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In particle physics, we deduce information about the SM Lagrangian by comparing properties of hadrons, produced in
collider processes, with theoretical predictions obtained using quark and gluon degrees of freedom. This mismatch leads
to differences between partonic and hadronic cross sections, that we refer to as power corrections.

“Hard” Scattering

outgoing parton
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There is no theory of power corrections and even the exponent p > 0 cannot be predicted from first principles for a given
process or observable.

Numerically, such corrections cannot be large for “ordinary” observables, but linear p = 1 power corrections may still be
relevant for ““standard-candle” processes, and for studies of high-precision observables (the strong coupling constant,
mass of the top quarks etc.).
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We want to study linear power corrections within the renormalon model where perturbatively-induced Landau singularity in
the running QCD coupling constant is the only source of non-perturbative effects.
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Without discussing the underpinnings of this model, I would like to make three remarks that are important for the rest of this
talk:

1) within the renormalon model, linear power correction to a process X can be computed provided that a linear term in the
expansion of the NLO QCD corrections to X’s cross section in the small gluon mass is known;

2) linear gluon-mass corrections are special because they are non-analytic. They only arise from the emission of real and
virtual gluons whose energies are comparable to their masses. If the mass is small, the gluons are soft. Hence, to find a
systematic way to compute the linear corrections, one needs to understand soft-gluon emissions beyond the leading power.

3) this set up can be used for processes that remain abelian through NLO; in other words, the non-abelian vertices are, strictly
speaking, not allowed. I will discuss an example (top quark pair production in quark collisions ) where this requirement can
be lifted, although processes with on-shell gluons at tree level are still beyond reach.
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Earlier computations of power corrections to collider processes using this approach were performed in two distinct ways:

1) for simple processes (2 jet production at lepton colliders, DIS, Drell-Yan) NLO QCD corrections were first computed for

an arbitrary gluon mass and then expanded assuming that the gluon mass is very small.

2) for complex processes and observables, studies of linear power corrections were performed numerically. A typical

numerical result is shown below; it demonstrates (with a certain, not overwhelming confidence!) that no linear terms are

present in the Z transverse-momentum distribution.
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To do better, we need to understand how dependences of partonic NLO QCD cross sections and observables on a tiny gluon
mass arise, for arbitrary processes.

For properly-defined observables, the leading term in the small-mass expansion is independent of the gluon mass. This is the
consequence of the KLN theorem. Technically, this happens because of the cancellation of logarithmically-enhanced

contributions in virtual and real-emission amplitudes, and because infra-red safe observable and the phase space for final-
state particles are independent of the gluon mass.

These results follow from the soft (small gluon energy) expansion of the real and virtual amplitudes, the phase space and the
observables. )
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Since the leading term is independent of the gluon mass, the linear term is the first correction. Hence, to compute it, we
need to understand next-to-leading terms in the soft expansion.

donr,o = doro + as Ao(N) Ac(N) ~ Ac(0) —|— O(N\).

Calculation of NLO QCD cross sections requires well-known ingredients including

® real and virtual matrix elements;

® phase space;

® infra-red safe observable.

Each of these quantities depends on the gluon mass and we need to understand the (soft) expansion for each of them through
next-to-leading power.

do =dPo(y k) X |M|?f)(>\,k) X Qo)

[ will focus on processes that are similar to the t-channel single top production and then discuss other examples.
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Matrix elements

do = dPp(y k) X |M|?9(>\,k) X Oo(k)
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[t follows from the Low-Burnett-Kroll theorem that next-to-leading soft corrections to the real-emission amplitude squared can
be computed in a process-independent manner. The LBK theorem exposes the dependence of the amplitude squared on the
soft-gluon momentum (up to “hidden” dependencies in the leading term caused by the momentum non-conservation).
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A similar analysis can be performed for the virtual corrections. One splits diagrams into groups according to how many times a
virtual gluon couples to external lines. The expansion similar to the real-emission case is then constructed; in fact, very similar
functions and their derivatives appear in the calculation.
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The dependence on the loop momentum is (again) clearly exposed in the eikonal currents, and the integration over the loop
momentum can be performed in a process-independent way.
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The phase space

Power corrections to collider processes



Computing the real-emission contribution always involves integration over the phase space of final-state particles, which
depends on the soft-gluon momentum. One can factorize it from the rest of the phase space with (linear) power accuracy by
redefining momenta of hard particles. Once this is done, it becomes possible to integrate over the gluon momentum in a
process-independent way with the next-to-leading power accuracy.

Redefined momenta
(no dependence on k! )

Original momenta

B - Ptk
Gt = Pt — k - Pd
PtPd
a; = pi = m;
b New momentum, conservation condition
§ gt +qd + k+px =pt +pa + px
dk k-pa  k-p:
d®(pu, pv; 4, 9t px k) = AP (pu, Pv; Pa-» Pt) (27)3) O+ (k=A%) % (1 "Dt pa PP
t t
Radiative phase space with Born phase space with Factorized dependence on the gluon momentum

the orieinal f .
€ original momenta the redefined momenta

Integration over the gluon momentum does contain an upper boundary (not shown in the above formula). However, the
upper boundary only contributes at ©O(\?) and, therefore, plays no role for the linear power corrections.
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The phase space, the matrix element and the renormalization

do = dPo(y k) X \M%(/\,k) X Oo(k)
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To recap: using the LBK theorem, the momenta mapping and the phase-space factorization, we compute ®()\) contributions,
that arise from the emissions of real and virtual gluons, to an arbitrary process of a single-top-production type. If the put
these contributions together, we find that the O(\) corrections do not cancel.
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However, real and virtual corrections are not the whole story. When massive particles are involved, linear power corrections
arise because of the renormalization (the mass and the wave-function), in the on-shell scheme. We have implicitly used the
on-shell scheme because we did not consider self-energy corrections on external particles’ lines.

. CrgPm*T(1+e) [ 3 27A A2 . Crg2mi*T(14¢) [ 1 my 3T A2

my
[t is also well-motivated (B-physics) to expect that the on-shell renormalization scheme introduces artificial power
corrections, simply related to the fact that the pole mass of a heavy quark has a linear renormalon. To get rid of this
problem, we have to express our result through (any) short distance mass ( MS etc.). The relation between any short-
distance mass and the pole mass of a heavy quark contains universal linear gluon-mass term.

3 < C’Fozsw)\)
my = my | 1

27T ¢

An interesting technical question is how to “change the mass” when dealing with a general process, i.e. without making use
of the explicit form of the matrix element and the phase space. As it turns out, this can also be done by performing momenta
redefinitions in the leading order cross section, similar to what we do with the real-emission contribution.

- Crog ™A 1% m? . O _
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A remark about the massless quark line(s)

QCD emissions of real and virtual gluons off the upper (massless) line in the single-top
production do not induce linear power corrections; hence focusing on the massive line is

sufficient. This is a general result; it applies to arbitrary processes with massless quark lines
)
(abelian limit).

F. Caola, S. Ferrario Ravasio, G. Limatola, K.M., P. Nason
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Combining four different contributions — real, virtual, renormalization and the mass redefinition — we observe that
cross sections for arbitrary single-top-like production processes do not contain linear power corrections.

asCr T 3  m? m? m? 0 0 m? 0 s,
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Generalization to top quark pair production

do =dPoy k) X |M|%9(/\,k) X Qo (k)
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If highly virtual gluons are present in the Born matrix element, the same approach can be used; this is useful for the analysis
of top quark pair production in quark-antiquark annihilation.

q

A required contribution of the three-gluon vertex will get reconstructed when the LBK theorem is applied. At the end of the
day, a dipole-like structure of color-correlations emerges, similar to the eikonal functions but with next-to-soft accuracy:.

|Areal|2 —gs Z n@ﬁJWMWJ " ﬁjo —+ O(ko) n; = 1.
1,JEN
Fi = (Mo|T" - T My). e Lt = J*K' Dy, — D;,

One can address the virtual contributions etc. in a similar way, and then repeat all the steps discussed in the single top
production case. We find that the linear power correction cancels out in the cross section for top pair production in quark-
antiquark annihilation, and that one can arrange the cancellation to occur within each color dipole (for example by
performing independent momenta re-definitions).
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Observables

— 2
do = dPo k) X Mook X Oow)
We have seen that linear power corrections to many inclusive cross sections vanish. However, linear power corrections to

observables are known to exist ( e.g. shape variables in 2-jet production in e+e- annihilation etc.).

Our approach allows us to study complex processes and complex observables in a unified way, as I will now explain.
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We consider top quark pair production processes and define an observable as an integral over a differential cross section. We
analyze this integral using the same procedure as described earlier. The new element is that momenta mappings change
observables.

0X k
Ox = / do X(q:) X(ge) = X (o) - a;ft) (]%mps - k)
t

For the purpose of computing linear power corrections, we then split O x into two pieces
1 2
T[0x] = TA[0X] + TR OY

The first one includes all corrections to the cross section that we discussed, and corrections to the observable, that are related
to the change in the observable caused by the “mass redefinition”. The combination of these contributions vanishes, similar
to the inclusive case.

oY1 =7 | [ do (X<pt> ;

0X(pt) pik u>'
T Py
opy  DtPd
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The second contribution survives. Since this contribution contains the momentum of the soft gluon explicitly,
the corresponding cross section only needs to be known in the leading soft approximation.

[ 09X ' ' X d*k _n
TO0Y] = ~Th / do a}gft) B =Ta / doro 8}5?) / a0 (=A%) L B
/ i

Upon integration over gluon momentum, the correction can be re-absorbed into the observable, and described by a top-
quark momentum shift. In case of top quark pair-production, the shift is complex as it receives contributions from all color
dipoles, analyzed using different momenta shifts.

g
Ox = /dULO X (Pt | QWZCa(Spt,a)

a
. . TA
Color structures for dipoles/ monopoles: Dipole momenta shifts: OPta = — la
t
Ctt _ th _ CF qu _ Ct(j — QCF L CA —pf, for (Cl) — (tt -+ E),

o _ ) 2epe) ((epi) pi = miipg) [/ ((pepe)* = mt) - for (a) = (81),
Ct1 — ¢ — 90, _ A Ct — O — A ") 2k 2m? i  (orpy). for () = (tg).
; ~29} + 23 pf / (puvg) for (a) = (tq).
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[t is straightforward to apply the general formula to compute non-perturabtive corrections to specific observables.
Below I show shifts in the transverse momentum, and in the rapidity of the final-state top quark in the top quark pair
production, in collisions of protons and anti-proton. In general, shifts are not large but they become enhanced close to edges of

allowed kinematic regions.

ONP [Pr1] s (20p — Cyr) Qs TA 2 T(2-7) . —
— 0 = 3C 4 — 8CF) 1cosh”y — (Cyq —2C sinh (2
i ormy 201 —7) NP |Yt] o ™, _( A F) yt — (Ca F) 41— 1) ( yt)_
1 : 102 I
g 10 )
S £ 100
10% T =4m; /s
g 0.02 Q 0.021
S _
2 0] S oo b
Z. B /‘—-—-_“-..‘-I’J . OO B
= 0of 1\" = 001} T
0 50 100 150 200 250 5 ; T 5
pr1 |GeV] Yt
. o , 0.4 GeV
Results are shown for the Tevatron where quark-antiquark annihilation channel dominates. Qs A = c = 0.3 GeV
F
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Top quark decays and linear power corrections
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How does the top quark decay affect linear power corrections? There are two possible hierarchical relations
between the width and the non-perturbative scale in QCD:

AQCD ~ AL T I') <« AQCD ~ \

The first is what happens in Nature; but we will study the second one because it is simpler (the narrow width approximation).

We will focus on the polarization effects in single top production and decay, which induce correlations between directions
of the outgoing light jet (d-quark) from the production process, and a positron from the top decay process.

The cross section for the full process can be described either as a product of a cross section to produce polarized top quark
followed by an unpolarized decay, or the other way around.

In the narrow width approximation, QCD corrections fully factorize between production and decay, so having the freedom
to choose where to put top quark polarization is quite useful, for technical reasons.

b
D d
b, ]& t: Pt - y 1
' doy drt(Sp) — dO’t(SD) dl'; = §d0tdI’t (1 — Sp - SP)
D2 [
Pu Pd
U > > d
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Following the same steps as described earlier, and making amendments to account for top quark polarization, and
for the fact that the production-process kinematics and the decay kinematics are intertwined, we obtain the
following result for the linear power corrections:

asCrp mA [ dlhdo 2m? (p;
2 my Iy (Pepi) (Pepa)
+(1—sp-sp) | (p“ 2my p“) oX 22 (w”"’ __mi(papi) w”“) ox
t ] V | '
_ (pepi)™" ) Opj ‘O (pepa) (peps) ") Oply _
Sh = prb s~ P Sp = pasiPd — Pk
w  DePy — PyDy - m
ST (papy)
7 ; Note that there is a non-vanishing linear correction result to the polarized
Py 4 “cross section” itself, in addition to terms caused by the momenta-
D; t, Dy redefinitions that affect the observable X.
b; > P1 1%
) We can use this formula to analyze linear power corrections to a few
p2 [ observables used by CMS and ATLAS to study top quark polariation in single
Du Dd ; top quark production. We will show that some of these observables do receive
U

linear power corrections and some do not.
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The CMS collaboration studies asymmetry of light quark jets relative to the postitron direction in the rest frame of the
produced top quark. In the top quark rest frame, spin vectors are expressed through directions of the light jet and
the positron. Using the derived formula, we find that there are no linear power corrections to the CMS observable.

Xcms = 0(—spsp) — 0(spsp) — Tx [ Xcms] =0 WH1<
P2 [
s =(0,72), sH=(0,7g) m pa ]
The ATLAS collaboration uses more complicated observable which, as it turns out, does . . _ ;X T
receive linear power corrections. €z = Ndy Gy = 77; X Tig]
Q(7ia, {€}) = 40(iiy - &) + 20(ifz - ;) + O(if2 - &) 2 =8, X8 = AXM
J |ﬁz X ﬁd‘
1 9 a,Cr 7\ L 4m? stu 2my S Pa |
=— [ d — n; X N 7 X Tg| = =
<Q> Ut/ Ot <2 2 My ‘ v d‘) \/(3m%)2 (m?—t)2 (m%—t)(s—m%)
1 . . Tmemw /55 (—m$ +m?2 (m2, + s) — 2mumy/sV'5 + m2, s
- dO't |’)’LZ Xnd| :fQ(87mt7mW) — ( t . t(2W2 ) . : W )
oF (m? —m%,)" (s — m?)
T
lim f(s,ms, my) = — ~ 0.785 r 2
s—my 4 Q) ~ 9 asCp mA T
: T TW ~ 5
Sli?g() f(SvmtamW) — (mt T mW)2 ~ (.68 \_ 2 o T 4 J
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The determination of the top quark mass with high (and defendable!) precision is an outstanding problem in hadron
collider physics. Current measurements by the CMS and ATLAS collaborations claim precision that is comparable to Aqcp
, but it is unclear if these results admit a clear interpretation. The central problem is to design observables which are not
atfected by linear power corrections.

One possibility is to relate some kinematic features of a lepton from top quark decay to to the top quark mass, however,
it is unclear which “feature” is free from the linear power corrections...

We use out-of-the-collision plane component of the positron

ﬁ H [ ] [ ] [ ]

t\JCLthVUgMS Preliminary Mo SUMMary, Vs = 1.96-13 TeV November 2023 momentum L 1= | Do - € y | . Uslng the pr eVIOUS1Y'der lved f or mUIaS , WE

-------- LHC comb. (Sep 2023*), 7+8 TeV LHctopwa [1][16] | t | i o o o .

arrive at the following result which shows that the average value of this
total uncertainty i My *+ total (stat + syst + recoil) [GeV] IL dt  Ref.
LHC comb. (Sep 2023*), 7+8 TeV  H# 172.52 + 0.33 (0.14 + 0.30) <20 b [1][16] b bl * 1 d M h h k .
World comb. (Mar 2014), 1.94+7 TeV i—!—H—I 173.34 +0.76 (0.36 + 0.67) <8717, 2] O Serva e IS COITe ate W].t t e tOp quar maSS o
ATLAS, l+jets, 7 TeV e 172.33 £ 1.27 (0.75 + 1.02) 46107, [3]
ATLAS, dilepton, 7 TeV —t——t 173.79 £ 1.42 (0.54 + 1.31) 461" [3]
ATLAS, all jets, 7 TeV — = = 1751+ 1.8 (1.4+1.2) 4617 [4]
ATLAS, dilepton, 8 TeV = 172.99 £ 0.84 (0.41£ 0.74) 20.3fb™", [5] 2 2
ATLAS, all jets, 8 TeV ——— 173.72 + 1.15 (0.55 + 1.02) 20.3 b, [6]
ATLAS, l+jets, 8 TeV ——=— 172.08 + 0.91 (0.39 + 0.82) 20.21b™, [7] 1 2 1 (prt ) mt _|_ mW 9
ATLAS comb. (Sep 2023*) 7+8 TeV H*H 172.71 £ 0.48 (0.25 + 0.41) <20.3 " 1] <LJ_> = — drt LJ_ —|— O (>\ ) = — dFt — —I— O (>\ )
ATLAS, leptonic inv. mass, 13 TeV R o e | 17441+ 0.81 (0.39£0.66 £0.25) 36110, [g] 1" 2 I‘ m 8m
ATLAS, dilepton (*), 13 TeV e 172.21+ 0.80 (0.20 + 0.67£0.39) 139" [9] t 4 t t
CMS, I+jets, 7 TeV ———— 173.49 + 1.07 (0.43 + 0.98) 4.9, [10]
CMS, dilepton, 7 TeV Pt 1725+1.6 (0.4 £ 1.5) 4.9 [11]
CMS, all jets, 7 TeV =i ——— 173.49 + 1.39 (0.69 + 1.21) 3.5, [12] b
CMS, I+jets, 8 TeV et 172.35 +0.51 (0.16 + 0.48) 19.7 fo!, [13] f
CMS, dilepton, 8 TeV i 172.22 38 (0.18 0%) 19710, [14] Pf
CMS, all jets, 8 TeV o 172.32 + 0.64 (0.25 + 0.59) 19.7 b, [13]
CMS, single top, 8 TeV HE— 172.95+1.22 (0.77 ) 197 fb, [15] Di t, Pt
CMS comb. (Sep 2023*), 7+8 TeV H¥ 172,52 + 0.42 (0.14 + 0.39) <19.710" [16] b > > D1 Y
CMS, all jets, 13 TeV —et— 172.34+0.73 (0.20 ) 35.91b" [17] v
CMS, dilepton, 13 TeV et 172.33 £ 0.70 (0.14 + 0.69) 35.9 b, [18]
CMS, l+jets, 13 TeV e & 171.77 £0.37 35.9 b, [19]
CMS, single top, 13 TeV o 17213 777 (0.32 %) 35.9 fb", [20] D —
CMS, boosted, 13 TeV B+ 173.06 + 0.84 (0.24) 138 fb', [21] 2 l
H : 2023-066 8] JHEP 06 (2022 [15] 7 (2017) 3
H } 9?21)15}%1 p’LL pd
* Preliminary {S1EP.C 59 (2029) Uu > > d
[20] 2 (20:
H [21] 3 (20
| | L1 1 1 | L 1 &1 | I R | L1 1 1 |
165 170 175 180 185 , .
GeV . = =
mtop [ ] — — — n'l X nd — — n’L X nd —
€, = N4, €y Ex = €y X €, — — X Ny

m, = 172.52 + 0.33 GeV |7 X Ty ity X g

Kirill Melnikov Power corrections to collider processes



29

To summarise:

1) linear non-perturbative corrections O(Aqcp/Q) may become relevant for collider physics thanks to very high accuracy of
both perturbative calculations and experimental measurements; there is no theory to calculate such corrections from first
principles;

2) for processes without on-shell gluons in Born diagrams they can be studied within the renormalon model; within this
model, linear power corrections can be computed once linear dependence of the NLO QCD corrections on the infinitesimal
gluon mass is known;

3) such a dependence can be derived for arbitrary processes using the Low-Burnett-Kroll theorem for next-to-leading soft
emissions, its generalization to virtual corrections, and the momenta mappings that factorise the dependence of the phase space
on the soft gluon momentum with next-to-leading accuracy;

4) this approach can be used to prove cancellation of linear power corrections to cross sections of arbitrary (abelian) processes
at colliders, without the need to compute one-loop corrections/real-emission contributions with the gluon mass exactly. The
use of the short-distance mass for a heavy quark is required for the cancellation;

5) the linear corrections to kinematic distributions can be efficiently calculated using the same method;

6) top quark decays can be included in the narrow width approximation. This leads to the conclusion that polarization effects
are affected by linear power corrections in general, and various observables designed to study polarization etfects in top
physics at the LHC may also be affected by such effects;

7) one can design an observable that depends on the momentum of the positron from top quark decay which has no linear
power corrections and is strongly correlated with the top quark mass.
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The second example that | want to discuss, Is the calculation of power corrections to shape variables, such as

the C-parameter and the thrust, in the 3-jet region. Such power corrections are important for the extraction of
the strong coupling constant from shape variables.

P1

l_ Y > |7 i
C:?)—BE v T = maxs -—
D3 ; . n N
= (pig)(p;q) 2|7|

P2

Nw) =Y / dop O(V(®p) — v)
F

Since we cannot deal with on-shell gluons in Born diagrams, we consider production of two hard quarks and
a hard photon as a gluon proxy.

Shape variables include sums over all final state partons. In the context of large-Nr calculation, we need to
construct an observable using fermions from the soft gluon splitting and not the gluon itself.
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P1

|

-3 / dop O(V (®p) —v)

P3

P2

The non-vanishing result only appears because of the dependence of the olbservable on

matrix elements. This also allows us to generalize these results to true QCD jets by argu

know soft emissions which are the same (up to color charges) for hard quarks and gluons.

TSN = [ A @8V (7)) — o) » NT,\ Iy ({5 0]

JHJY

the soft quark momenta;
this allows us to discard virtual contributions, phase-space modifications and next-to-sof

t corrections to the

ng that we only need to

() = [0 [ aniaien s -1 =0 T iviy] [VEELD - V)

Production Decay phase space, matrix element squared and the observable
M M 3 ~
P1 Ps .
JH = C({p},1.)) — C({p}) Z [ —1) .
pik  p2k 1
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't turns out that this integral can be written in a factorized form by choosing a particular order of integration. The
result for the C-parameter shown below is extremely compact. Similar results for the thrust value in 3-jet

events can be obtained.

JHJY

Iv({p}, \) = / k] / A)[dL)(2m) 0D (k — 1= 1) Tr Iyl | [V({B}, 1,1) = V({B})]

P1
[

]

P3

D2

15 N s7y  [14 23 ) 5\
ol 12873 1 — 23 5 K(c1p) — (1 - ZlZ2)E(C12)_
0 2
C12 = COS %2 qpi = %(1 — %)
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To obtain this result, one has to remove the delta-function by integrating over the transverse momentum of one
of the quarks. Upon doing that, the result factorizes as follows

_ JHJY = 4 (4 = [~ ] - = -
Iv({p}, ) Z/[dk] v /[dl][dl](%) SV (k —1—1) Tr [Iv*1y" | [V{5}.1,1) — V({p})]
| IC — A F' X WC
A universal, observable-independent constant that turns out to be the Observable-dependent function
(famous) Milan factor
( ) 4 =y TR )
J J r o )\8 g,ul/)\6 ) 5 / dndSO - lalﬁ
F =167 [ [dk { =M — G Weo = -3 Cap—=
7T/ k)= A | (2k1)>  2(2Kkl)3 6dm . 2(2m)3 ’ (lq)
- _ J
JH — pib 1 .n p2 e 4 C :ipf‘p?
NV | = (pig)

This factorization allows us to simplify the calculation of power corrections to shape variables significantly. Calculations for the C-parameter and the
thrust turn out to be rather similar.

The universality of the “Milan” factor is explained; it generalises beyond relations between observables in the 2-jet limit; in fact, the same “factor”
appears in the 3-jet case.

Generalisation of these calculations from the 3-jet to the N-jet kinematics is straightforward (abelian approximation, no gluons) and has lbeen done.
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To see why this computation may be important, recall the existing problem with the determination of the strong
coupling constant where values obtained from fits to event shapes turn out to be significantly smaller than values

from more Inclusive observables.
1-Thrust, 1 — T (charged)

0.1179 + 0.0010, PDG < o o i patoe
as(Mz) =< 0.1135 4 0.0010, thrust >
0.1123 + 0.0015, C — parameter <

—e— ALEPH Data

— — — Herwig++ 2.7 LO @ PS :
---LO®PS e
10"

[
| ‘IIH"?'

=  —— NLO®PS

. . . I — NLO®PS
Non-perturbative corrections to event shapes were estimated " —— NLO & Dipoles
N various ways for the 2-jet region where as measurements A S S N FEET S P N P
and fits include both 2-jet and 3-jet regions. p i —

o
It is possible that knowledge of power corrections to shape S o8F —
variables in the 3-jet region may help to reconcile the different 06 il i i
values of the strong coupling constant. R S
2 |et 3 Jet
Luisoni, Monni, Salam Belm et al. Herwig 7.0/7.3 release notes
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The corresponding analysis was recently performed by Nason and Zanderighi and the conclusion seems to be

that indeed the values the strong coupling constant moves in the right direction once power corrections are

iINncluded.
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