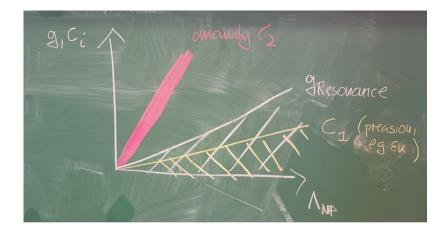
Link between flavor and HEP: Flavor in SMEFT


Thorsten Feldmann, Robert Harlander, Tom Tong

MITP Workshop

14 Oct 2025

Why do we impose flavour assumptions?

- Data reality: FCNCs and CPV beyond CKM are extremely suppressed
 ⇒ NP flavour must be structured.
- **Practicality:** Global SMEFT/model fits explode without structure (in practice: dozens-hundreds of flavour parameters).
- **Interpretability:** Assumptions convert experimental limits into UV messages (NP scales, textures, symmetries, . . .).
- Goal: Be predictive enough to guide measurements without over-constraining possibilities.

to combine constraints from

- direct searches (resonances)
- precision (flavour) constraints (e.g. ϵ_K)
- (flavour) anomalies (e.g. Cabibbo anomaly)

we need to know the "natural size" of the relevant couplings !

Experimental guardrails (where danger lives)

- ΔF =2: K (ϵ_K , Δm_K), $B_{d,s}$ (mixing, CPV), D mixing.
- Rare & LFU: $b \to s\ell\ell$, $b \to s\gamma$, $B_s \to \mu\mu$, $K \to \pi\nu\bar{\nu}$, $K_{\ell 2}$, $\pi_{\ell 2}$, D rare.
- Leptons: $\mu \to e \gamma$, $\mu \to e$ conversion, τ LFV, $(g-2)_{\mu}$.
- CP/EDMs: d_e , d_n , diamagnetic atoms.
- Top/Higgs/EW: $t \rightarrow cZ$, $t \rightarrow uh$, Higgs y_f modifiers; EWPO; CKM unitarity tests.

Exact $U(3)^5$ flavour symmetry

Idea

New physics is flavour-blind; only the SM part breaks flavour symmetry in the Yukawa sector.

- Motivation: A baseline closest to the SM; only indirect flavour effects.
- Pros: Minimal number of parameters; simplest SMEFT starting point.
- Cons: Too restrictive to address flavour anomalies; not RG-invariant.
- Usage: obtain NP bounds from non-flavour observables.

Minimal Flavour Violation (MFV)

Idea

All flavour/CP breaking from SM Yukawas treated as spurions; e.g.

$$\frac{C_{ij}}{\Lambda^2} \, \bar{Q}^i(\ldots) D^j \quad \longrightarrow \quad C_{ij} = \# \, (Y_D)_{ij} + \ldots \qquad \# \sim \mathcal{O}(1)$$

no additional sources of flavour symmetry breaking

- Motivation: RG-covariance; strong FCNC protection.
- **Pros:** Predictive *K*, *B* correlations; systematic EFT.
- Cons: Hard to explain sizable flavour anomalies; UV completions can be contrived.
- Usage: address relatively low NP scales; SM-like flavour observables.

Technical issue: top Yukawa is large: $SU(3)_Q \times SU(3)_U \rightarrow SU(2)_Q \times SU(2)_U \times U(1)$

$U(2)^3$ for quarks (3rd generation singled out)

Idea

First two generations form flavour doublets; third is special. Minimal set of spurions to reproduce CKM.

- **Pros:** Suppresses K/D; allows visible B shifts; neat hierarchies.
- Cons: Predictivity depends on the choice of spurions
- **Usage:** Want room in *B* physics while keeping kaon/charm clean.

What about correlations with rare top decays? How to incorporate e.g. Cabibbo anomaly?

Froggatt-Nielsen (FN) & family symmetries

Idea

Broken horizontal symmetry $(U(1)_H \text{ or non-Abelian/discrete})$

$$\frac{C_{ij}}{\Lambda^2} \, \bar{Q}^i(\ldots) D^j \quad \longrightarrow \quad C_{ij} = \# \, \epsilon^{|a_i - b_j|} + \ldots \qquad a_i, b_j \in \mathbb{Z}$$

with flavon spurion $\varepsilon = \frac{\langle \phi_{\rm FN} \rangle}{\Lambda_{\rm EN}} \ll 1$ controls Yukawa hierarchies and NP couplings.

- **Pros:** flavour hierarchies originate in the UV: $\Lambda_{\rm FN} \gg \langle \phi_{\rm FN} \rangle \gg \Lambda$
- Cons: FCNCs and right-handed currents can be large.
- **Usage:** book-keeping device for flavour hierarchies; gives benchmark for valid spurion configurations

8/9

Questions to discuss

How to combine flavour and collider/EWP observables in global fits:

- systematic exploration of consistent flavour power-counting schemes ?
- automated implementation of flavour assumptions in EFT/BSM models ?
- how important is a UV interpretation á la FN?
- how do different priors on size of flavour-specific Wilson coefficients influence the constraints on viable NP scales?

• . . .

???