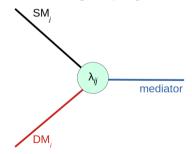
Recent News from Flavored Dark Matter

Monika Blanke



Particle Physics Phenomenology after the Higgs Discovery - MITP, 16 October 2025

What is flavored dark matter?

Basic assumptions

- dark matter comes in three generations
- dark flavor triplet couples to SM flavor triplet via new mediator field
- new flavor-violating coupling matrix λ

The flavored DM model space

Model-building choices

- the nature of DM
 - scalar or fermion
 - real or complex representation
 - > 4 options
- the SM fermion portal
 - quarks or leptons
 - left- or right-handed. . .
 - ➤ 5 options
- the flavor structure
 - Minimal Flavor Violation (MFV) or beyond

> vast flavored DM model space!

- not all options of DM nature and SM fermion have been explored
- many early studies were restricted to MFV

Minimal step beyond MFV

Dark Minimal Flavor Violation (DMFV)

- dark flavor symmetry U(3) or O(3)
- ullet broken only by new coupling matrix λ

AGRAWAL, MB, GEMMLER (2014)

More on Dark Minimal Flavor Violation (DMFV)

DMFV principle

AGRAWAL, MB, GEMMLER (2014)

- extend concept of Minimal Flavor Violation, where all flavor violation originates from SM Yukawas
- ullet DMFV: one new source of flavor violation coupling matrix λ
- ullet other flavorful interactions can be expanded in powers of λ

e.g.
$$M_{\mathsf{Dirac\ DM}} = m_{\mathsf{DM}} \left[\mathbb{1} + \eta \lambda^\dagger \lambda + \mathcal{O}(\lambda^4) \right]$$

reduced number of new physical parameters, yet interesting non-MFV phenomenology

4 M. Blanke Flavored Dark Matter

Previously studied DMFV models

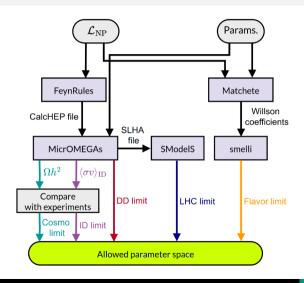
	u_R	d_R	q_L	e_R	ℓ_L
Real scalar DM	×	×	×	×	×
Complex scalar DM	×	×	×	[Acaroglu, Agrawal, Blanke 2022] [Acaroglu, Blanke, Tabet 2022] [Acaroglu, Agrawal, Blanke 2023]	[Acaroglu, Agrawal, Blanke 2022]
Dirac fermion DM	[Blanke, Kast 2017] [Jubb, Kirk, Lenz 2017] [Blanke et al. 2021]	[Agrawal, Blanke, Gemmler 2022] [Bensalem, Stolarski 2022]	[Blanke, Das, Kast 2018] [Blanke et al. 2021]	[Chen, Huang, Takhistov 2016]	×
Majorana fermion DM	[Acaroglu, Blanke 2022] [Acaroglu, LR et al. 2024]	×	×	×	×

slide stolen from Lena Rathmann

Towards efficient study of the flavored DM model space

Analyzing models one-by-one "by hand" is an interesting phenomenology playground and a great exercise for PhD students, but is not very efficient!

TO DO: analyze constraints on parameter space from


- DM relic abundance
- direct and indirect DM detection experiments
- flavor physics
- collider searches

Goal

BELFATTO, MB, HEISIG, KRÄMER, RATHMANN, WILSCH - IN PREPARATION

- create a **tool-chain** that connects available tools to explore different constraints on flavored DM models in a (semi-)automatic manner
- use to efficiently identify viable parameter space and make model-specific predictions

The tool-chain setup

Tool-chain contains

- FeynRules implementation of all 20 models
- link to MicrOMEGAs via CalcHEP
 - relic abundance
 - direct and indirect detection
 - LHC constraints through SModelS interface
- matching to SMEFT with Matchete
 - flavor constraints from smelli (based on flavio)

Publicly available soon at

https://github.com/lena-ra/Flavored-Dark-Matter

Application to Majorana flavored DM

	u_R	d_R	q_L	e_R	\mathscr{C}_L
Real scalar DM	×	×	×	×	×
Complex scalar DM	×	×	×	[Acaroglu, Agrawal, Blanke 2022] [Acaroglu, Blanke, Tabet 2022] [Acaroglu, Agrawal, Blanke 2023]	[Acaroglu, Agrawal, Blanke 2022]
Dirac fermion DM	[Blanke, Kast 2017] [Jubb, Kirk, Lenz 2017] [Blanke et al. 2021]	[Agrawal, Blanke, Gemmler 2022] [Bensalem, Stolarski 2022]	[Blanke, Das, Kast 2018] [Blanke et al. 2021]	[Chen, Huang, Takhistov 2016]	×
Majorana fermion DM	[Acaroglu, Blanke 2022] [Acaroglu, LR et al. 2024]	see now!	×	see paper	×

8 M. Blanke Flavored Dark Matter

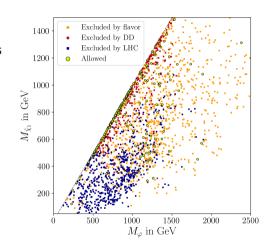
Majorana flavored DM coupled to right-handed down quarks

The model

- dark Majorana flavor triplet $\tilde{\chi}$, scalar mediator φ
- \bullet coupling matrix λ violates flavor and CP

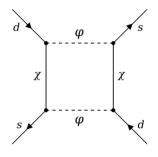
$$\mathcal{L} \supset \frac{1}{2} \bar{\tilde{\chi}} (i \partial \!\!\!/ - M_{\tilde{\chi}}) \tilde{\chi} + (D_{\mu} \varphi)^{\dagger} (D^{\mu} \varphi) - m_{\varphi}^{2} \varphi^{\dagger} \varphi + (\lambda_{ij} \bar{d}_{i} \tilde{\chi}_{j} \varphi + \text{h.c.})$$
$$+ \lambda_{\varphi H, 1} (\varphi^{\dagger} \varphi) (H^{\dagger} H) + \lambda_{\varphi \varphi} (\varphi^{\dagger} \varphi)^{2}$$

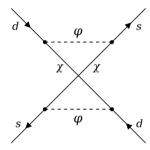
ullet DMFV ansatz: DM mass matrix non-generic, spurion expansion in λ


$$\tilde{M}_{\tilde{\chi}} = M_{\tilde{\chi}} \left[\mathbb{1} + \frac{\eta}{2} (\lambda^\dagger \lambda + \lambda^\mathsf{T} \lambda^*) + \mathcal{O}(\lambda^4) \right]$$

ightharpoonup mass eigenstates $\tilde{\chi}_1$ (DM), $\tilde{\chi}_2$, $\tilde{\chi}_3$

General parameter scan


Results


- \bullet strong constraint from relic abundance, implies lower bound on $M_{\tilde{\chi}_1}$
- LHC: mediator pair-production rules out most of parameter space with $M_{\tilde{\chi}_1} \lesssim 400 \, {\rm GeV}$
- direct detection constraint most sensitive to near-degeneracy region
- flavor physics rules out large part of remaining parameter space (note: we sampled the flavor-relevant parameters with logarithmic prior!)

The issue with flavor

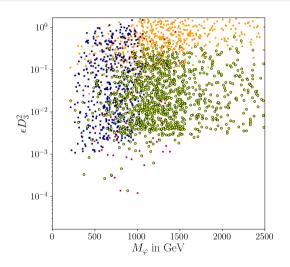
Strong constraints from neutral meson mixing $(K^0$, B^0_d , $B^0_s)$

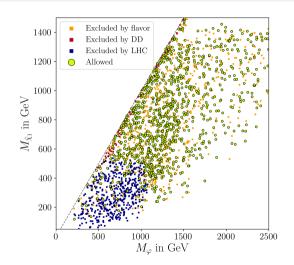
- ullet standard box diagram contribution suppressed for small off-diagonal terms in λ
- crossed box diagram governed by diagonal entries of $\lambda >$ hierarchy required!

A flavor structure for λ

ullet singular value decomposition of λ

 $\lambda = \text{quark-flavor rotation} \times \text{diagonal couplings} \times \text{dark-flavor rotation}$


• analytic estimate suggests possible structure


$$\lambda \propto \begin{pmatrix} 1 & \mathcal{O}(\epsilon) & \mathcal{O}(\epsilon^2) \\ \mathcal{O}(\epsilon) & 1 & \mathcal{O}(\epsilon) \\ \mathcal{O}(\epsilon^2) & \mathcal{O}(\epsilon) & 1 \end{pmatrix} \times \begin{pmatrix} \mathcal{O}(\epsilon^2) \times D_3 \\ & \mathcal{O}(\epsilon) \times D_3 \\ & & D_3 \end{pmatrix} \times \begin{pmatrix} & \mathcal{O}(1) \text{ rot.} \\ & & \end{pmatrix}$$

with

$$\epsilon < 10^{-1} \frac{1}{D_3^2} \frac{M_\varphi}{1 \, \text{TeV}}$$

Results of flavor-scenario scan

Conclusions and outlook

Flavored dark matter

- vast model- and parameter space already at the simplified model level which needs to be explored
- tool-chain allows for efficient determination of viable parameter space
- identification of possible flavor structures and interesting phenomenology

Publicly available soon at https://github.com/lena-ra/Flavored-Dark-Matter and on the arXiv!

BELFATTO, MB, HEISIG, KRÄMER, RATHMANN, WILSCH