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Recent progress toward a new measurement of
rubidium recoil using atom interferometry

S. Guellati-Khelifa
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\ \, Test of the Standard at low energy scale

Electron magnetic moment (g,)
The most precisely measured quantity of a fundamental particle

o0 vv_: - S _ eh
’ He = —JeUB A UB = 2me

' il

: Bohr magneton

[ .

Measurement Standard Model prediction

e _ 1.001 159 652 180 59 (13) [0.13 ppt]

2

a n
% 1+ z C, (E) + a,(Weak) + a,(Hadron)
n=1

or
X. Fan, et al., Phys. Rev. Lett. 130, 071801 (2023) @ > depends on a from atomic recoil
(See Gabrielse’s talk) measurement

Uncertainty in & is bottleneck for most precise tests of Standard Model
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= Electron magnetic moment

—

. S eh
[le = —(Qel4B — g = — : Bohr magneton
h 2Me
Ge
—=1+4a
2 e

ae(SM) = a.(QED) + a.(Hadron) + a.(Weak)

a.(QED) = ZAﬁsz( ) +ZA ( c mT) (%)”

a.[a(Cs)] = 1159652181.59 (23)(0)(3) x 10~12[0.20 ppb]
ac.[a(Rb)] = 1159652180.238(82)(4)(30) x 10~*2[0.075 ppb]

|—> hadronic contribution

tenth—order QED

Fine-structure constant

Electron magnetic’s SM prediction

= Recent update

* New evaluation of the tenth order
e New evaluation of hadronic contribution
Adopting the simple mean of KNT19 and KNT19/CMD-3

afvp, Lo = 1.89(3) x 10712
afvp, nLo = —0.2263(35) x 10712
afivp, Lo = 0.02799(17) x 10712

a$rp, = 0.0351(23) x 10712
abw = 0.03053(23) x 10712

e R.Aliberti et al., https://arxiv.org/abs/2505.21476

* T.Aoyama, T. Kinoshita, M. Nio, Phys. Rev. D 2018, 97, 036001.
* S. Laporta, Phys. Lett. B2017, 772, 232—-238.

* T. Aoyama, T. Kinoshita and M. Nio, Atoms 2019, 7, 28.

* R.H. Parker et al, Science 2018, 360, 191-195.

* L.Morel et al., Nature 588, 61-68 (2020)



https://arxiv.org/search/hep-ph?searchtype=author&query=Aliberti,+R
https://arxiv.org/search/hep-ph?searchtype=author&query=Aliberti,+R
https://arxiv.org/abs/2505.21476
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\ \. a from atomic recoil measurement: state-of-the art

So far only two group are measuring atomic recoil with atom interferometers - Berkeley and Paris -
a at the level of 10-10

Expariment - i 1. [2023)
Standard | - = By Ca(2018) | }-I :
Model | g Rb(2020)

2.5 5.0 7.5 o 125 150 175
(/2 — 1.ODL15B6521R) = 101

Testing Standard Model at current precision of the electron measurement requires that this Cs/Rb
discrepancy be resolved.

* R.H. Parker et al, Science 2018, 360, 191-195.
* L. Morel et al., Nature 588, 61-68 (2020)
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=  Measurement of the ratio h/m using atom interferometry based on Raman diffraction

= Recent work on the Paris experiment
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1 Measured quantity  Relative uncertainty
2 2
= Hydrogen atom: hceRo = §mea C

\ Fine-structure constant from the photon recoil measurement
B \ Laboratoire Kastler Brossel

Rydberg constant 1.9 x 10712
C Me c A [‘E} Mat Ar(¥Rb) 7.0 % 1011
h * G.Audietal., 2014 Nuclear Data Sheets 120, 1-5 (2014)
= Limitation: (or absolute atomic mass in the new Sl) * S.Sturm et al. Nature 506, 476-470 (2014),
Mot * E.Tiesinga et al., Rev. Mod. Phys. 93, 025010
) A m
k = 2w /\: wave vector
E = hv VE @ O v = 5.9 mm/s for ¥ Rb and 3.5 mm/s for 133Cs
p = +hk hl
a) Vr = —
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Measurement of the recoil velocity
\ \L

S
b) A m
2 124 1%,
v = 2hk/m
|a> 1 v klﬁkgzk

= Transfer to the atoms a large number N of photon momenta
= Coherent acceleration in an optical lattice (Bloch oscillations)

= Quantum velocity sensor
= Atom interferometer based on Raman transitions with a sensitivity: O
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=  Atomic beam splitter

atom

- 12)
- |1)

Py

photon
(@, k)

nk
-5 Dy

-

- |2)
-0— |1)

Atom interferometry using Raman diffraction

Py

= Stimulated Raman transition

Atom
(WLl,kl) (sz,kz)

A>0 and A>T

At resonance

, Ot . . . Ot
U(t) = e "' cos (7) |1, pg)+eA9mew2le =i/ 2 gi <7> 2, pg + hk)

(e—z’wlT ‘1’p0> +eiA¢Le—inTe—z’7r/2 |2’p0 —I—hk>>

Sl

®= Contra-propagation laser beams: velocity sensitive Raman transitions
®" Theinternal degrees of freedom are labelled by the external degrees



A \ Leborataire Kastler Brosse Velocity sensor based on atom interferometry using Raman diffraction

Measure
3P po + 0P
X - 0
op X“\Q -©- — - @
> PV " e Or
- T
X
ot st L B,
nk —_— Y
Po -~ R 14+ cos AP
-..
—12) o " po Iy -
, —> T P T e _—v ™ ™ AD = AP, + Ad;
“ —o— 1) 2 : — 5 B = 2 2
t TR S . TR - '

A

®" Feynman Path Integral:

1
A(I)at:%/E<Ui—vé)dt:%/UA;vB (UA—UB)dt

AP,y =Tr X k X 0v + A®P;y where ov = Nv, and typically N = 1000
A(I)L = AI/TR

=  Atomic phase shift:

= We scan the phase of the laser to compensate (probe) the atomic phase:
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\ ‘ Experimental method
B \ Laboratoire Kastler Brossel

Optical molasses =108 atoms (3’Rb) @ T=4 uK, size = 3 mm

Raman and Bloch beams = We scan the frequency of the laser to measure the Doppler
i __a . - -
shift due to dv = Nu,
Elevator Interferometer
, AV = —15907410.770 & 0.047Hz
0.8 - 0.55
Controlled
magnetic field _ — 0,50 +
£ 06 :ZN
g 4 045 4
: 0.4 \Zi 0.40 ~
Detecti S
etection — - —\{(f—p})— — —-—-—-~ - ™
= 0,35 -
030
] ey —460 —440 —420 —400 —380 ~360
0.00 0.05 0.10 O‘ITSime (;)).20 0.25 0.30 0.35 AV . 15907000(Hz)
Blnchbeam_r h
"4
= 2rvp = 2N krkg —
m

®  Bloch pulses
(Bloch oscillations in accelerated optical lattice) o, = 47 mHz s 920 nm/s s 3 % 10—9 on h/m (lmin)

Raman laser pulses
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L. Morel et al., Nature 588, 61-68 (2020)

2020 measurement

a~! = 137.035999206(11)

s 107°p ¢ Relative
g e c ek = Source Correction [10~ uncertainty [10-11]
& MRRALX L] Gravity gradient 0.6 0.1
E 10-10] Line: o,(1)=BIVT *+ ++ + - +% T Alignment of the beams 0.5 0.5
c B=3-10"10 +T #*T Coriolis acceleration 1.2
% l L 4 Frequencies of the lasers 0.3
101 A T BT ' Wave front curvature 0.6 0.3
Integration time 7 (hours) Wave front distortion 3.9 1.9
7.5 —— &% Tp=20ms, Ng =500, Ts=6 ms Gouy phase 108.2 3
$3 7r =10 ms, Ng =500, Ts=6 ms Residual Raman phase shift 2.3 2.3
= >0r g anbstininbsbobmii } Index of refraction 0 <0.1
F',_i, 2.5F { Internal interaction 0 <0.1
g 0.0 bk | - I 2 { T Light shift (two-photon transition) -11.0 2.3
] t } { I { T T Second order Zeeman effect 0.1
ﬁ? =23 { ] { Phase shifts in Raman phase lock loop -39.8 0.6
350 Global systematic effects 64.2 6.8
75— : - s = | Statistical uncertainty 2.4
Data set # Relative mass of ®'Rb '® : 86.909 180 531 0(60) 3.5
Relative mass of the electron '* : 5.485799 090 65(16) - 10~* 1.5
= Relative uncertainty of 8.1 X 10~11 Rydberg constant ' : 10973 731.568 160(21)m* 0.1
= Statistical uncertainty of 4.3 x 10~ on 48h | Total: _a~" = 137.035999 206(11) 8.1

= New systematic effects were considered
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Error budgets
B \ \Mnire Kastler Brossel

Paris 2020 Berkeley 2018
Relati Effect Section da/ b
Source Correction [107 ] e a/a (ppb)
uncertainty 107 | | e TRISSHWOY e
Gy T SUE o e e e e R e Lo e
Alignment of the beams 0.5 0.5 S T
Coriolis acceleration 1.2 BOUYPNESE oD -260£003
Frequencies of the lasers 0.3 Beam alignment > 0.05 + 0.03
Wave front curvature 0.6 0.3 Bloch oscillation light SHIft e B, 00002
Wave front distortion 3.9 1.9 :JZI‘ISItnyhIfftt; ............................... g iggga
naex ot refraction = U
Em% pl;ars{e ™ hiF 1283‘2 ;;’ Bpeckle phase shift 4B 0+0.04 |
= » .. : : SAENACEMECL e D 00001
[ Index of refraction 0 =0 Modulation frequency wave number TG 0 0,001
Internal interaction 0 < 0.1 Thermal motion of atoms 1 0 +0.08
| Light Shift (two_photon transition) _1 1-0 2-3 Non_GEUSSianwaveforml3 .............................. 010‘03
Second order Zeeman effect 0.1 Parasitic interferometers 14 0+ 0.03
| Phase shifts in Raman phase lock loop -39.8 0.6 Total systematic error o Allprevious  -458+012
Global systematic effects 64.2 6.8
| Statistical uncertainty 2.4 | ................................................................................................................................................................................................
Relative mass of ®'Rb '® : 86.909 180531 0(60) 3.5
Relative mass of the electron '* : 5.485 799 090 65(16) - 10~ 1.5
Rydberg constant '*: 10973 731.568 160(21)m * 0.1

Total uncertainty in o

| Total: o ' = 137.035999 206(11) 8.1
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\ \. Our strategy to solve 5 o discrepancy

= New method to probe in-situ the spatial laser beam profile
Better evaluation of the wave vectors ?

= New measurement using Al based Bragg diffraction (Berkeley scheme)
Systematics due to atomic beam splitter methods



\ | Photon momentum in a gaussian beam
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h
27TI/D = QNICRICB —
m

= Plane wave kZ%

® Gaussian beam: Gouy phase and wavefront curvature keff’z =k + 0k

Size of the atomic cloud

Curvature of the wavefront

= Related to the dispersion of wavevectors ~ ~ —~ Effect on a: (108.2 + 5.4) x 10~
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E(7,t) = Eo(F,t) eikzto(M). | — 2mv

C

1&J_I

-y + &

1.05 A
1.00 A
0.95 ~
0.90 ~
0.85 A
0.80 A
0.75 A

Correlation between the wavevector correction and the survival probability P (1)

during Bloch oscillations (recoil transfer)

{0k P(I))
(P(1))

(0F) =

S.Bade et al., Phys. Rev. Lett. 121, 073603 (2018)

0.6 1
0.4 1

0.2 1
0.0
~0.2 1
—0.4 -
~0.6 -
~0.8

Photon momentum in a distorted wavefront

Intensity proftile

T
|
|
|
|
|
[
|
l
|
|
t
|
|

—— lIdeal gaussian beam
—— Real gaussian beam

T
|
|
|
t

[
|
l
|
|
t
|
|

|
Correction

i

|
|
|
!
|
|
|
|
|
|
i
a2l
ot
|
|
|
|
|
|

!
|
|
[
|
|
|
|
f
|
|
|
|
|
|
l
|
|
1

|

1
;VVV

-2.0

-1.5

-1.0

-0.5 0.0

x-axis (mm)

1.0

15

2.0



Clean Gaussian beam and Bose-Eintein condensate

BEC = 2x10° atoms@ 100 nKin F=1m=0in3.6 s
= New optical setup ‘

’ . ‘ g

1.0 [}
Aprés 1.36 s

(=g
0.8 M
o
06 T
o
.4 Q
042
02 ®

Aprés 1.55 s

Aprés 1.18 s

E Size of the BEC= =350 um after 190 ms of free fall (start

of the measurement sequence)

free propagation Telescope x10 (40mm/400mm)
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= Measurements alternating between BEC and optical molasses

Preliminary measurement with Bose-Einstein condensate

le-8
151 ¢ BEC Lo-e.
Optical molasses ]
E 1.0 l +
s + * A0 ot .; | \l‘ g ghllan : : .
205 | Ui e M il him | STl MEIE
® . [ '-’||| i | HI| I il LHI i -1 ] eI
% = | !”n“| Jlllllll | |'| F |¢IM| ||[ “HI’ H _ "‘Ell‘ ] 10—9_: ~~~~~ + +
g o0 i 1o Tee aremat i e EE &
i i U” : 4 BLC AT B L L ] S I o i S s o (o8
A S G A L e e s e s =1
e * 1 d 1 ==+ 2019 measure adapted == S
1@ BEC -
—1.0 i i i Lo10 & Molasse | |
° ° A n A\ A\ 10° 10!
0"‘\03 * QA\O’b A2 N o 05\03 s 06\03 o > st Integration time h (hours)

= Temporal fluctuation observed using the BEC

(parasitic interference in the new optical setup) 350 um ; Size of the molasse =3 mm

Size of the BEC==

» Use BEC as probe to measure the spatial distribution of k-vectors and the intensity profile of laser beams in
situ
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A \ Laboratgre Kaster Brosse Probing the spatial distribution of k-vectors in situ with the BEC

After 190 ms the size of the BEC =350 um
- aman 1 .
I.‘l) E’lll“ﬂ 2 .
ot 1 .

BEC positions

Bloch 2 o 1000 recoils

—

i)

[nterferonsetry

y (mm)

Ares

’ Datectlon 2o

i AMn §
OacaNT

Polarizing Beam splitter 2D grid of 121 positions
bmm -splitter

‘. | -~ Retro-reflexion mirror

Rarndd — lrls



\ How we construct the spatial distribution of k-vectors
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.ﬁ. - - — —#
2mvp = ENH(}EBE - ﬁ‘-m) - (kﬁz - F-‘-mj
k: = hkp (148 -1.)

kg 18 the wave vector of a plane wave and . is the propagation axis

2mp ~ 4Np Ekﬂﬂk{jﬂ [:]. + %Fﬁl - ﬁz]

Tri

where £ = (Kg2 — Bg1 + Kr2 — KRi)

= Measurement of frequency v, directly provides the correction k,



How to move the BEC ?
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We move the condensate by imparting a transverse velocity
Camera

» The frequencies of the two AOMs (reservoir/dimple)

F i are quickly shifted by few MHz, to displace the center
,;j{:} of the trap.
10 MOT
chamber
|
N {
12 W ‘
P O — e ——
_— 'UJ_
A2 ke
s
25 W
1 » After 10 ms, the laser beams are turned off, leaving the BEC

AOM Dimple AOM Reservoir with an initial transverse velocity



\ Loboratsi Control and calibration of transverse velocity
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» We calibrate the BEC velocity by tracking the cloud trajectory using absorption imaging
» Maximum velocity of 10 mm/s along both x and y directions responds to a displacement of nearly 2 mm.
» The RMS cloud size of 350 um.

—+ 3.0 1.0
e BEC positions

s 0.8 >
- I
2.0 = §
g -0.6 €
©
1.5 s g
L. =
&

0.5 0.2

0.0

0 05 1
mm



Measurement with « clean » Gaussian beam

Transverse position = [ mm

fo =-14207T92.654+0.08 Hz

Transverse position =~ 2 mm

fp =-14207792.2940.08 Hz

[ =-14207792.204+0.08 Hz

l']'pl ieal molasses

5.0 ¢ 0.7 4 0.7 0.7 4
_ 28 & (ex) _ 0.6 ‘E&’ ﬁ { n.ﬁ-‘% 06 {0
= #’ [’:"} ) % & lﬁ'
B 00 .,E 0.5 4 q’ ¢ ¢ 054 @ 0.5 % o
sl o al w SRV RY; Ry
Optical molasses l:::}} 047 J U4 ﬁ 14 ﬁ
—01 ¢ BEC ¢ 0.3 4 03 (8) 0.3 (7)
—IE —II l'lr | EI ﬂl.'l-l.'r -TEI} -HI’II’I -'.":’:-I'.I l?-i'.I-I'J -T:’:ﬂ
Transverse position {mm) F+ 14207000 (Hz) S+ 14207000 {Hz) J+ 14207000 (Hz)
= Typical uncertainty on vp is 80 mHz (2.8 x 107°)
= Each data point represents an average 18 such measurements statistical uncertainty of 6 x 10719 on k

= Full data were acquired over 117 hours, using BEC and optical molasses alternately.
= \We use as reference value the average of 53 values with optical molasses (o, = 3.8 x 10710 with y? = 1.2)



Measurement with a « clean » Gaussian beam

2.9 1 &
3 ?
£L
A 00 4}
=)
< 2.5 +
——  Uptical molasses

9 1 0

Transverse position (mm)

2
Rz = — 7,2 (1—55)

For displacements in the range r=0to 2 mm, and
waist=5 mm, k, =~ 1x10-9

» Local fluctuations in laser beam intensities induce a dispersion of k-vectors much larger than that

expected from a simple Gaussian model.

24



Measurement with a Gaussian beam on a 2 x 2 mm? grid

' } S. 10
@
2 2.3
— P23° o . =
= & : @ =
E o @ 0§ ‘.'i -—10
. 0. 2004 ° 3
.%Q,.
5 —20
21 9%
—2 0 2
X (mm)

= Measurement using a 2D grid on 121 positions
® The average value matches the value obtained using an optical molasse.

25



Measurement by clipping the upward Bloch beam

Spatial distribution of the k-vectors of the upward Bloch beam clipped by a 4 mm diameter iris

Kral [PPD)

¢
5 10

—1.0 —0.5 0.0 0.
Transverse posithon (mm)

Kz = “m HﬁJﬁ"(ﬂH g H-) ¥ (mm)

» We observe locally an “extra recoil” where the photon recoil exceeds the nominal value hv/c

[(u.a)

26
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"= Monte-Carlo approach: Simulate many classical atom trajectories with initial position/velocity dispersion,
compute the interferometer phase shift and probability amplitude for each, then average over the atomic
cloud.

= Evaluate the laplacian term at the position of the atoms, by numerically propagating a truncated Gaussian
beam

» Need to know the intensity profile of laser beams



Measurement of intensity probe of the beam in-situ

= Ramsey sequence with a « the upward Bloch beam pulse » switched on in between the two /2 pulses

" |t induces a differential light shift proportional to the intensity

/2 /2
Z
LS pulse
0 _
Tr

Intensity profile of the upward Bloch beam

= Gaussian beam "= Clipped beam
2.0 2.5
b) 92
5 ® -0 g
1.5 ‘....:. - 3
7 . 93 8|15
2 1.0 ‘...W' .0 2
= ¢ ‘.0'. 09| 1.0 3
5 | 9. 6..):&.“ ;
0.! S a® % =
| ..‘:......e“ 0.5
L ) L) 0.0 L ) Al 0.0
-1 0 1 -1 0 1

x (mm) x (mm)
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Measurement with clipped beam: Experiment/simulations

= Spatial distribution of the k-vectors of the upward Bloch beam clipped by a 4 mm diameter iris

N @  Experimental data
PN e AR
$ [:; - = MUC simulation

0.5 0.0 0.5 1.0
Transverse position (mm)

Around each point, we recorded the intensity on a
3x3 matrix of adjacent points and calculated the
Laplacian of the intensity.

S. Gaudout, R. Si-Ahmed, C. Debavelaere, M. Door, P. Cladé and S. Guellati-Khelifa arXiv:2507.19157


https://arxiv.org/abs/2507.19157

B \ \ Laboratoire Kastler Brossel Summary and OUt|OOk
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* A new method for measuring the spatial distribution of k-vectors and the laser intensity profile in-situ.

* Development of a full numerical simulation of the recoil velocity measurement protocol and a simple model to
evaluate the correction due to laser intensity profiles. Both are in agreement with experimental data.

* Statistical uncertainty is limited by the time required to scan the full beam profile.

e Qutlook:

" The use of a 2D BEC array combined with imaging techniques would
allow to probe simultaneously different regions of the laser beam's
transverse profile.

K. Stolzenberg et al, Phys. Rev. Lett. 134, 143601 (2025)
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