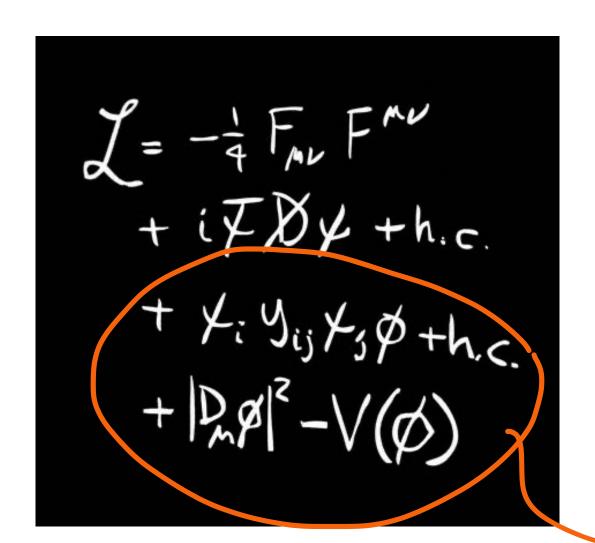

Future directions in collider physics

Progress and Perspectives after the Higgs-boson discovery

Laura Reina

Florida State University and

INFN – University of Rome 1

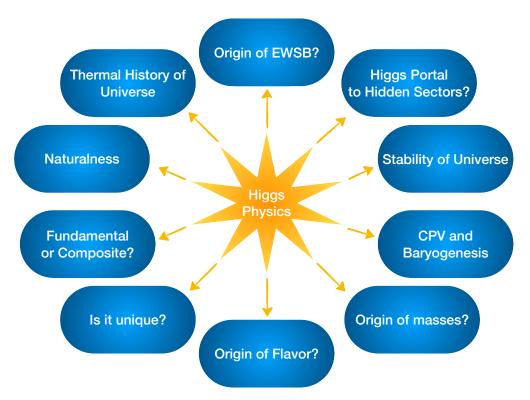

Mainz - October 9, 2025

Higgs boson as central to the Standard Model and a unique liaison to physics beyond it

The Higgs-boson discovery and physics program have been transformative by

- > Establishing a crucial building block of the SM
- Providing a strong connection to physics beyond the SM
- > Pushing the boundaries of precision phenomenology both in accuracy and breadth

Higgs central to the Standard Model of particle physics



The Standard Model Lagrangian depends on 19 free parameters, 15 of which are in the scalar sector!

Higgs mass, Higgs self-coupling, fermion masses, CKM angles and phase

half of it is about Higgs!

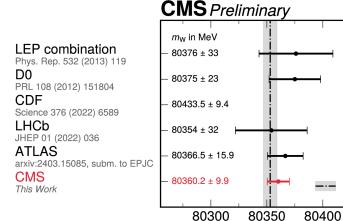
Higgs central to exploring beyond the Standard Model

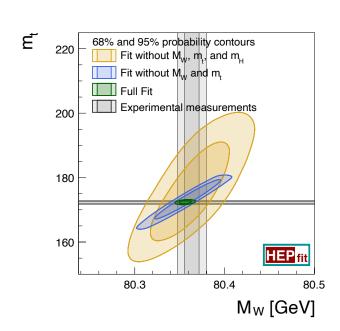
Snowmass 2021 Energy Frontier's Report arXix:2211.11084

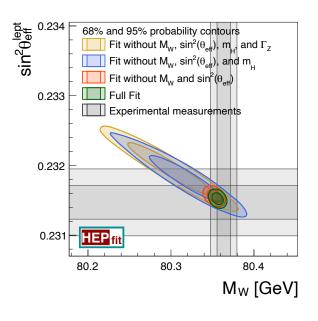
The discovery of the Higgs boson has sharpened the big open questions and given us a unique handle on BSM physics.

Consolidating the SM consistency at the quantum level

For M_W we combine:

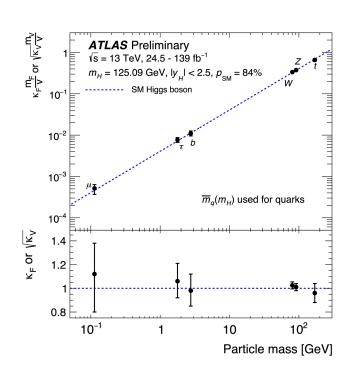

- ☐ All LEP 2 measurements
- ☐ Previous Tevatron average
- ☐ ATLAS and LHCb early measurements
- \square CDF [M_w=(80.4335 \pm 0.0094) GeV]
- \blacksquare ATLAS [M_W=(80.3665 \pm 0.016) GeV]
- \square CMS [M_W=(80.3602 \pm 0.010) GeV]


 $M_W = 80.366 \pm 0.0080 \text{ GeV (without CDF)}$ 80.356 \pm 0.0045 GeV (from fit)


For m_t we combine:

- ☐ 2016 Tevatron combination
- ☐ ATLAS Run 1 and early Run2 results
- ☐ CMS Run 1 and early Run 2 results
- \square CMS l+j [m_t=(171.77 \pm 0.38) GeV]
- \square CMS l+j boosted [m_t=(173.06 \pm 0.83) GeV]
- ☐ ATLAS l+j boosted [mt=172.95±0.53) GeV

 $m_t = 172.31 \pm 0.32 \text{ GeV}$ 172.38 ± 0.31 GeV (from fit)



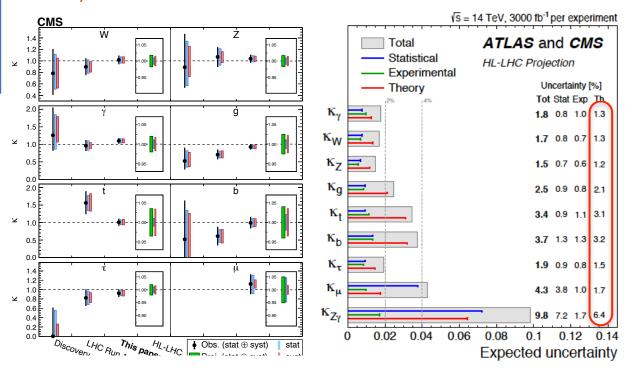
EW fit

80450

J. de Blas et al. 2204.04204, **updated**

Exploring Higgs couplings to probe the TeV scale

$$\kappa = g_X/g_X^{SM} = 1 + \Delta \kappa$$


$$\Delta \kappa \propto v^2/\Lambda_{BSM}^2$$

Precision on $\Delta \kappa$

reach for Λ_{BSM}

CMS, arXiv:2207.00043

- Couplings to W/Z at 5-10 %
- Couplings to 3rd generation to 10-20%
- First measurements of 2nd generation couplings

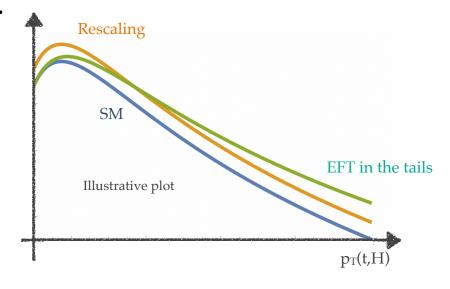
- > HL-LHC projections based on full Run 2 data:
 - > 1.6-3.6 % on main couplings
 - ightharpoonup 3-7% on $H o \mu^+ \mu^-$ and $H o Z \gamma$
 - > < 30% on Higgs (trilinear) self-coupling
 - > Theory could become the main limitation

Beyond SM coupling rescaling

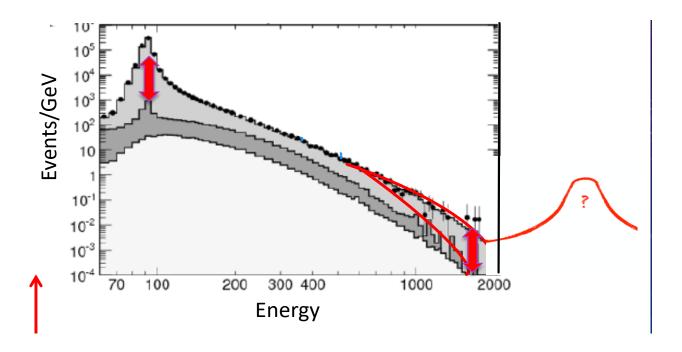
See Sally's and Anke's talks

Framework: Extend SM Lagrangian by effective interactions (ex: SMEFT)

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{d>4} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

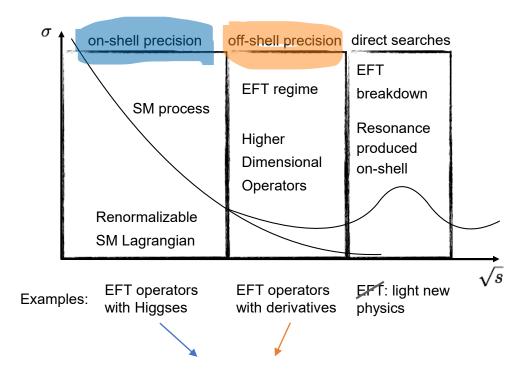

$$\mathcal{L}_d = \sum_i C_i^{(d)} \mathcal{O}_i^{(d)}, \quad \left[\mathcal{O}_i^{(d)}\right] = d$$

Built of SM fields and respecting the SM gauge symmetry.


Expansion in $(v, E)/\Lambda$: affects all SM observables at both low and high energy

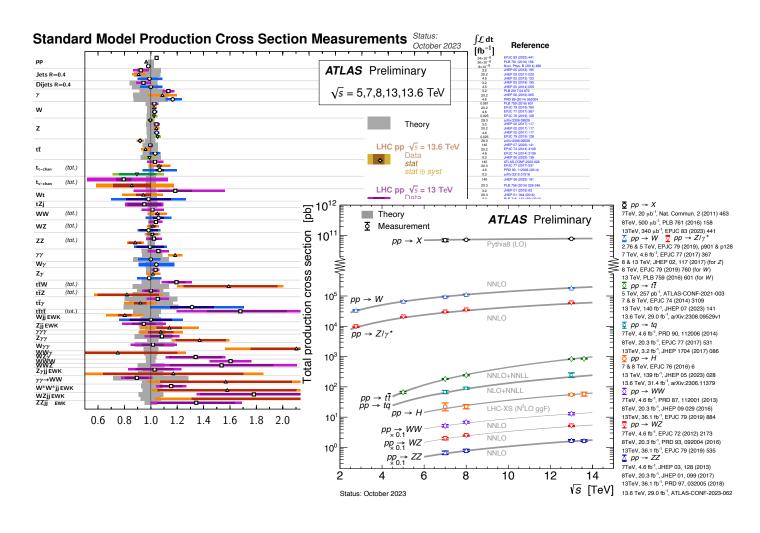
- ➤ SM masses and couplings → rescaling
- ➤ Shapes of distributions → more visible in tails of distributions

Under the assumption that new physics leaves at scales $\Lambda > \sqrt{s}$



Beyond total rates

Need SM precision calculations at differential level both at lower energy, where rates are large and at higher energy where rates are small, but effects of new physics may be more visible.


See Malgorzata's, Tobias's, Thomas's talks

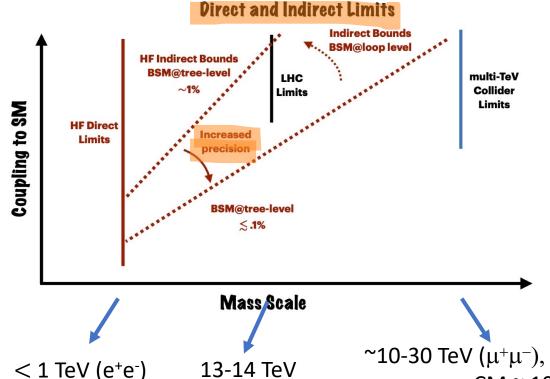
Crucial to control NP sensitive regions

Beyond Higgs physics: full-fledged precision collider phenomenology

The LHC legacy – Exploring new physics over a broad spectrum of observables

- A wealth of high-quality data now available from a broad spectrum of experiments and observations.
- Powerful new ideas are boosting the accuracy of both theoretical and experimental results.
- ➤ Major decisions for future projects are being made (Snowmass/P5, ESPP) based on current results and technologies, future projections, and theoretical guidance.

Message: the Higgs-boson discovery has established the LHC legacy and defined a new era of precision physics



The Higgs-boson discovery has shaped future directions

Future directions: energy and precision

Answering the big Open Questions via energy and precision

- > Origin of the EW scale (SSB via Higgs mechanism, naturalness, flavor)
- Origin of Baryon Asymmetry, Dark Matter, Dark Energy
- **>** ...

pCM ~ 1 TeV

Given the level of consistency of the SM, and no clear evidence of new particles in LHC searches so far, we expect new physics effects to be small.

Nothing can replace direct discovery, for which energy is a major factor, but ...

Precision affects the sensitivity to both direct and indirect effects of new physics since it enhances sensitivity to small deviations.

~10-30 TeV ($\mu^+\mu^-$), ~100 TeV (pp) pCM ~ 10 TeV

Higgs-boson factories (up to 1 TeV c.o.m. energy)

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{\mathrm{int}}$	Start	Date
		·	e^-/e^+	ab^{-1}/IP	Const.	Physics
HL-LHC	pp	14 TeV		3		2027
ILC & C^3	ee	$250~{ m GeV}$	$\pm 80 / \pm 30$	2	2028	2038
		350 GeV	$\pm 80 / \pm 30$	0.2		
		500 GeV	$\pm 80/ \pm 30$	4		
		1 TeV	$\pm 80/ \pm 20$	8		
CLIC	ee	$380~{ m GeV}$	$\pm 80/0$	1	2041	2048
CEPC	ee	M_Z		50	2026	2035
		$2M_W$		3		
		$240~{ m GeV}$		10		
		360 GeV		0.5		
FCC-ee	ee	M_Z		75	2033	2048
		$2M_W$		5		
		$240~{ m GeV}$		2.5		
		$2~M_{top}$		0.8		
μ -collider	$\mu\mu$	$125~{ m GeV}$		0.02		

Snowmass EF wiki: https://snowmass21.org/energy/start

Snowmass 21: EF Benchmark Scenarios

Multi-TeV colliders (> 1 TeV c.o.m. energy)

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$	Start	Date
			e^{-}/e^{+}	ab^{-1}/IP	Const.	Physics
HE-LHC	pp	27 TeV		15		
FCC-hh	pp	100 TeV		30	2063	2074
SppC	pp	75-125 TeV		10-20		2055
LHeC	ep	$1.3 \mathrm{TeV}$		1		
FCC-eh		3.5 TeV		2		
CLIC	ee	1.5 TeV	$\pm 80/0$	2.5	2052	2058
		3.0 TeV	$\pm 80/0$	5		
μ -collider	$\mu\mu$	3 TeV		1	2038	2045
		10 TeV		10		

Timelines are taken from the Collider ITF report (arXiv: 2208.06030)

ESPP recent document: Physics Briefing Book

(CERN-ESU-2025-001, 30 September 2025)

			F	Energie	s (GeV)			FCC-hh	CLIC Muon Collider	Muon Collider Plasma Collider
e^+e^- projects	91	160	240	365	380	550	1000	1500	85 TeV	3 TeV	10 TeV
FCC-ee	X	X	X	X							
LCF-250	X		X								
LCF-250+550	X		X	X		X					
CLIC-380					X						
CLIC-380+1500					X			X			
LEP 3	X	X	X (230)								
ep collider											
	<u> </u> 								1		
LHeC			50 Ge	V (e-)	on 7 Te	eV (p)					
High-energy options											
FCC-ee + FCC-hh (85 TeV)	X	X	X	X					X		
FCC-hh (85 TeV)									X		
LCF + 1 TeV option	X		X			X	X				
LCF + High-energy lepton collider	X		X			X					X
CLIC + 3 TeV					X			X		X	
Muon Collider										X	X
LEP3 + FCC-hh (85 TeV)	X	X	X(230)						X		
LEP3 + High-energy lepton collider	X	X	X(230)								X
LHeC + FCC-hh (85 TeV)			50 Ge	V (e-)	on 7 Te	eV (p)			X		

Some new benchmarks

FCC-hh (85 TeV) LEP3

Several combined scenarios

Message: precision is crucial to explore new physics at future colliders, starting from the HL-LHC

Precision collider phenomenology Raising to the challenge

Future collider projections are impressive. Theoretical predictions depends on:

- Parametric uncertainties (on SM parameters)
- > Theoretical uncertainties (perturbative and non-perturbative quantum effects in collider observables)
- Interpretation of established deviations (model specific/model agnostic)

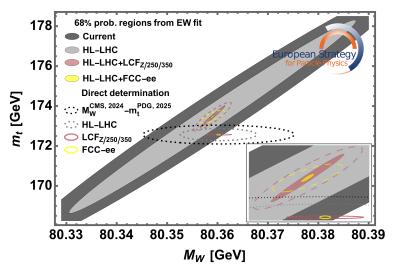
All need to be controlled to reach (sub)percent level precision and enable a future collider precision program.

EW precision fits: stressing the SM and beyond to unprecedented level

FCC-ee

HL-LHC

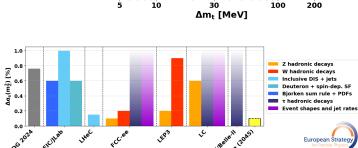
Current and projected experimental precision (e^+e^-)

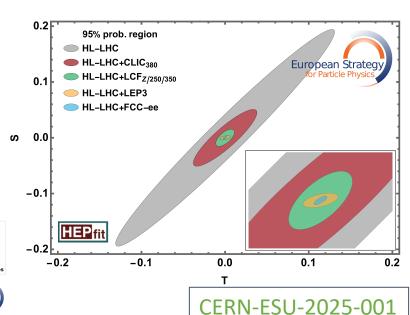

Observable	Current	FCC-ee	LCF	LEP3
$\Delta m_Z (keV)$	2000	4 (100)	200	7.5 (100)
$\Delta\Gamma_{\rm Z}$ (keV)	2300	4 (12)	125	7.5 (23)
$\delta R_{\mu} (\times 10^{-6}) R_{\mu} \equiv \frac{\Gamma_{had}}{\Gamma_{\mu}}$	1600	2.4 (2.3)	90 (90)	4.5 (2.3)
$\delta R_b \ (\times 10^{-6}) \ R_b \equiv \frac{\Gamma_b}{\Gamma_{had}}$	3300	1.2 (1.6)	70 (60)	2.2 (3.0)
$\Delta \sin^2 \theta_W (\times 10^6)$	130	0.4 (0.5)	2.7 (2.3)	0.75 (0.95)
$\Delta \alpha (m_{\rm Z})^{-1} (\times 10^3)$	14	0.8, 3.8	_	1.4, 7.3
Δm _W (keV)	9900	180 (160)	500 (1600)	430 (700)
$\Delta\Gamma_{\rm W}~({\rm keV})$	42000	270 (200)	2000	650 (500)

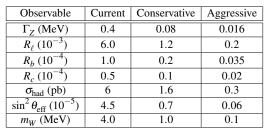
FCC-ee(2) FCC-ee(1) LEP3(2) LEP3(1) LC(2) LHeC+HL-LHC HL-LHC LHC

Parametric uncertainties

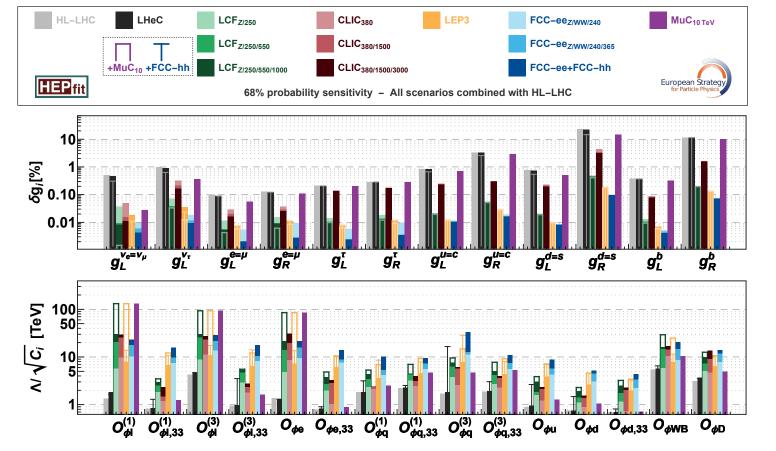
Δm_w [MeV]


theory experiment


Current and projected theoretical precision (e^+e^-)


Observable	Current	Conservative	Aggressive
$\Gamma_Z ({\rm MeV})$	0.23	0.035	_
m_Z (MeV)	0.3	0.03	_
$R_{\ell} (10^{-3})$	12	0.4	_
$R_b (10^{-4})$	4.4	0.44	0.09
$R_c (10^{-4})$	17	1.7	0.34
$\sigma_{\rm had}$ (pb)	25	1.7	
$A_{\rm FB}^{\ell} (10^{-4})$	6	0.43	_
$A_{\rm FB}^b (10^{-4})$	1.5	0.32	0.028
$A_{\rm FB}^c (10^{-4})$	1.1	0.23	0.021

From extraction
(background,
ISR/FSR)

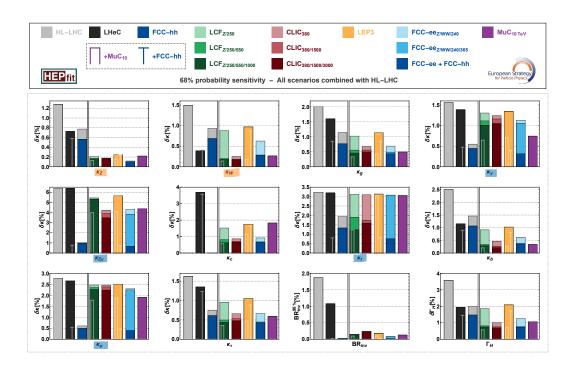


Precision reach on EW couplings

tools.

Crucial to test our understanding of HL-LHC precision measurements.

The obtainable precision from EWPO strongly depends on the assumptions made in the evaluation of theoretical uncertainties.

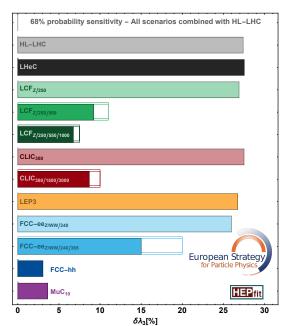

The interpretation is a case by case choice

Assuming theory errors improve as follows

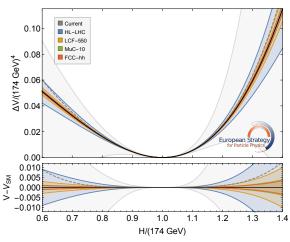
Quantity	Current	Conservative	Aggressive
$m_t ({\rm MeV})$	35	30	
$m_W ({ m MeV})$	3	0.6	
$\alpha_{\rm s}(m_Z) \ (10^{-3})$	1	0.3	0.1
$\alpha(m_Z)/\alpha(0) \ (10^{-4})$	< 1	< 0.5	0.1 - 0.3

"conservative": assuming theory improvements likely to be achieved building on and extending existing computational methods. "aggressive": requires more fundamental advances in techniques and

Precision reach on Higgs-boson couplings



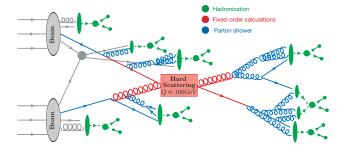
Assuming theory errors improve as follows


Process	Current	Conservative	Aggressive
$H \rightarrow bb/cc$ (%)	< 0.4	0.2	0.1
$H \rightarrow \tau \tau / \mu \mu \ (\%)$	< 0.3	< 0.1	
$H \rightarrow WW^*/ZZ^*$ (%)	0.5	0.3	
$H \rightarrow gg \ (\%)$	3.2	1.0	0.5
$H o \gamma \gamma (\%)$	< 1.0	< 1.0	0.4
$H \rightarrow Z\gamma$ (%)	1.5	1.5	_
$e^+e^- \rightarrow ZH$ (%)	0.3	< 0.1	_
$e^+e^- \rightarrow v\bar{v}H$ (%)	~ 1	~ 0.1	

- \triangleright Per-mille precision level for κ_V
- ightharpoonup But in other cases: κ_{μ} , $\kappa_{Z\gamma}$, κ_{γ} , or even κ_t (if next e^+e^- collider runs below the $t\bar{t}H$ threshold) It will be the HL-LHC legacy (until FCC-hh)

The ultimate goal: the Higgs self-coupling (λ_3)

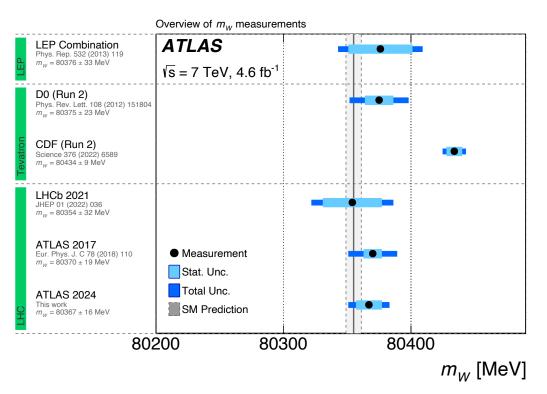
In the domain of the FCC-hh or a 10 TeV $\mu^+\mu^-$ collider


Message: the HL-LHC precision program should be our focus, and it is a complex task

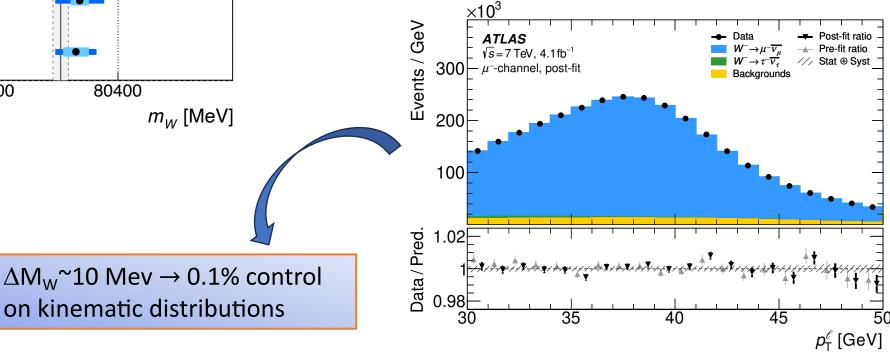
Establishing theoretical uncertainties for percent-level phenomenology

The future of precision physics relies on the ability of theoretical predictions to describe and interpret the complexity of LHC events with accuracy comparable (or smaller) than the experimental systematics.

Embracing the complexity of modelling and interpreting collider events at percent-level is a multi-prong task

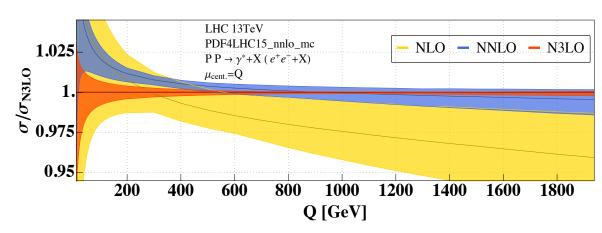

- > Push precision for standard candles and improve description of key processes.
 - ➤ Higher-order perturbative QCD and EW corrections, at differential/fiducial level
 - > Consider signatures, i.e. consider off-shell instead of on-shell production
 - Consistently match to PDF and Parton Shower event generators
 - > Estimate non-perturbative effects
 - > Remove approximations at all levels

- > Use cutting edge techniques to study signal/background properties (AI/ML, ...)
- ➤ Parametrize new physics effects in terms of more general effective interactions (EFT) and explore as many BSM directions as possible. New physics can be anywhere and give origin to correlated effects.


To illustrate the point: a few recent examples from LHC precision phenomenology

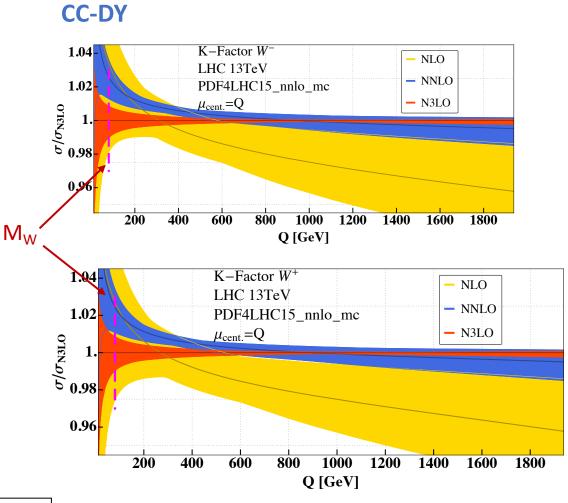
SM global fits: the M_W puzzle

Mass measured by fitting template distributions of transverse momentum and mass

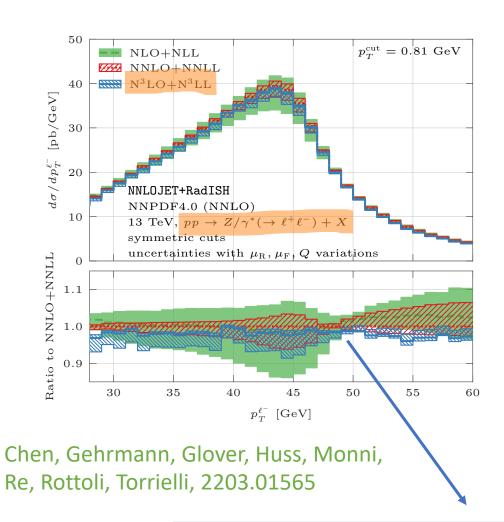

Template fitting is acceptable if theory describes data with high accuracy

ATLAS, 2403.15085

DY at N³LO – input to PDF fits and M_W measurement

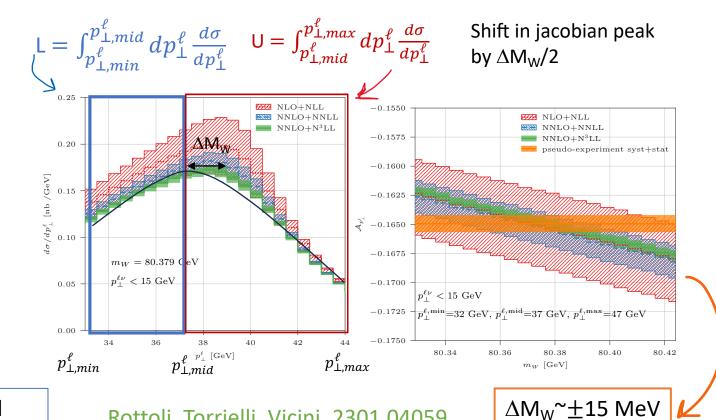

NC-DY

Duhr, Dulat, Mistlberger, 2001.07717


- Scale dependence: non-uniform behavior in all Q-regions
- Important input for PDFs (not yet included)
- Region around Q~M_W: reconsider how to estimate
 theoretical uncertainty from scale variation

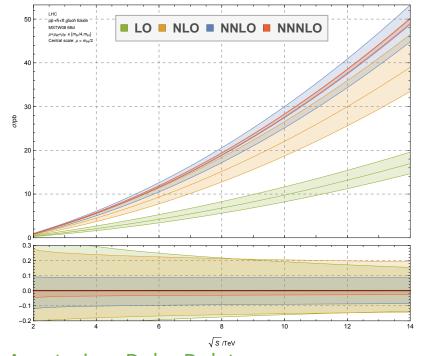
Recall from before: need 0.1% accuracy in template distributions in order to achieve ΔM_W ~10 MeV

Duhr, Dulat, Mistlberger, 2007.13313


DY at N³LO+N³LL – differential

Challenging to control theoretical uncertainties below percent level!

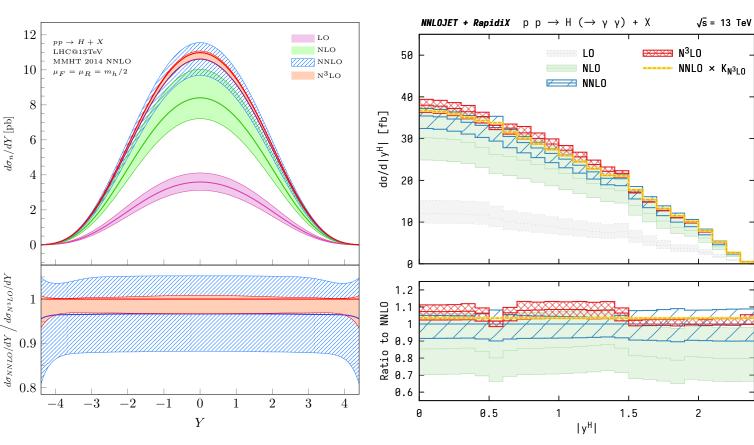
Consider different observable?


$$A_{p_{\perp}^{\ell}}(p_{\perp,min}^{\ell},p_{\perp,mid}^{\ell},p_{\perp,max}^{\ell}) = \frac{L - U}{L + U}$$

feasible

Rottoli, Torrielli, Vicini, 2301.04059

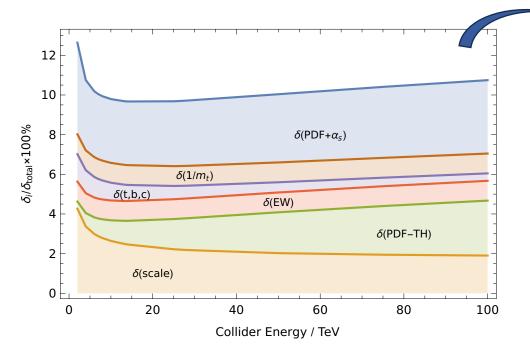
Higgs production via gg fusion at N³LO



Anastasiou, Duhr, Dulat, Herzog, Mistlberger 1503.06056

> Dulat, Mistlberger, Pelloni 1810.09462

Continuous progress on a crucial process


- The leading Higgs production mode
- A benchmark test of QCD, and QCD+EW, including H+j production
- An excellent testing ground to probe theoretical accuracy

elloni,

Chen,

... crucial to map residual uncertainties

LHC @ 13 TeV

Dulat, Lazopoulos, Mistlberger 1802.00827 (iHixis)

$\delta({ m theory})$	=	+0.13pb	(+0.28%)	$\delta(\text{scale})$
O (theory)	_	-1.20pb	(-2.50%)	,
	+	$\pm 0.56pb$	$(\pm 1.16\%)$	$\delta(\text{PDF-TH})$
	+	$\pm 0.49pb$	$(\pm 1.00\%)$	$\delta(\mathrm{EWK})$
	+	$\pm 0.41 pb$	$(\pm 0.85\%)$	$\delta({ m t,b,c})$
	+	$\pm 0.49pb$	$(\pm 1.00\%)$	$\delta(1/m_t)$
	=	$+2.08pb \\ -3.16pb$	$\begin{pmatrix} +4.28\% \\ -6.5\% \end{pmatrix}$,	
$\delta(PDF)$	=	$\pm 0.89 \mathrm{pb}$	$(\pm 1.85\%)$,	
$\delta(lpha_S)$	=	$\begin{array}{c} +1.25pb \\ -1.26pb \end{array}$	$\binom{+2.59\%}{-2.62\%}$.	

Future challenges:

- N3LO PDF! $\rightarrow \delta$ (PDF-TH)
- Light-quark mass effects $\rightarrow \delta(b,c)$
- More EW corrections
- Large logs resummation (fiducial)?

Uncertainty removed by calculation of exact NNLO m_t dependence

Czakon, Harlander, Klappert, Nieggetied, 2105.04436

Reduced uncertainty to 0.26% by calculation of NLO mixed QCD+EW

Becchetti, Bonciani, Del Duca, Hirschi, Moriello, Schweitzer, 2010.09451

4-loop splitting functions (low moments) – Moch, Ruijl, Ueda, Vermaseren, Vogt, 2111.15561 DY@N3LO QCD – Duhr, Dulat, Mistlberger, 2001.07717, 2007.13313

NNLO for 2→3 processes at the core of the LHC program

- Several recent results for pp $\rightarrow \gamma\gamma\gamma, \gamma\gamma j, \gamma jj, jjj$ Chawdry, Czakon, Mitov, Poncelet; Kallweit, Sotnikov, Wiesemann; Badger, Gerhmann, Marcoli, Moodie;
- Most recently first NNLO results for multi-scale processes: $b\bar{b}W$, $t\bar{t}W$, $t\bar{t}H$,...

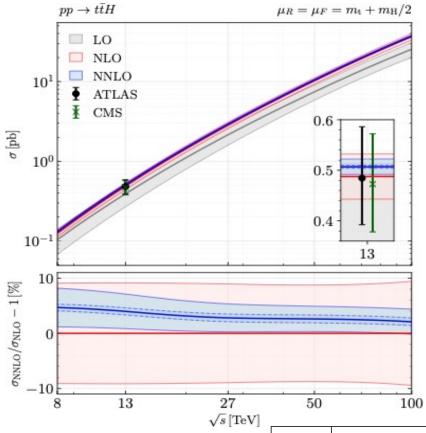
Major impact on LHC phenomenology

1 massive final-state particle (b massless)

Hartanto, Poncelet, Popescu, Zoia 2205.01687

3 massive final-state particles

Buonocore, Devoto, Grazzini, Kallweit, Mazzitelli, Rotoli, Savoini, 2306.16311

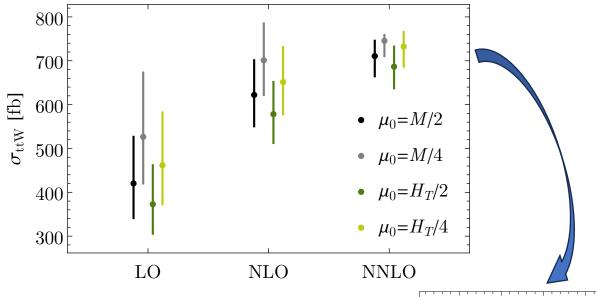

Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini, 2210.07846

Major bottle neck: 2-loop 5-point amplitudes Evaluated in $t\bar{t}W$, $t\bar{t}H$ calculation by soft-W/H approximation

Very recently first results for 2-loop amplitudes

Febres Cordero, Figueiredo, Krauss, Page, Reina, 2312.08131 Buccioni, Kreer, Liu, Tancredi, 2312.10015 Agarwal, Heinrich, Jones, Kerner, Klein, 2402.03301

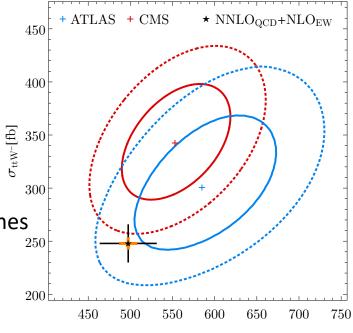
$t\bar{t}W$ and $t\bar{t}H$ at (a)NNLO



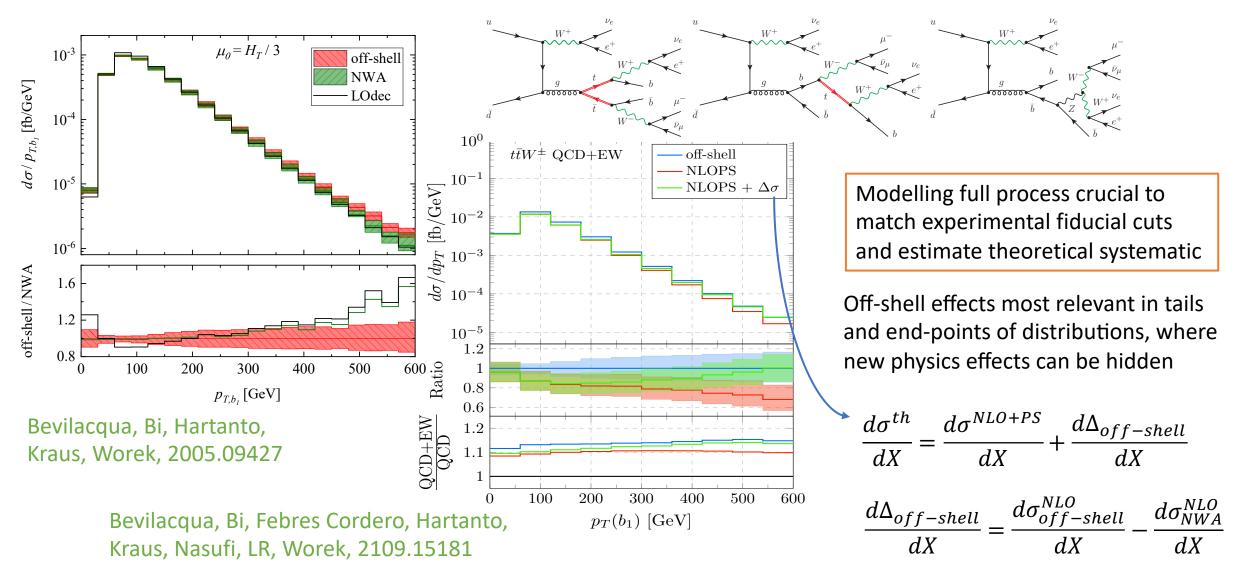
Catani et al., 2210.07846

Theoretical uncertainty reduced to 3% level

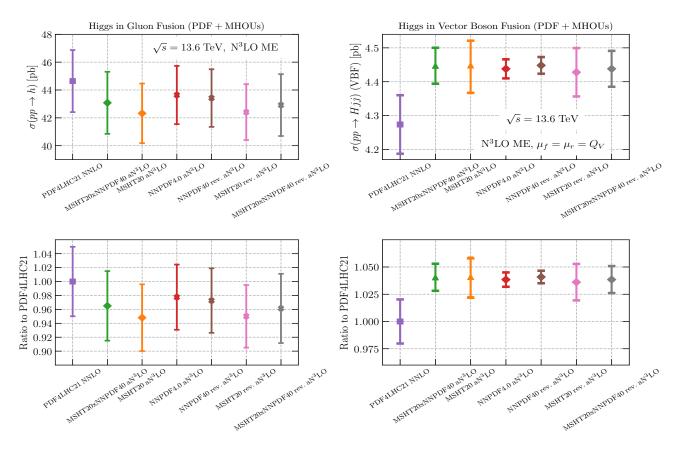
σ [pb]	$\sqrt{s} = 13 \mathrm{TeV}$	$\sqrt{s} = 100 \text{TeV}$
$\sigma_{ m LO}$	$0.3910^{+31.3\%}_{-22.2\%}$	$25.38^{+21.1\%}_{-16.0\%}$
	- , -	$36.43^{+9.4\%}_{-8.7\%}$
$\sigma_{ m NNLO}$	$0.5070(31)_{-3.0\%}^{+0.9\%}$	$37.20(25)^{+0.1\%}_{-2.2\%}$


Buonocore et al., 2306.16311

NNO QCD+NLO EW within at most 2σ of exp. measurement.


Ratio $\sigma_{t\bar{t}W}^+/\sigma_{t\bar{t}W}^-$ in very good agreement with ATLAS measurement

Comparison in fiducial volumes may give further insight


NLO: push the multiplicity challenge

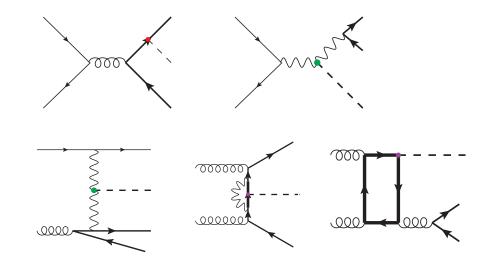
Beyond on-shell production to match fiducial measurements

Reducing δ (PDF-TH): towards consistent matching with N3LO PDF

McGowan, Cridge, Harkland-Lang, Thorne, 2207.04739 (MSHT); NNPDF 2402.18635; MSHT+NNPDF 2411.05373

 Based on N³LO approximation to structure functions and DGLAP evolution

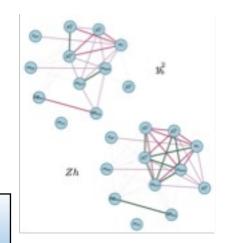
4-loop splitting functions (low moments)
Moch, Ruijl, Ueda, Vermaseren, Vogt, 2111.15561


- Making use of all available knowledge to constrain PDF parametrization, including both exact, resummed, and approximate estimates of N³LO results
- Including PDF uncertainty from missing higher-orders (MHOU) as theoretical uncertainty in the fit
- Gluon fusion to H: the increase in the cross-section prediction at N³LO is compensated by the N³LO PDF, suggesting a cancellation between terms in the PDF and cross section theory at N³LO → matching orders matters!
- ➤ **Vector Boson Fusion**: no relevant change in going from N²LO to N³LO PDF, due to different partonic channel involved.

... deploying new techniques to interpret complex signatures

The case of **bbH production including QCD+EW corrections** The extraction of y_b seems lost

"RIP Hbb" [Pagani et al., arXiv:2005.10277]


ratios	$\frac{\sigma(y_b^2)}{\sigma(y_b^2) + \sigma(\kappa_Z^2)} \equiv \frac{\sigma_{\rm NLO_{QCD+EW}}}{\sigma_{\rm NLO_{all}}}$	$\frac{\sigma(y_b^2)}{\sigma(y_b^2) + \sigma(y_t^2) + \sigma(y_b y_t)}$	$ \frac{\sigma(y_b^2)}{\sigma(y_b^2) + \sigma(y_t^2) + \sigma(y_b y_t) + \sigma(\kappa_Z^2)} $
	$(y_b \text{ vs. } \kappa_Z)$	$(y_b \text{ vs. } y_t)$	$(y_b \text{ vs. } \kappa_Z \text{ and } y_t)$
NO CUT	0.69	0.32	0.28
$N_{j_b} \ge 1$	0.37 (0.48)	0.19	0.14
$N_{j_b} = 1$	0.46 (0.60)	0.20	0.16
$N_{j_b} \geq 2$	0.11	0.11	0.06

A kinematic-shape based analysis based on game theory (Shapley values) and BDT techniques opened new possibilities "Resurrecting Hbb with kinematic shapes"

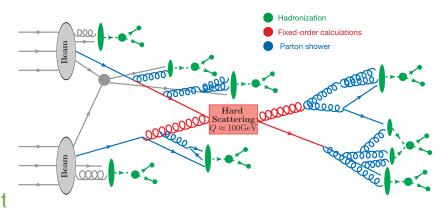
[Grojean et al., arXiv:2011.13945]

New techniques will open the possibility of turning problematic processes into powerful probes of the quantum structure of the SM

Parton-shower event generators

It's time for better Parton Showers!

Slide from G. Salam


From S. Ferrario Ravasio, RADCOR 2023

- ➤ Standard PS are Leading Logarithmic (LL) → becoming a limitation
- > Several groups aiming for NLL hadron-collider PS

Nagy&Soper, PanScales, Holguin- Forshaw-Platzer, Herren-Höche-Krauss- Reichelt

Crucial ingredient to reproduce the complexity of collider events

Often unknown or with poor formal accuracy (built in approx., tunings, etc.)

More challenges: non-perturbative effects $O((\Lambda_{QCD}/Q)^p)$

Estimate of "p" for all relevant processes crucial to LHC precision program

A few tens GeV < Q < a few hundreds GeV $\rightarrow (\Lambda_{QCD}/Q)^p \sim (0.01)^p - (0.001)^p$

Perturbative predictions at percent level will have to be supplemented with non-perturbative effects if p=1 for a particular process or observable.

No general theory. Direct calculations have shown that there are no linear non-pert power corrections in:

> Z transverse-momentum distributions

Ferrario Ravasio, Limatola, Nason, 2011.14114

> Observables that are inclusive with respect to QCD radiation

Caola, Ferrario Ravasio, Limatola, Melnikov, Nason, 2108.08897, same+Ozcelik 2204.02247

Message: we need to embrace the complexity of LHC events and improve their modelling at multiple levels

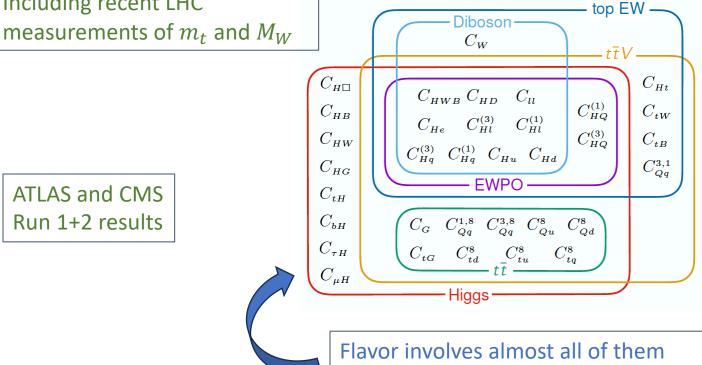
Beyond EW precision fits: global precision fits

Constraining new physics through a broad spectrum of collider and flavour observables

EW precision observables

- Z-pole observables (LEP/SLD): Γ_7 , $\sin^2\theta_{eff}$, A_I , A_{ER} , ...
- W observables (LEP II, Tevatron, LHC): M_W , Γ_W
- m_t , M_H , $\sin^2\theta_{eff}$ (Tevatron/LHC)

Higgs boson observables


- Production and decay rates
- Simplified Template Cross Sections (STXS)

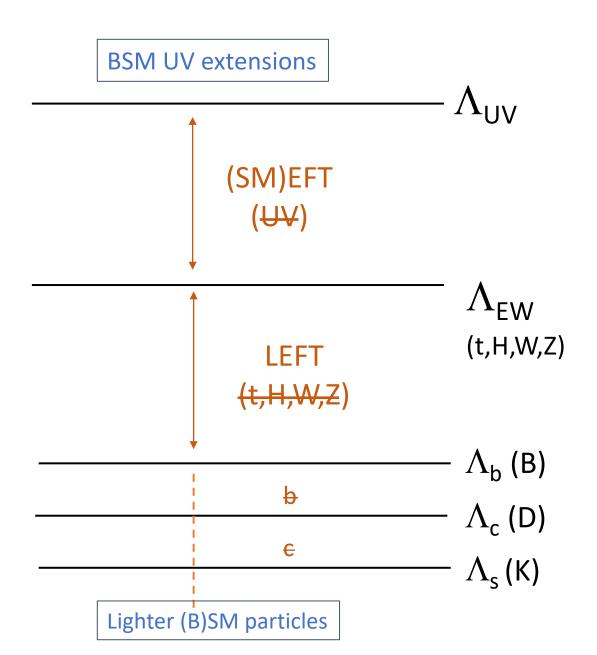
Top quark observables

- $pp \rightarrow t\bar{t}, t\bar{t}Z, t\bar{t}W, t\bar{t}\gamma, tZq, t\gamma q, tW, ...$
- Drell-Yan, Di-boson measurements
 - $pp \to W, Z \to f_i \overline{f_i}$
 - $pp \rightarrow WZ, WW, ZZ, Z\gamma$

ATLAS and CMS Run 1+2 results

Including recent LHC

either directly or through RGE


Flavour observables

- $\Delta F = 2: \Delta m_{B_{d,s}}, A_{sl}^{s,d}, D^0 \overline{D}^0(\phi_{12}^M), \varepsilon_K$
- Leptonic decays: $B_s \to \mu^+ \mu^-, B \to \tau \nu, K \to \ell \nu, \pi \to \ell \nu$
- Semi-leptonic decays: $B \to D^{(*)} l \nu$, $B \to \pi \ell \nu$, $K \to \pi \ell \nu$
- Radiative B decays: $B \to X_{s,d} \gamma$

Exp: PDG, HFLAV

Th: best available predictions

Connecting far apart scales: the EFT picture

Heavy physics decouples and leaves effective contact interactions of dim > 4

EFT operators in terms of SM fields

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i,d} \frac{C_{i,d}^{SMEFT}}{\Lambda^{d-4}} O_{i,d}^{SMEFT}$$

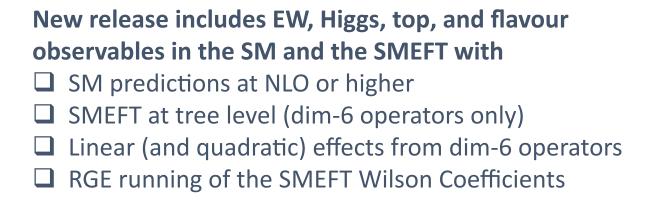
RGE WC depend on m_t , M_W , M_Z , M_H , ... M_X

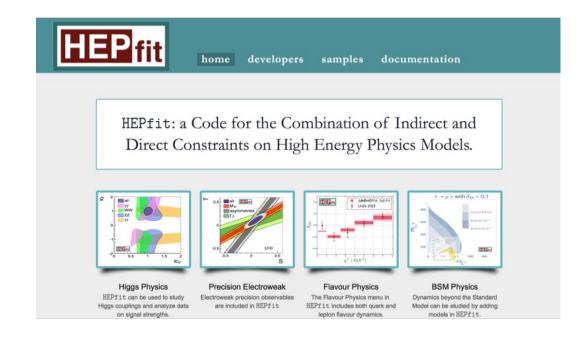
$$\mathcal{L}_{LEFT} = \mathcal{L}_{QED+QCD} + \sum_{i,d} \frac{C_{i,d}^{LEFT}}{\Lambda_{EW}^{d-4}} O_{i,d}^{LEFT}$$

Calculate physical processes at each scale and derive constraints on the UV theory

The HEPfit framework

Open-source tool


Statistical framework based on a Bayesian MCMC analysis as implemented in


BAT (Bayesian Analysis Toolkit)

Caldwell et al., arXiv:0808.2552

Supports SM (fully implemented) and BSM models, in particular the dim-6 SMEFT

Used for several global fits and future collider projections

http://hepfit.roma1.infn.it

J. De Blas et al., 1910.14012

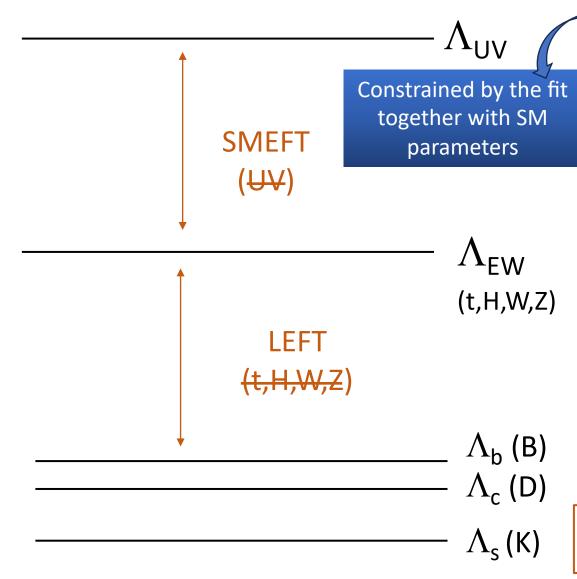
Other existing frameworks for SMEFT global fits:

SMEFIT, Celada et al. 2105.00006, 2302.06660, 2404.12809

Fitmaker, Ellis et al. 2012.02779

Aebischer et al., 1810.07698

Allwicher et al, 2311.00020


Cirigliano et al. 2311.00021

Bartocci et al. 2311.04963

Beyond EW fits – Higgs, top, flavour observables

Connecting far apart scales naturally lends itself to the EFT framework

Imposing flavour symmetry

 $C_{i,d}^{SMEFT}(\Lambda_{UV})$ (from matching to UV theory) Evolved to $C_{i.d}^{SMEFT}(\Lambda_{EW})$

Di Noi and Silvestrini, 2210.06838

using RGEsolver++

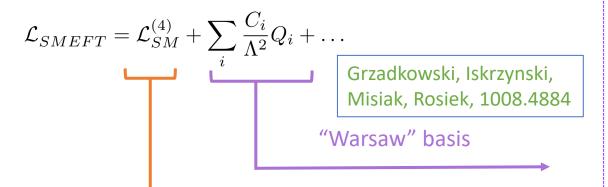
Based on 1-loop SMEFT anomalous dimension

Jenkins, Manohar, and Trott, 1308.2627, 1310.4838, 1312.2014

At Λ_{EW} observables are calculated in terms of $C_{i,d}^{SMEFT}(\Lambda_{EW})$

Evolved to $C_i^{LEFT}(\Lambda_{b,c,..})$

Match to LEFT operators to calculate flavor observables In terms of $C_i^{LEFT}(\Lambda_{b.c...})$


Jenkins, Manohar, Stoffer, 1709.04486, 1711.05270

Notice that LO evolution is only consistent with tree-level initial conditions at Λ_{IIV} and tree-level matrix elements at Λ_{FW} .

The SMEFT framework for this study Higgs field and Mh

Yukawa couplings

Vff, Hff

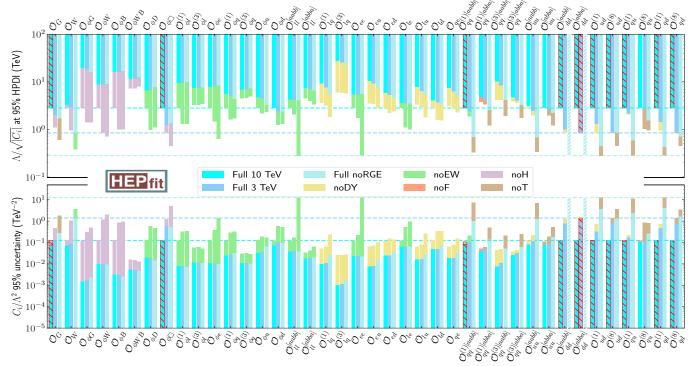
$$\begin{split} \mathcal{L}_{SM}^{(4)} &= -\frac{1}{4} G_{\mu\nu}^A G^{A,\mu\nu} - \frac{1}{4} W_{\mu\nu}^I W^{I,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ &+ (D_\mu \varphi)^\dagger (D^\mu \varphi) + m^2 \varphi^\dagger \varphi - \frac{1}{2} \lambda (\varphi^\dagger \varphi)^2 \\ &+ i \left(\bar{l'}_L D l'_L + \bar{e'}_R D e'_R + \bar{q'}_L D q'_L + \bar{d'}_R D d'_R \right) \\ &- \left(\bar{l'}_L \Gamma_e e'_R \varphi + \bar{q'}_L \Gamma_u u'_R \tilde{\varphi} + \bar{q'}_L \Gamma_d d'_R \varphi \right) + h.c. \end{split}$$
 with covariant derivative:

gauge fields and masses, HVV, VVV

	X^3)	φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$
\mathcal{O}_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{arphi}	$(arphi^\dagger arphi)^3$	\mathcal{O}_{earphi}	$\int (\varphi^{\dagger}\varphi)(\bar{l}_{p}\varphi e_{r})$
$\parallel \mathcal{O}_W$	$\left \varepsilon^{IJK} W_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu} \right $	$\mathcal{O}_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	O_{uarphi}	$(\varphi^{\dagger}\varphi)(\bar{q}_p\widetilde{\varphi}u_r)$
	,	$\mathcal{O}_{arphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	\mathcal{O}_{darphi}	$(\varphi^{\dagger}\varphi)(\bar{q}_p\varphi d_r)$
	$X^2\varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$\mathcal{O}_{arphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	\mathcal{O}_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$\mathcal{O}_{arphi l}^{(1)}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{l}_p \gamma^{\mu} l_r)$
$\mathcal{O}_{arphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	\mathcal{O}_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$\mathcal{O}_{arphi l}^{(3)}$	$(\varphi^{\dagger} i D_{\mu}^{I} \varphi) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$
$\mathcal{O}_{arphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	\mathcal{O}_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$\mathcal{O}_{arphi e}$	$(\varphi^{\dagger}iD_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$\mathcal{O}_{arphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$\mathcal{O}_{arphi q}^{(1)}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{q}_p \gamma^{\mu} q_r)$
		\mathcal{O}_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$\mathcal{O}_{arphi q}^{(3)}$	$(\varphi^{\dagger}iD_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
		\mathcal{O}_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$\mathcal{O}_{arphi u}$	$(\varphi^{\dagger}iD_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
		\mathcal{O}_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$\mathcal{O}_{arphi d}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{d}_{p} \gamma^{\mu} d_{r})$
		\mathcal{O}_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$\mathcal{O}_{arphi ud}$	$(\widetilde{\varphi}^{\dagger} i D_{\mu} \varphi) (\bar{u}_p \gamma^{\mu} d_r)$

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
\mathcal{O}_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$
$\left\ \;\; \mathcal{O}_{qq}^{(1)} \;\; ight\ $	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$	\mathcal{O}_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$\left (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \right $
$\mathcal{O}_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$
$\mid\mid \mathcal{O}_{lq}^{(1)} \mid\mid$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$
$egin{array}{c} \mathcal{O}_{lq}^{(1)} \ \mathcal{O}_{lq}^{(3)} \end{array}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$ (\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t) $
		$\begin{array}{c} \mathcal{O}^{(1)}_{ud} \\ \mathcal{O}^{(8)}_{ud} \end{array}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $
		$\mathcal{O}^{(8)}_{ud}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$\mathcal{O}_{qd}^{(1)}$ $\mathcal{O}_{ed}^{(8)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$
				$\mathcal{O}_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$

- > Dim-6 operators only, including linear (and quadratic effects)
- Obeying SM gauge symmetry
- \triangleright One Higgs doublet of SU(2), SSB linearly realized.


 $D_{\mu} = \partial_{\mu} + ig_s G_{\mu}^A \mathcal{T}^A + ig_W W_{\mu}^I T^I + ig_1 B_{\mu} Y$

 \triangleright Assuming different flavor symmetries: U(3)⁵, U(2)⁵ ...; no CPV

$(\bar{L}R)(\bar{L}R)$	$(ar{L}R)(ar{R}L)$	
$\mathcal{O}_{quqd}^{(1)[prst]} = (\bar{q}_p^i u_r) \epsilon_{ij} (\bar{q}_s^j d_t)$	$\mathcal{O}^{[prst]}_{ledq} = (ar{l}^i_p e_r)(ar{d}_s q_{ti})$	
$\mathcal{O}_{quqd}^{(8)[prst]} = (\bar{q}_p^i T^A u_r) \epsilon_{ij} (\bar{q}_s^j T^A d_t)$		
$\mathcal{O}_{lequ}^{(1)[prst]} = (\bar{l}_p^i e_r) \epsilon_{ij} (\bar{q}_s^j u_t)$	4-fermion interactions	: tt. ttH. DY. flavour
$\mathcal{O}_{lequ}^{(3)[prst]} = (\bar{l}_p^i \sigma_{\mu\nu} e_r) \epsilon_{ij} (\bar{q}_s^j \sigma^{\mu\nu} u_t)$		

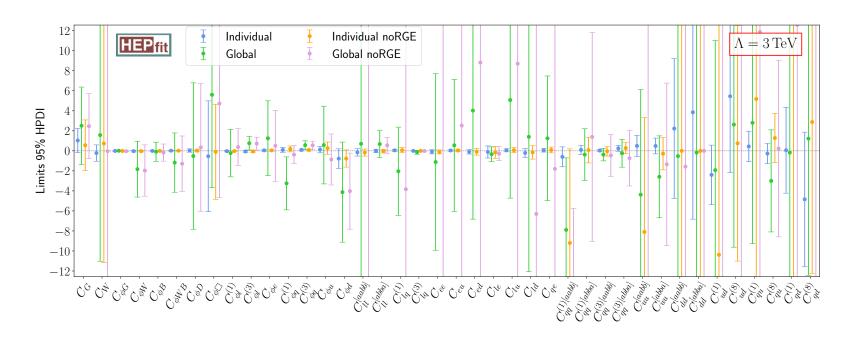
De Blas, Goncalves, Miralles, L.R., Silvestrini, Valli, 2507.06191

Studying the constraining power of different sets of observables and the effect of RGE

- Fit individual operators (one $C_i(\Lambda) \neq 0$ at a time, multiple $C_i(\mu)$ induced by RGE)
- Choose scales such that LO RGE effects can be relevant ($\log (\mu_1^2/\mu_2^2) \ge 2$)
- $ightharpoonup \Lambda = 1, 3, 10 \text{ TeV} \rightarrow \text{reach of current/future}$ colliders
- ➤ Between different 1: not a simple rescaling because of RGE effects

Lower half: uncertainty on C_i/Λ reported as half of the 95% HPDI (high posterior density interval)

Upper half: lower bound on $\Lambda/\sqrt{|C_i|}$ from the maximum of the 95% HPDI of $|C_i|$

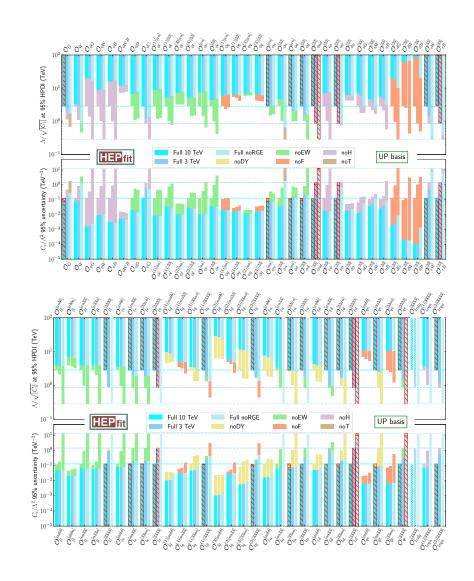

(since no interval is driven away from zero at 95% probability, we can only put a lower bound)

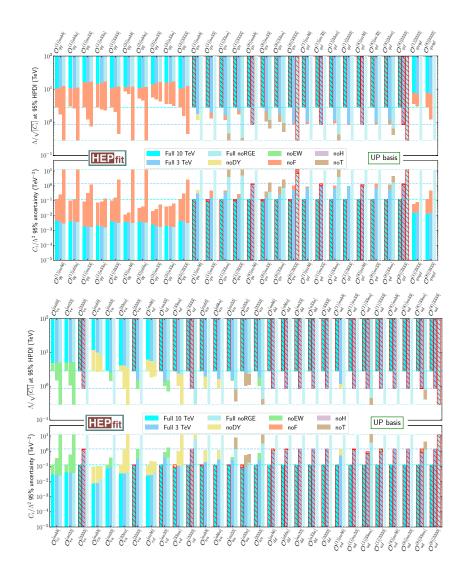
Dashed lines: perturbativity bounds ($|C_i| \sim 4\pi$)

Red shades: posteriors touches the edges of the prior (truncated) → need better measurements

White shades: posterior completely flat → need more observables

$U(3)^5$ case: individual vs global fit




This is already relevant input to model building!

- In general (both individual and global): adding more observables lift degeneracies but leaves strong correlations
- ➤ Although bounds get diluted in the global fit, both with and without RGE, some cases still very well constrained, giving strong lower bounds:
- Global fits, if really global, are numerically massive. Adding all existing measurements may prevent the fit from converging or take a lot of educated choices: fine balance between higher information and better convergence.

UV theory flavor symmetry: $U(2)^5$, testing third family

The impact of a non flavour-blind choice. More scenarios can be explored.

124 operators (123 if not considering $O_{\phi} = (\phi^{\dagger}\phi)^3$)

Main flavour constraints coming from:

$$\triangleright B \rightarrow X_s \gamma (O_{dG}, O_{dW}, O_{dB})$$

$$\triangleright B_s \rightarrow \mu^+\mu^- (O_{qe}^{[ijlk]})$$

ightharpoonup meson mixing ($O_{qq}^{(1,3)}$)

Message: Precision tests of the SM have grown to much more global fits of lots of observables. We are just exploring how to use the precision that will come from the HL-LHC.

Message: (SM)EFT characterizes general SM deformations and offers a systematic way to explore new physics that could affect SM predictions in multiple ways

Summary and discussion

- Collider physics remains as a unique and necessary test of any BSM hypotheses, and in this
 context precision phenomenology will play a crucial role at future colliders.
 - > The most important first goal is to enable the physics program of the HL-LHC
- Increasing the theoretical accuracy on SM observables (Higgs, top, EW, flavour) by one order
 of magnitude can be crucial
- Reaching this level of theoretical accuracy has multiple components, all of which have been the focus of intense theoretical work and should continue to be.
- The amount of precision observables now available gives us the possibility for the first time to explore new physics via global precision fits.
- Using an EFT approach seems a natural option (given the different scales involved) and will become more constraining of BSM physics with more data and higher precision.
 - ➤ Initially bottom- up → Exploration
 - ➤ Eventually top-down → Precision