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Test of the Standard Model, New physics  ?



Test of the Standard at low energy scale 
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X. Fan, et al., Phys. Rev. Lett. 130, 071801 (2023)

(See Gabrielse’s talk)

Uncertainty in 𝛼 is bottleneck for most precise tests of Standard Model

Electron magnetic moment (𝒈𝒆)
The most precisely measured quantity of a fundamental particle   

Standard Model prediction
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Electron  magnetic’s SM prediction

• R. Aliberti et al., https://arxiv.org/abs/2505.21476
• T. Aoyama, T. Kinoshita, M.  Nio, Phys. Rev. D 2018, 97, 036001.
• S. Laporta, Phys. Lett. B 2017, 772, 232–238.
• T. Aoyama, T. Kinoshita and M. Nio, Atoms 2019, 7, 28.
• R.H. Parker et al, Science 2018, 360, 191–195.
• L. Morel et al., Nature 588, 61-68 (2020)

▪ Electron magnetic moment

tenth-order QED

hadronic contribution

 Fine-structure constant

▪ Recent update

• New evaluation of the tenth order
• New evaluation of hadronic contribution
Adopting the simple mean of KNT19 and KNT19/CMD-3 

https://arxiv.org/search/hep-ph?searchtype=author&query=Aliberti,+R
https://arxiv.org/search/hep-ph?searchtype=author&query=Aliberti,+R
https://arxiv.org/abs/2505.21476


𝛼 from atomic recoil measurement: state-of-the art

Testing Standard Model at current precision of the electron measurement requires that this Cs/Rb 
discrepancy be resolved. 

So far only two group are measuring atomic recoil with atom interferometers - Berkeley and Paris -

⍺ at the level of 10-10

• R.H. Parker et al, Science 2018, 360, 191–195.
• L. Morel et al., Nature 588, 61-68 (2020)



Outline

▪ Measurement of the ratio h/m using atom interferometry based on Raman diffraction

▪ Recent work on the Paris experiment



Fine-structure constant  from the photon recoil measurement

Measured quantity Relative uncertainty

Rydberg constant 1.9 × 10−12

Ar (e) 1.8 × 10−11

Ar(87Rb) 7.0 × 10−11

• G. Audi et al., 2014 Nuclear Data Sheets 120, 1-5 (2014)
• S. Sturm et al. Nature 506, 476-470 (2014), 
• E. Tiesinga et al., Rev. Mod. Phys. 93, 025010

▪ Hydrogen atom: 

▪ Limitation:             (or absolute atomic mass in the new SI)



Measurement of the recoil velocity

▪ Quantum velocity sensor

⇒ Atom interferometer based on Raman transitions with a sensitivity: 

▪ Transfer to the atoms a large number N of photon momenta

⇒ Coherent acceleration in an optical lattice (Bloch oscillations)



Atom interferometry using Raman diffraction

photon
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▪ Contra-propagation laser beams: velocity sensitive Raman transitions
▪ The internal degrees of freedom are labelled by the external degrees

Atom

▪ Stimulated Raman transition
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▪ Atomic beam splitter



𝑃0

𝑃0
|1⟩

|2⟩
+

▪ Feynman Path Integral:

Velocity sensor based on atom interferometry using Raman diffraction

Measure
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▪ Atomic phase shift: 

▪ We scan the phase of the laser to compensate (probe) the atomic phase:  



Experimental method

Optical molasses =108 atoms (87Rb)  @ T=4 𝜇K, size = 3 mm 

▪ Bloch pulses  
(Bloch oscillations in accelerated optical lattice)

▪ Raman laser pulses

▪ We scan the frequency of the laser to measure the Doppler 
shift due to



2020 measurement

▪ Relative  uncertainty of 8.1 × 10−11

▪ Statistical uncertainty of 4.3 × 10−11 on 48h
▪ New systematic effects were considered

L. Morel et al., Nature 588, 61-68 (2020)



Error budgets

Paris 2020 Berkeley 2018



Our strategy to solve 5 𝜎 discrepancy

▪ New method to probe in-situ the spatial laser beam profile
Better evaluation of the wave vectors ?

▪ New measurement using AI based Bragg diffraction (Berkeley scheme)
Systematics due to atomic beam splitter methods



Photon momentum in a gaussian beam

▪ Plane wave    :

Effect on 𝛼: (108.2 ± 5.4) × 10−11

Curvature of the wavefront

Size of the atomic cloud

▪ Related to the dispersion of wavevectors 

▪ Gaussian beam: Gouy phase and wavefront curvature



Photon momentum in a distorted wavefront

Correlation between the wavevector correction and the survival probability P (I) 
during Bloch oscillations (recoil transfer)

S. Bade et al., Phys. Rev. Lett. 121, 073603 (2018)



▪ New optical setup

Clean Gaussian beam and Bose-Eintein condensate 

BEC = 2x105 atoms@ 100 nK in F=1 mF=0 in 3.6 s 

Size of the BEC= = 350 𝜇m  after 190 ms of free fall (start 
of the measurement sequence)



Preliminary measurement with Bose-Einstein condensate
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Optical molasses

▪ Measurements alternating between BEC and optical molasses

▪ Temporal fluctuation observed using the BEC 
(parasitic interference in the new optical setup)

➢ Use BEC as probe to measure the spatial distribution of k-vectors and the intensity profile of laser beams in 
situ

Size of the BEC= = 350 𝜇m ; Size of the molasse = 3 mm



Probing the spatial distribution of k-vectors in situ with the BEC

After 190 ms the size of the BEC = 350 𝜇m

2D grid of 121 positions 



▪ Measurement of frequency 𝜈𝐷  directly provides the correction 𝜅𝑧

How we construct the spatial distribution of k-vectors



How to move the BEC ?

➢ The frequencies of the two AOMs (reservoir/dimple) 
are quickly shifted by few MHz, to displace the center 
of the trap.

➢ After 10 ms, the laser beams  are turned off, leaving the BEC 
with an initial transverse velocity

We move the condensate by imparting a transverse velocity



Control and calibration of transverse velocity

➢ We calibrate the BEC velocity by tracking the cloud trajectory using absorption imaging
➢ Maximum  velocity of 10 mm/s along both x and y directions responds to a displacement of nearly 2 mm.
➢ The RMS cloud size of 350 μm.



▪ Typical uncertainty on 𝜈𝐷 is 80 mHz 2.8 × 10−9

▪ Each data point represents an average 18 such measurements statistical uncertainty of 6 × 10−10 on 𝜅
▪ Full data were acquired over 117 hours, using BEC and optical molasses alternately.
▪ We use as reference value the average of 53 values with optical molasses (𝜎𝑟 = 3.8 × 10−10 with 𝜒2 = 1.2)

Measurement with « clean » Gaussian beam



24

For displacements in the range r = 0 to 2 mm, and 
waist=5 mm,  𝜅𝑧 ≈ 1x10−9

Measurement with a « clean » Gaussian beam

➢ Local fluctuations in laser beam intensities induce a dispersion of k-vectors much larger than that 
expected from a simple Gaussian model.
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▪ Measurement using a 2D grid on 121 positions 
▪ The average value matches the value obtained using an optical molasse.

Measurement with a Gaussian beam on a 2 x 2 mm² grid
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➢  We observe locally an “extra recoil” where the photon recoil exceeds the nominal value ℎ𝜈/𝑐

Measurement by clipping the upward Bloch beam

▪ Spatial distribution of the k-vectors of the upward Bloch beam clipped by a 4 mm diameter iris



Model and Monte Carlo simulations 

Spatial profile of the upward-propagating Bloch beam diffracted by an iris with an aperture of 4 mm diameter

➢ Need to know the intensity profile of laser beams

▪ Monte-Carlo approach: Simulate many classical atom trajectories with initial position/velocity dispersion,
compute the interferometer phase shift and probability amplitude for each, then average over the atomic
cloud.

▪ Evaluate the laplacian term at the position of the atoms, by numerically propagating a truncated Gaussian
beam



▪ Ramsey sequence with a « the upward Bloch beam pulse » switched on in between the two π/2 pulses

▪ It induces a differential light shift proportional to the intensity

28

Measurement of  intensity probe of the beam in-situ

▪ Gaussian beam ▪ Clipped beam

Intensity profile of the upward Bloch beam



Measurement with clipped beam: Experiment/simulations

Around each point, we recorded the intensity on a 
3x3 matrix of adjacent points and calculated the 
Laplacian of the intensity.

▪ Spatial distribution of the k-vectors of the upward Bloch beam clipped by a 4 mm diameter iris

S. Gaudout, R. Si-Ahmed, C. Debavelaere, M. Door, P. Cladé and S. Guellati-Khelifa arXiv:2507.19157

https://arxiv.org/abs/2507.19157


Summary and Outlook

• Outlook:
▪ The use of a 2D BEC array combined with imaging techniques would 

allow to probe simultaneously different regions of the laser beam's 
transverse profile.

• A new method for measuring the spatial distribution of k-vectors and the laser intensity profile in-situ.

• Development of a full numerical simulation of the recoil velocity measurement protocol and a simple model to
evaluate the correction due to laser intensity profiles. Both are in agreement with experimental data.

• Statistical uncertainty is limited by the time required to scan the full beam profile.

K. Stolzenberg et al, Phys. Rev. Lett. 134, 143601 (2025) 
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