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“Standard” Workflow to calculate Loop Amplitudes 
beyond NLO:

• Amplitude generation

• Projection onto form factors or helicity amplitudes

• Reduction to master integrals

• Calculation of the master integrals

automated tools

analytically

numerically

QGRAF, FeynArts, FeynGraph 

alibrary, Anatar, Feynhelpers, … 

Reduze, LiteRed, KIRA, Blade, Ampred, …

semi-numerically
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Ingredients to calculate cross sections beyond NLO:

• Real radiation: construction of IR subtraction terms

• Efficient phase space sampling

• Parton showering (matching needed)

• Event generation

• Real-virtual:  stable loop amplitude evaluation in IR limits

• Loop amplitudes analytic expressions or grid from numerical evaluation or neural network
need training data

ML?

ML?

both, conventional grid interpolation and NN “interpolation” need  
reliable uncertainty estimates 

Neural Network:



event generation inference

ML for precision calculations

amplitudes integration

• Symbolic simplification & pattern discovery


• IBP optimisation and reduction


• Feynman-integral evaluation


• Amplitude emulators
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Figure 1: Spinor-helicity expressions are simplified in several steps. To start, indi-
vidual terms are projected into an embedding space (grey sphere). Using contrastive
learning, we train a “projection” transformer encoder to learn a mapping that groups
similar terms close to one another in the embedding space. After identifying similar
terms we use a “simplify” transformer encoder-decoder to predict the corresponding
simple form. After simplifying all distinct groups, this procedure is repeated with the
resulting expression, iterating until no further simplification is possible.

paper, we mimic this procedure by leveraging contrastive learning [35–39]. As illustrated in
Fig. 1 we train a network to learn a representation for spinor-helicity expressions in which
terms that are likely to simplify are close together in the learned embedding space. Grouping
nearby terms, we then form a subset of the original expression which is input into yet another
transformer network trained to simplify more moderately-sized expressions. By repeating the
steps of grouping and simplification we are then able to reduce spinor-helicity expressions with
enormous numbers of distinct terms.

Our paper is organized as follows. We begin in Section 2 with a brief review of the spinor-
helicity formalism and its role in scattering amplitude calculations. We describe the physical
constraints that amplitudes must satisfy, as well as the various mathematical identities that
can relate equivalent expressions. In Section 3 we introduce a transformer encoder-decoder
architecture adapted to the simplification of moderately-sized spinor-helicity expressions. We
describe our procedure for generating training data and discuss the performance of our net-
works. Afterwards, in Section 4 we present the concept of contrastive learning and describe
how it arrives at a representative embedding space. We present an algorithm for grouping
subsets of terms that are likely to simplify in lengthier amplitude expressions. We then show-
case the performance of our full simplification pipeline on actual physical amplitudes, in many
cases composed of hundreds of terms.1 Finally, we conclude with a brief perspective on the
prospects for ML in this area.

2 Notation and training data

In this section, we review the mechanics of the spinor-helicity formalism and then describe the
generation of training data for our models. Our notation follows [40], though a more detailed
exposition can also be found in [41–43] and references within.

1Our implementation, datasets and trained models are available at https://github.com/aureliendersy/
spinorhelicity. This repository also contains a faster local download of our online interactive demonstration, hosted
at https://spinorhelicity.streamlit.app. This application reduces amplitudes following the procedure described in
Fig. (1) and has the ability to simplify the amplitude expressions quoted in this paper.
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Figure 5: Schematic illustration of our workflow.

normalizing flows have the considerable advantage of a tractable Jacobian. A simple realiza-
tion are stacked coupling layers [61, 63], where we split the input vector x in x1 and x2 and
use an element-wise multiplication � and sum to define the mapping

y1 = x1 � es1(x2) + t1(x2) , x1 = (y1 � t1(x2))� e�s1(x2) ,

y2 = x2 � es2(y1) + t2(y1) , x2 = (y2 � t2(y1))� e�s2(y1) , (20)

where s1, s2, t1 and t2 are parametrized by neural networks. The Jacobian of such a coupling
block is [61]

J =
✓

0
@ y2
@ y1

diag(es2(y1))

◆✓
diag(es1(x2)) @ y1

@ x2

0

◆
. (21)

While J is not triangular, we will only be interested in the log-determinant, which can be
calculated efficiently as

log (det J) = log

 
dim x2Y

i=1

es1(x2)i

!
+ log

 
dim y1Y

i=1

es2(y1)i

!
=

dim x2X

i=1

s1(x2)i +
dim y1X

i=1

s2(y1)i . (22)

For all examples we employ a normalizing flow consisting of these affine coupling blocks,
where each coupling block describes a bijective mapping RN $ RN . To map the Feynman
parameters x 2 [0,1]N from the unit-hypercube to RN bijectively we apply the logit function

y = logit(x)⌘ log
⇣ x

1� x

⌘
, with

�
Jlogit

�
jk =

� jk

x j � x2
j

, (23)

which is the inverse of the sigmoid function

y = sig(x)⌘ 1
1+ exp(�x)

, with
�
Jsig
�

jk = � jk sig(x j)(1� sig(x j)) . (24)
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The numerical evaluation requires the sum of permutations of ordered primitive am-
plitudes. This is completely automated for arbitrary multiplicity, but evaluation times and
numerical stability are increasingly difficult to control.

To study the growth of evaluation time with multiplicity, we evaluate the matrix ele-
ment at 100 random phase-space points with each available technique and plot the mean
times in Figure 1. We generate the phase-space points isotropically with the algorithm
from Ref. [67]. While analytic methods are competitive at low multiplicity, we see they
scale poorly and are unlikely to beat numerics at n � 6. Numeric scaling is better, but
these algorithms come with a high cost. Our NN approach provides a performant alterna-
tive, with significantly better scaling than either numerics or analytics.
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Figure 1: Matrix element typical CPU evaluation times for available methods — including
NJet numerical evaluations, NJet analytical evaluations, and inference on a NN ensemble
as described in Section 3 — against the number of legs. These calls are single-threaded as
parallelisation is applied at the level of events in simulations. An analytic expression for
2 ! 4 is not available. The NN is comparable to the analytic call at 2 ! 2, 50 times faster
at 2 ! 3, then 105 times faster than the 2 ! 4 numeric call.

3 Computational setup

In this paper, we build on previous work which sought to demonstrate the viability of using
NN-based approaches to approximate matrix element values for hard scattering processes
[60]. In that work, a NN ensemble approach was presented in which a different NN is
trained on each soft and collinear region of phase space, and was shown to be effective in
handling IR divergent structures at both the Born and one-loop level at high multiplicity
in e

+
e
� collisions. We extend this to more complex 2 ! 3 and 2 ! 4 gluon-initiated

diphoton amplitudes, while also showing the ability for these ML models to interface with
existing event generators such as Sherpa [6, 7]. This is important to demonstrate since it is
not immediately obvious that NN approximations trained in isolation will be robust to the
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Figure 3: Differential distributions normalised to the cross section for the 2 ! 3 process
comparing NJet (red) with the NN ensemble (blue). The NJet results are quoted with MC
errors, and the NN results with precision/optimality uncertainties calculated as described in
Ref. [60] but which are negligible in comparison. Pseudojets ji and photons �i are ordered
by energy, �� is azimuthal separation, R-separation is defined in Section 3.2.1, and m�1,�2

and �⌘�1,�2 are the mass and pseudorapidity separation of the diphoton system.
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Figure 2: Event weight distributions for sampling the partial decay width �t!be+⌫e

and the total cross section � for e+e� ! � ! t[be+⌫e]̄t[b̄e�⌫̄e] at
p

s = 500GeV,
each with N = 106 points, comparing VEGAS optimisation, NN-based optimisation
and an unoptimised (“Uniform”) distribution.

pected because the main difference is that the Breit–Wigner peak appears in one additional
dimension for the top–anti-top production, with all other dimensions in phase space not featur-
ing any (strongly) peaked structures. Hence we see a similar shape in the weight distributions,
only the unoptimised sample is significantly broader now due to yet another peak it can not
adapt to. Compared to the single top decay setup, there is a moderate degradation of the
Monte Carlo integration/sampling. The unweighting efficiency is reduced by 7 (20) % for the
NN (VEGAS) samples. The unoptimised sample’s efficiency is reduced by 40 %.

Finally, we want to study for the case of top–anti-top production how the overall reduction
in the width of the weight distributions shown in Fig. 2b translates to more differential observ-
ables. We show in Fig. 3 the differential cross section for two observables, the invariant mass of
the electron-positron pair mee and the angle between the electron and the anti-bottom quark
✓e�b̄. Note that the invariant mass mee depends on the lepton momenta of both top-quark
decay sequences, whereas the angle ✓e�b̄ is an observable that depends on the momenta of
only the anti-top quark decay sequence. Comparing the results for VEGAS and NN optimisation
(again using the samples with equal sizes, N = 106), we find that both distributions agree and
feature nearly equal MC errors across the whole range of the observable. However, the two
samples behave differently when we consider the mean weights per bin in the lower panels.
With the weights given by the ratio between the integrand and the sampling distribution, cf.
Eq. (8), the plots illustrate how close the sampling distribution approximates the actual target.
In the perfect case a constant line at 1 would be seen. Any distortion away from 1 directly
translates into a broader global weight distribution. For mee, we find that VEGAS samples both
tails too often to the expense of the intermediate region between 100 and 250 GeV, whereas
the NN sample is nearly constant in comparison. Both samples feature distortions for low ✓e�b̄,
although in different directions. As for both VEGAS and the NN most of the weights are very
close to 1, which is also reflected in the weight distribution shown in Fig. 2b, the distortions
only have a minor impact on the relative MC errors shown in the middle panels.
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Figure 11: Left: mean and spread (5% to 95% percentile) of 25 evaluations of the
variance for three priors of the network weights ω. Right: integration error as a
function of ωZ→ for two and three channels, with and without trained channel weights.
We give means and standard deviations for ten runs, or the individual results in case
of large variation. For very narrow peaks, the two-channel integrator misses the Z→

peak entirely.

Choice of mappings and priors

While for the simple parametric toy models affine [35,36] coupling blocks were sufficient when
combined with a multi-channel strategy, the rich phase-space structure in the Z→-extended
Drell-Yan process benefits from rational-quadratic spline blocks [57]. Another advantage of
spline blocks is that they are naturally defined on a compact domain which makes them espe-
cially well-suited for mappings between unit-hypercubes. The other network parameters for
this process are given in Tab. 3.

For the toy models we have seen that the choice of mappings and priors is key to a precise
integration. This is especially true once we need to cover two narrow peaks in Me+e↑ . We
confirm this using our network trained with a flat prior, the SHERPA-like prior in Eq.(7), and
the MG5AMC-like prior in Eq.(8). After every second epoch, we extract the variance of the
integrand from 25 batches of generated samples. The mean and spread of these variances
are shown in the left panel of Fig. 11. For both non-flat priors, the variance is stable and
converges in the course of the training. In contrast, the flat prior leads to a much larger and
unstable variance. Compared to the physics-informed priors the convergence is extremely
slow. We follow the standard setup of LHC event generators and include the available physics
information through the MG5AMC-like prior of Eq.(8).

Table 3: Hyperparameters of the INN and the channel weight network (CWnet) for
the integration of the Drell-Yan + Z→ cross section.

Parameter Value Parameter Value

Loss function variance Coupling blocks rational-quadratic splines
Learning rate 0.001 Permutations exchange
LR schedule inverse time decay Blocks 6
Decay rate 0.01 Subnet hidden nodes 16
Batch size 10000 Subnet layers 2
Epochs 60 CWnet layers 2
Batches per epoch 50 CWnet hidden nodes 16

Activation function leaky ReLU
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Figure 2. The distribution of weights for the ω
RF (top row) and ω

RRF contributions

(bottom row). The first column shows the absolute weight, and the second and third

columns show the positive and negative weight distributions. The distributions are shown

for the Vegas, Cl and ODE integrators, all trained on the absolute integrand.

Figure 3. Example of non-factorizable correlations between two phase-space parameters

for the ω
RRF contribution. The left panel shows the learned sampling distribution of

Vegas, and the right panel that of the Cl integrator.
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Outlook
Analytic calculations for processes beyond 2 loops and with many mass scales may hit a brick-wall  

ML comes to rescue?
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Outlook
Analytic calculations for processes beyond 2 loops and with many mass scales may hit a brick-wall  

ML comes to rescue?

 need reliable uncertainty estimates 

 need reliable methods 

 physical insight usually helps a lot (e.g. flatten the data by multiplying with singular limits) 

Precision that can be reached with ML methods may also hit a brick-wall

knowledge about physics will not become obsolete 


