

| ¢diffraction
2n1’

MITP Precision Determinations of the Fine-structure constant 15 Jack Roth, UC Berkeley




Parasitic ports

1. OOQoptimal

[P (@, t)|?
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Parasitic ports
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Parasitic ports
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Parasitic ports
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Parasitic ports
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Parasitic ports
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R. H. Parker et al, Phys. Rev. A 94, 053618
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‘Observation of Extra Photon Recoil in a Distorted Optical Field, S. Bade et al., Phys. Rev. Lett. (2018)‘

Gouy Phase \ ] /

o k varies across Gaussian wavefront g
Ok ot _ \? | ze e e
Koft 22w A Ww§ | -

. . . phase front has curvature <%=~
 Small scale intensity fluctuations lead -
to ashiftink -
-
0k 1 VIE =
kK 22 FE L # UJ/C -
+ Shift in k shifts w, = hk*/2m -

e Also couples to thermal motion of
atoms / l \
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‘Observation of Extra Photon Recoil in a Distorted Optical Field, S. Bade et al., Phys. Rev. Lett. (2018)‘

Gouy Phase

Beam profile measured, fed into Monte Carlo simulation \ A
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R. H. Parker et al., Science 360, 191-195 (2018)
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Speckle ;

e Causes small intensity ripples

e Causes shiftsin k

* Suppressed via apodizing filter
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Non-Gaussian waveform

* Deviation of Gaussian
intensity profile of
beamsplitter pulse 90°

PBS
WA PN e \

[ to chamber
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Non-Gaussian waveform

* Deviation of Gaussian
intensity profile of
beamsplitter pulse
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Non-Gaussian waveform

* Deviation of Gaussian
intensity profile of
beamsplitter pulse
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Outline

* Approach to negating/understanding difficult systematics

e Qutlook
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New apparatus

e New chamber
e New simulation

e New team
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Chamber hardware upgrades

> Reduced effect of thermal
Larger beam motion, Gouy phase, laser phase

Larger chamber, baffles — Reduced speckle

Atoms higher in chamber =————— Reduced beam imperfections
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Simulation approach Nl

* One unified simulation for
understanding all beam
related systematics

s
—
—
—
>/,
Interferometry beamsplitters
o——— |

* Attempting to verify each
stage of the simulation
before implementing next
stage

4
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Matching simulation and experiment
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Inttial simulation results

 Completing simulation-experiment
matching of single Bragg pulses
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Inttial simulation results

 Completing simulation-experiment
matching of single Bragg pulses

* Beginning to verify simulations of
the full interferometer

1st and 2nd BS relative laser intensity

MITP Precision Determinations of the Fine-structure constant 26
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Outlook

* Experiment can now run 24/7,
yields high quality datasets

* Next simulation-experiment
matching

Dirty viewport Clean viewport

 Gouy phase

* |nput cloud shaping

* New interferometer geometries?
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