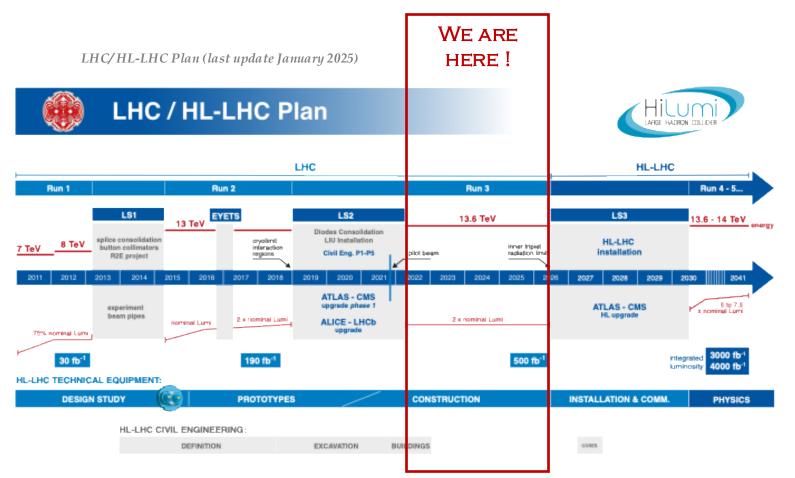

Problems & Challenges in Modelling $pp \rightarrow tt + X @ NLO$

MALGORZATA WOREK

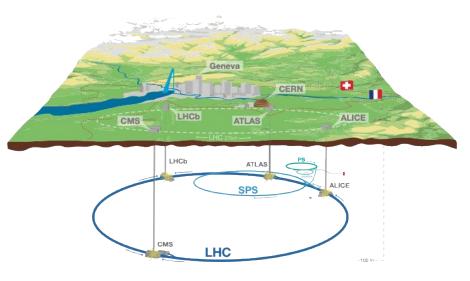

OUTLINE OF THE TALK

- 1. Introduction
- 2. Part I Fixed-order predictions: full off-shell NLO QCD predictions
- 3. Part II Fixed-order predictions: Complete NLO predictions
- 4. Part III Parton-shower based predictions: NLO + PS predictions
- 5. Summary
- 6. Open Questions & Problems

INTRODUCTION

LARGE HADRON COLLIDER

- Current status: LHC RUN 3 @ 13.6 TEV
- HL-LHC planned from 2030 TO 2041



Integrated Luminosity
$$\mathcal{L}_{\mathrm{int}} = \int_0^T \mathcal{L}(t') dt'$$

Run 1	Run 2	Run 3	HL-LHC
30 fb ⁻¹	190 fb ⁻¹	500 fb ⁻¹	3000 - 4000 fb ⁻¹

 $\mathcal{L}_{\mathrm{int}} \cdot \sigma_p = \text{number of events of interest}$

Overall view of the LHC

OPEN-PHO-CHART-2014-006

KEY PHYSICS GOALS

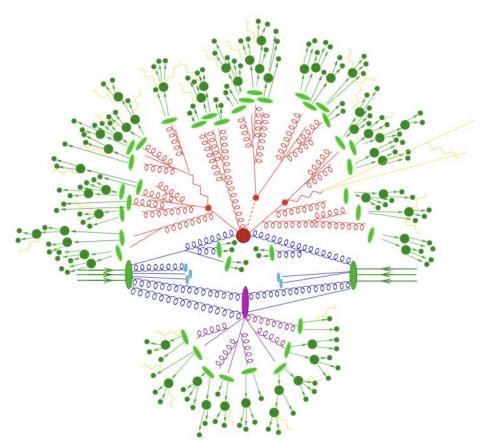
- 1) Understand Standard Model better, not only what particles we have, but also how they interact with each other
- 2) Establish structure of Higgs boson sector
- 3) Search for signs of new physics BSM

The core physics topics at the LHC (colour-coded by directly-probed energy scales)

DIRECT SEARCHES

- Many proposals for New Physics
- No model of NP really stands out
- No obvious candidates to look for

INDIRECT SEARCHES

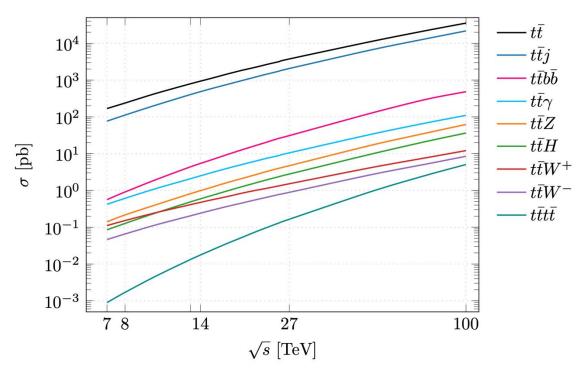

- New Physics as small corrections to SM reactions
- PRECISION SM MEASUREMENTS
 - High Luminosity LHC
- High Precision Theoretical Predictions
 - Top Quark & Higgs boson

KEY PHYSICS GOALS

- A synergy between theory & experiment is key to foster discoveries at the HL-LHC
- Shed more light on Higgs-boson sector
- Carefully examine top-quark sector for deviations from SM
- On theory side, path to precision runs through several directions:
 - Perturbative accuracy of amplitude calculations
 - Numerical stability of integration & subtraction of IR divergencies
 - Robust assessment of theoretical uncertainties
 - Modelling realistic final states in fiducial phase-space regions
 - Modelling resonant particles
 - Parton shower effects
 - Non perturbative aspects
- PRECISION & ACCURACY → Determine which effects are important & have to be included

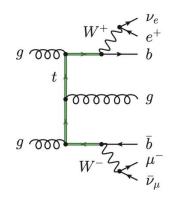
Pictorial representation of a $pp \rightarrow ttH$ event as produced by an event generator

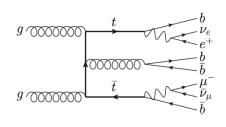
SHERPA, JHEP 02 (2009) 007

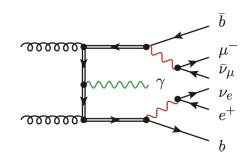


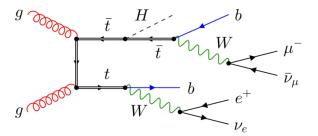
$$\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \times \hat{\sigma}_{ab \to X}(x_1, x_2, \alpha_S(\mu_R^2), \frac{Q^2}{\mu_F^2}, \frac{Q^2}{\mu_R^2})$$

TOP-QUARK PAIR PRODUCTION +X@ LHC

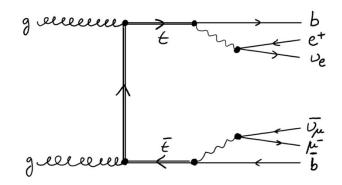

State of the art: NLO

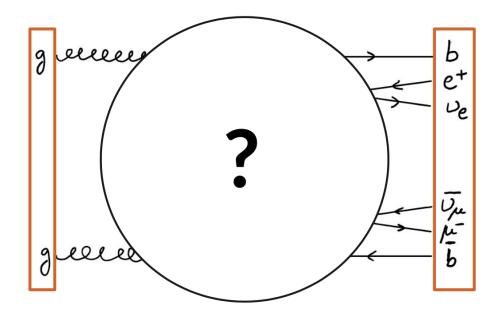

More exclusive final states are produced @ LHC




SNOWMASS 21, Report of Energy Frontier Topical Group 3, arXiv:2209.11267 [hep-ph]

- Only selected results for $pp \rightarrow tt + X$ to illustrate some issues
- **HELAC-NLO**: Results for all these processes & more:
 - $pp \rightarrow ttjj, pp \rightarrow tt\gamma\gamma \& pp \rightarrow ttWj$
- See also results by *Ansgar Denner & collaborators*

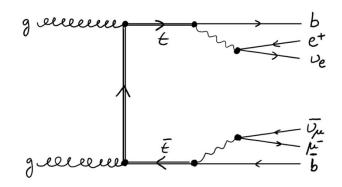

Main Focus:

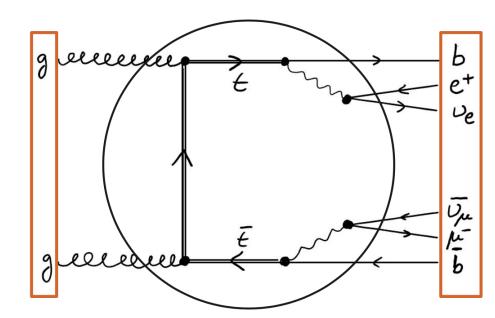

Precise & accurate modelling of realistic final states in fiducial phase-space regions

Modelling of unstable particles

$$pp \to b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu$$
 at $\mathcal{O}(\alpha_s^2\alpha^4)$

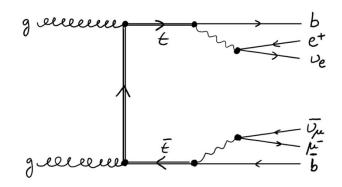
tt in di-lepton decay channel

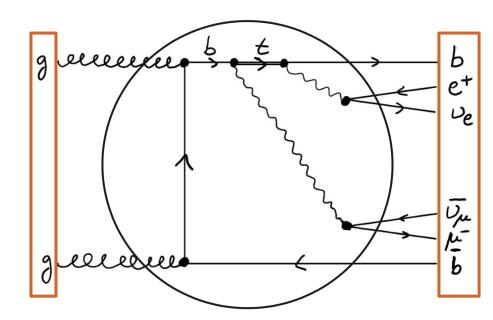



Modelling of unstable particles

$$pp o b \bar b e^+ \mu^- \nu_e \bar \nu_\mu$$
 at $\mathcal{O}(\alpha_s^2 \alpha^4)$

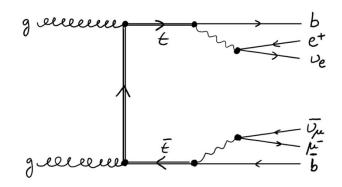
tt in di-lepton decay channel

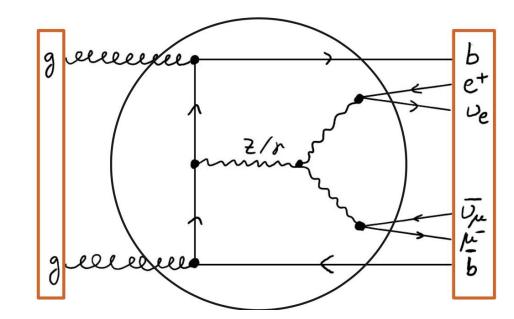

Doubleresonant diagram


Modelling of unstable particles

$$pp o b \bar b e^+ \mu^- \nu_e \bar \nu_\mu$$
 at $\mathcal{O}(\alpha_s^2 \alpha^4)$

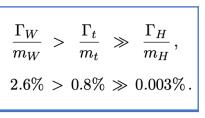
tt in di-lepton decay channel


Singleresonant diagram


Modelling of unstable particles

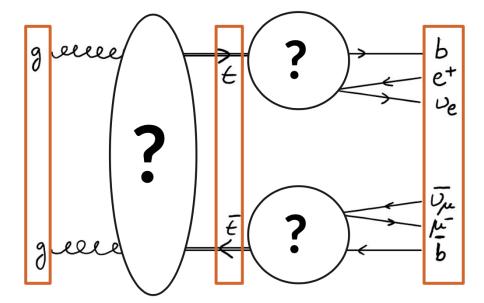
$$pp \to b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu$$
 at $\mathcal{O}(\alpha_s^2\alpha^4)$

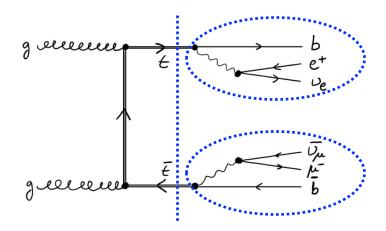
tt in di-lepton decay channel


Nonresonant diagram

TT PRODUCTION IN NWA

Modelling of unstable particles

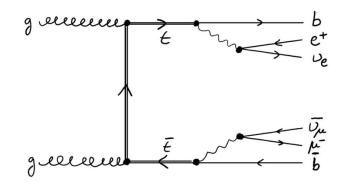

$$pp \to b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu$$
 at $\mathcal{O}(\alpha_s^2\alpha^4)$


Narrow-width approximation (NWA)

→ Fix intermediate state to be on-shell

$$\frac{\Gamma}{m} \to 0$$

tt in di-lepton decay channel


- NLO QCD correction separately to production
 & decays
- Nonfactorizable NLO corrections are missing
- No cross-talk between production & both decays
- NLO spin correlations

TT PRODUCTION

Modelling of unstable particles

$$pp \to b\bar{b}e^+\mu^-\nu_e\bar{\nu}_\mu$$
 at $\mathcal{O}(\alpha_s^2\alpha^4)$

tt in di-lepton decay channel

- Full off-shell = DR + SR + NR + interferences + Breit-Wigner propagators
- NWA = DR contributions & unstable t & W restricted to on-shell states

TT PRODUCTION WITH PARTON SHOWERS

- NLO QCD corrections to stable $pp \rightarrow tt + X$ matched to parton-showers: POWHEG & MC@NLO
 - NLO QCD for production only
 - Decays of top quarks included with LO spin correlations
 - Double resonant contributions only
 - Single & non-resonant contributions still missing as well as their interference effects
 - Scale settings & theoretical uncertainties based on production stage only
- Another approach for tt production is bb4l-dl & bb4l-sl MC generators
 - Full off-shell predictions at NLO QCD in *di-lepton & l+j* channels matched to (semi-classical) PS using a resonance-aware matching

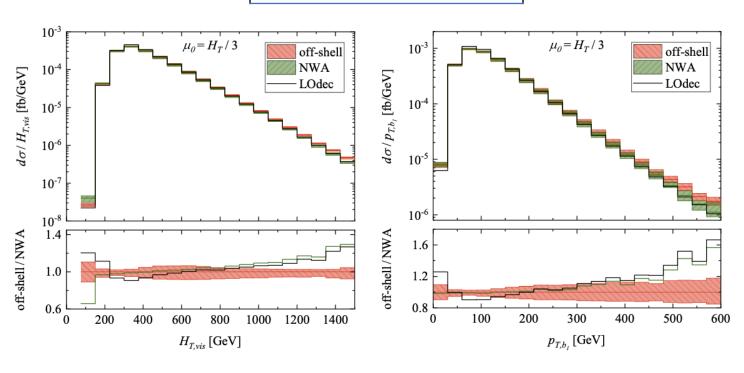
POWHEG-BOX + LO DECAYS

MG5_AMC@NLO + MADSPIN

- Dominant contributions resumed
 - Collinear parton splitting or soft gluon emission
- Connection to non-perturbative aspects
 - Hadronic final states
- Assess if parton showers can reproduce all contributions required at NLO QCD
- Identify regions of phase space & specific observables which are sensitive to parton shower effects

PART I — FIXED-ORDER PREDICTIONS: FULL OFF-SHELL NLO QCD

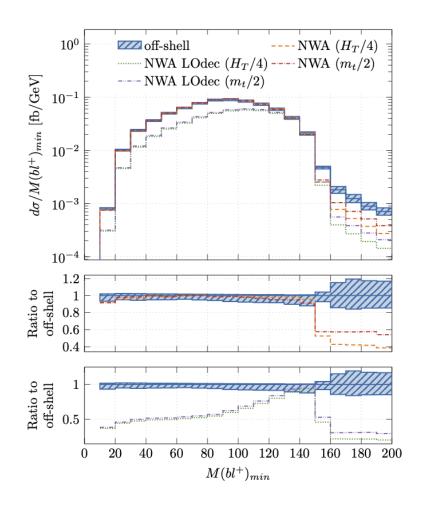
WHEN DO WE NEED FULL OFF-SHELL PREDICTIONS

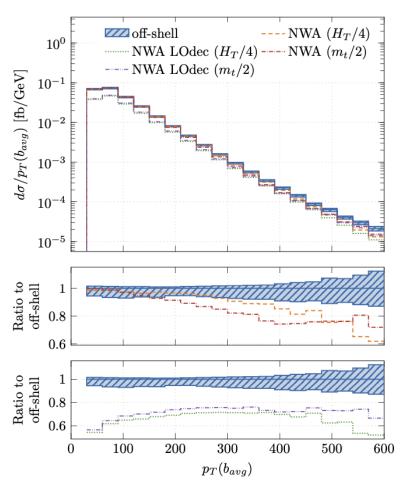

Bevilacqua, Bi, Hartanto, Kraus, Worek, JHEP 08 (2020) 043

Modelling Approach	$\sigma^{ m LO}$ [ab]	$\sigma^{ m NLO}$ [ab]
full off-shell $(\mu_0=m_t+m_W/2)$ full off-shell $(\mu_0=H_T/3)$	$106.9^{+27.7(26\%)}_{-20.5(19\%)} \\ 115.1^{+30.5(26\%)}_{-22.5(20\%)}$	$123.2^{+6.3(5\%)}_{-8.7(7\%)}\\124.4^{+4.3(3\%)}_{-7.7(6\%)}$
NWA $(\mu_0=m_t+m_W/2)$ NWA $(\mu_0=H_T/3)$	$106.4^{+27.5(26\%)}_{-20.3(19\%)} \\ 115.1^{+30.4(26\%)}_{-22.4(19\%)}$	$123.0^{+6.3(5\%)}_{-8.7(7\%)}\\124.2^{+4.1(3\%)}_{-7.7(6\%)}$
$ ext{NWA}_{ ext{LOdecay}} \; (\mu_0 = m_t + m_W/2)$ $ ext{NWA}_{ ext{LOdecay}} \; (\mu_0 = H_T/3)$		$127.0_{-13.3 (10\%)}^{+14.2 (11\%)} \\ 130.7_{-13.2 (10\%)}^{+13.6 (10\%)}$

INTEGRATED LEVEL

- Full off-shell effects 0.2%
- NLO QCD corrections to decays **3**%-**5**%



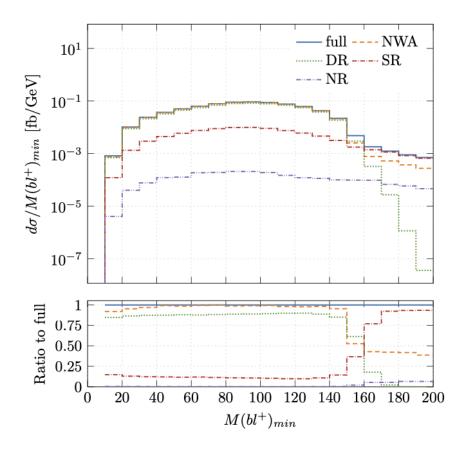

DIFFERENTIAL LEVEL

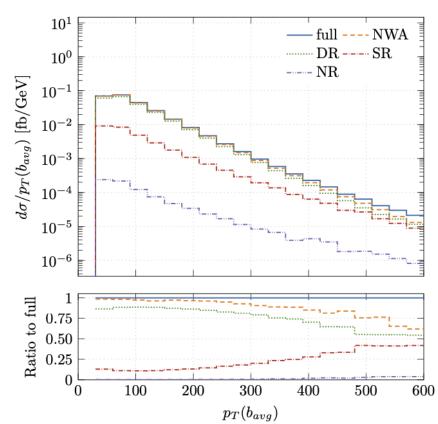
- Off-shell effects up to 60% 70%
- Substantial differences between NWA & NWA_{LODECAY}

How Good is NWA

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 03 (2020) 154

$$pp \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$$

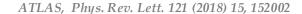

DIMENSIONFUL OBSERVABLES

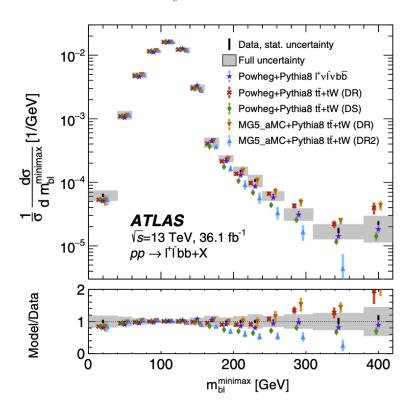

- Substantial differences between
 NWA & NWA_{LODECAY} when γ only in production stage
- NLO + PS not suitable to describe $pp \rightarrow tt\gamma$ process
- Off-shell effects up to 50% 60%
- Specific phase-space regions
 - Kinematical edges
 - High p_T regions

VARIOUS PHASE-SPACE REGIONS

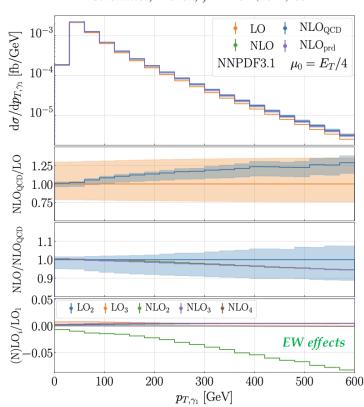
 $pp \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 03 (2020) 154

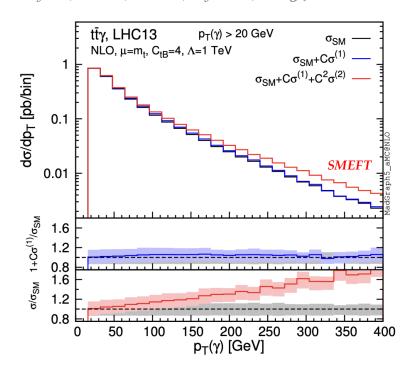



DIMENSIONFUL OBSERVABLES

- Sensitive to non-factorizable top quark corrections
- Effects up to 50% 60%
- Specific phase space regions
 - Kinematical edges
 - High p_T regions

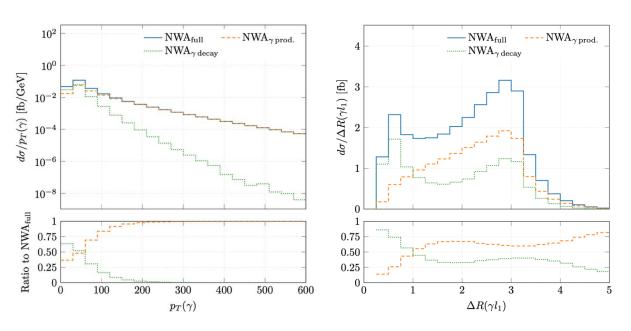

COMPETING EFFECTS

 $pp \to \ell^+ \nu_\ell \ell^- \overline{\nu}_\ell b \overline{b}(\gamma)$



Stremmer, Worek, JHEP 07 (2024) 091

Bylund, Maltoni, Tsinikos, Vryonidou, Zhang, JHEP 05 (2016) 052

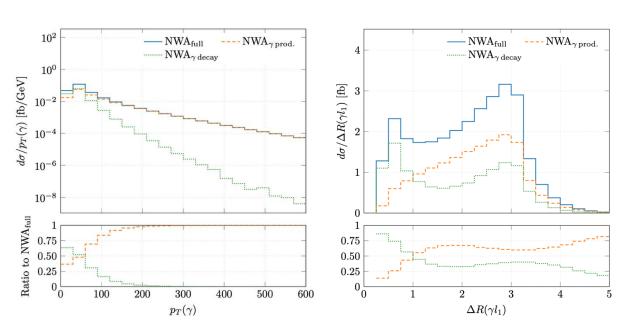

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{(\Lambda/1\text{TeV})^2} \sigma_i^{(1)} + \sum_{i \le j} \frac{C_i C_j}{(\Lambda/1\text{TeV})^4} \sigma_{ij}^{(2)}$$

- bb4l versus standard MC
- Full off-shell effects relevant in high p_T tails & for kinematical edges
- Other relevant effects in the same phase-space regions \rightarrow EW Sudakov logarithms \rightarrow SMEFT contributions

PHOTON IN PRODUCTION & DECAYS

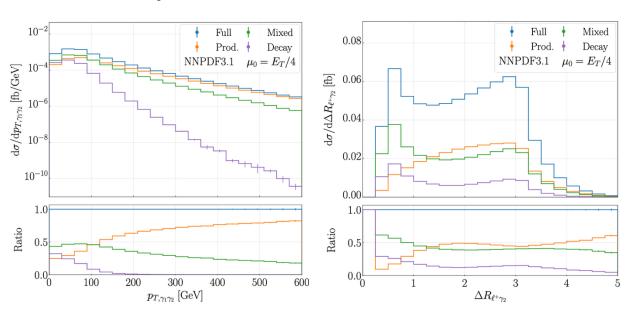
$$pp \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$$

- Integrated level for $p_{T,b} > 40 \text{ GeV } \& p_{T,\gamma} > 25 \text{ GeV}$:
 - *Prod. Contribution* at the level of 57%
 - *Decay contribution* at the level of **43**%



PHOTON IN PRODUCTION & DECAYS

$$pp \to \ell^+ \nu_\ell \ell^- \overline{\nu}_\ell b \overline{b} \gamma \gamma$$


$$pp \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$$

- Integrated level for $p_{T,b} > 40$ GeV & $p_{T,\gamma} > 25$ GeV:
 - *Prod. Contribution* at the level of 57%
 - *Decay contribution* at the level of **43**%

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 03 (2020) 154 Stremmer, Worek, JHEP 08 (2023) 179

- Integrated level for $p_{T,b} > 25 \text{ GeV } \& p_{T,v} > 25 \text{ GeV}$:
 - *Mixed contribution* at the level of 44%
 - *Prod. contribution* at the level of 40%
 - *Decay contribution* is about half the size 16%

- Different phase-space regions with various effects
- $pp \rightarrow tt\gamma(\gamma)$ process cannot be described correctly by standard NLO+PS predictions

APPLICATION: YUKAWA COUPLING

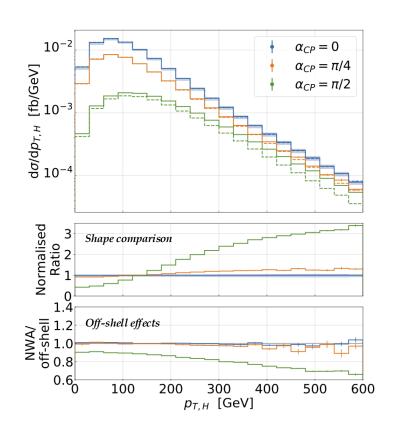
$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_{\mu} bb$
--

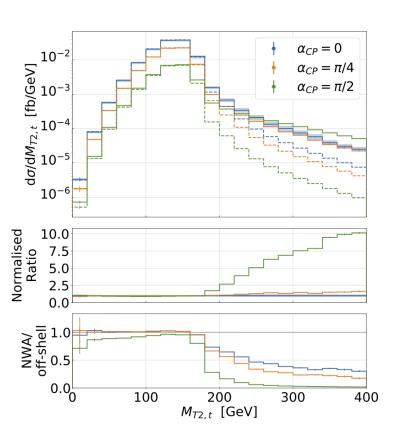
$lpha_{ ext{CP}}$		Off-shell	NWA	Off-shell effects
	$\sigma_{ m LO}$ [fb]	$2.0313(2)^{+0.6275(31\%)}_{-0.4471(22\%)}$	$2.0388(2)^{+0.6290(31\%)}_{-0.4483(22\%)}$	-0.37%
0 (SM)	$\sigma_{ m NLO}$ [fb]	$2.466(2)^{+0.027(1.1\%)}_{-0.112(4.5\%)}$	$2.475(1)^{+0.027(1.1\%)}_{-0.113(4.6\%)}$	-0.36%
CP-even	$\sigma_{ m NLO_{LOdec}}$ [fb]	_	$2.592(1)^{+0.161(6.2\%)}_{-0.242(9.3\%)}$	
	$\mathcal{K} = \sigma_{ m NLO}/\sigma_{ m LO}$	1.21	1.21 (LOdec: 1.27)	
	$\sigma_{ m LO}$ [fb]	$1.1930(2)^{+0.3742(31\%)}_{-0.2656(22\%)}$	$1.1851(1)^{+0.3707}_{-0.2633}(22\%)$	0.66%
$\pi/4$	$\sigma_{ m NLO}$ [fb]	$1.465(2)^{+0.016(1.1\%)}_{-0.071(4.8\%)}$	$1.452(1)^{+0.015(1.0\%)}_{-0.069(4.8\%)}$	0.89%
CP-mixed	$\sigma_{ m NLO_{LOdec}}$ [fb]	_	$1.517(1)^{+0.097}_{-0.144}_{(9.5\%)}^{(6.4\%)}$	
	$\mathcal{K} = \sigma_{ m NLO}/\sigma_{ m LO}$	1.23	1.23 (LOdec: 1.28)	
	$\sigma_{ m LO}$ [fb]	$0.38277(6)^{+0.13123(34\%)}_{-0.09121(24\%)}$	$0.33148(3)^{+0.11240(34\%)}_{-0.07835(24\%)}$	13.4%
$\pi/2$	$\sigma_{ m NLO}$ [fb]	$0.5018(3)^{+0.0083(1.2\%)}_{-0.0337(6.7\%)}$	$0.4301(2)^{+0.0035}_{-0.0264}_{(6.1\%)}^{(0.8\%)}$	14.3%
CP-odd	$\sigma_{ m NLO_{LOdec}}$ [fb]	_	$0.4433(2)^{+0.0323(7.3\%)}_{-0.0470(11\%)}$	
	$\mathcal{K} = \sigma_{ m NLO}/\sigma_{ m LO}$	1.31	1.30 (LOdec: 1.34)	

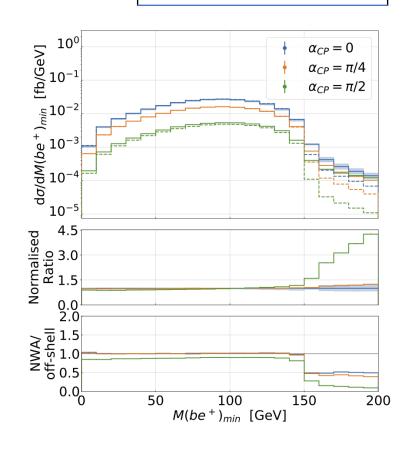
Higgs characterisation framework

$$\mathcal{L}_{tar{t}H} = -ar{\psi}_t rac{Y_t}{\sqrt{2}} \left(\kappa_{Htar{t}}\cos(lpha_{ ext{CP}}) + i\kappa_{Atar{t}}\sin(lpha_{ ext{CP}})\gamma_5
ight)\psi_t H,$$

$$\mathcal{L}_{HVV} = \kappa_{HVV} \left(\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right) H,$$


Coupling choices: $\kappa_{At\bar{t}} = 2/3 \& \kappa_{Ht\bar{t}} = 1 \& \kappa_{HVV} = 1$ Ensure consistency with current experimental bounds (ggF, VBF)


- Off-shell effects @ integrated fiducial cross-section level:
 - Small for *CP-even* and *CP-mixed* Higgs boson
 - Large effects for *CP-odd* Higgs boson


Artoisenet et al., JHEP 11 (2013) 043 Maltoni et al., Eur. Phys. J. C 74 (2014) 1, 2710 Demartin et al., Eur. Phys. J. C 74 (2014) 9, 3065 Demartin et al., Eur. Phys. J. C 75 (2015) 6, 267

APPLICATION: YUKAWA COUPLING

- CP-even
- CP-mixed
- CP-odd
- Solid line full off-shell results, dashed line NWA

- Off-shell effects @ differential fiducial cross-section level:
 - Large effects on size and shape for *CP-odd* Higgs boson
 - Only small effects for CP-even and CP-mixed
 - Reason: SR contributions ~ tWHb production

APPLICATION: TOP QUARK MASS

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2025-135 4th July 2025

Measurement of the top-quark pole mass in dileptonic $t\bar{t}$ + 1-jet events at \sqrt{s} = 13 TeV with the ATLAS experiment

The ATLAS Collaboration

A measurement of the top-quark pole mass m_t^{pole} is presented in $t\bar{t}$ events with an additional jet, $t\bar{t}+1$ -jet, produced in pp collisions at $\sqrt{s}=13$ TeV. The data sample, recorded with the ATLAS experiment during Run 2 of the LHC, corresponds to an integrated luminosity of 140 fb⁻¹. Events with one electron and one muon of opposite electric charge in the final state are selected to measure the $t\bar{t}+1$ -jet differential cross-section as a function of the inverse of the invariant mass of the $t\bar{t}+1$ -jet system. Iterative Bayesian Unfolding is used to correct the data to enable comparison with fixed-order calculations at next-to-leading-order accuracy in the strong coupling. The process $pp \to t\bar{t}j$ (2 \to 3), where top quarks are taken as stable particles, and the process $pp \to b\bar{b}b^{\dagger}vl^{-}\bar{v}j$ (2 \to 7), which includes top-quark decays to the dilepton final state and off-shell effects, are considered. The top-quark mass is extracted using a χ^2 fit of the unfolded normalized differential cross-section distribution. The results obtained with the 2 \to 3 and 2 \to 7 calculations are compatible within theoretical uncertainties, providing an important consistency check. The more precise determination is obtained for the 2 \to 3 measurement: $m_t^{pole}=170.7\pm0.3$ (stat.) ±1.4 (syst.) ±0.3 (scale) ±0.2 (PDF \oplus α_S) GeV, which is in good agreement with other top-quark mass results.

© 2025 CERN for the benefit of the ATLAS Collaboration.

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

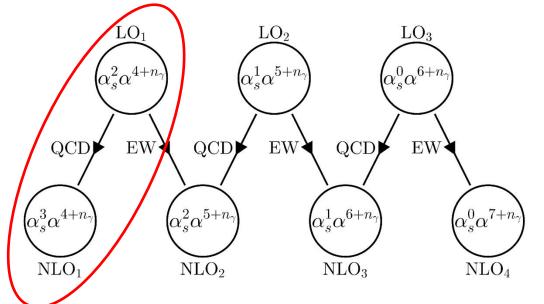
Bevilacqua, Hartanto, Kraus, Worek, Phys. Rev. Lett. 116 (2016) 5, 052003 Bevilacqua, Hartanto, Kraus, Worek, JHEP 11 (2016) 098 Bevilacqua, Hartanto, Kraus, Schulze, Worek, JHEP 03 (2018) 169

$$\mathcal{R}(\rho_{s}; m_{t}^{\text{pole}}) = \frac{1}{\sigma_{t\bar{t}+1-\text{jet}}} \cdot \frac{d\sigma_{t\bar{t}+1-\text{jet}}}{d\rho_{s}} \quad \text{, with} \quad \rho_{s} = \frac{2m_{0}}{\sqrt{s_{t\bar{t}+1-\text{jet}}}}$$

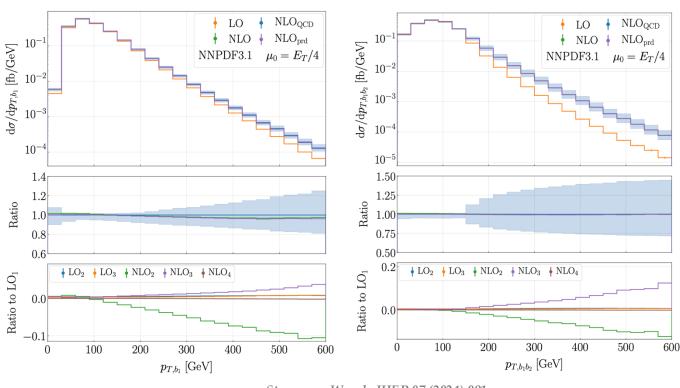
 $2 \rightarrow 3$:

$$m_t^{\text{pole}} = 170.73 \pm 0.33 \text{ (stat.)} \pm 1.36 \text{ (syst.)} ^{+0.34}_{-0.28} \text{ (scale)} \pm 0.24 \text{ (PDF} \oplus \alpha_s) \text{ GeV}.$$

 $2 \rightarrow 7:$


$$m_t^{\text{pole}} = 171.69 \pm 0.41 \text{ (stat.)} \pm 1.68 \text{ (syst.)} ^{+0.66}_{-1.34} \text{ (scale)} ^{+0.49}_{-0.46} \text{ (PDF} \oplus \alpha_s) \text{ GeV}$$
.

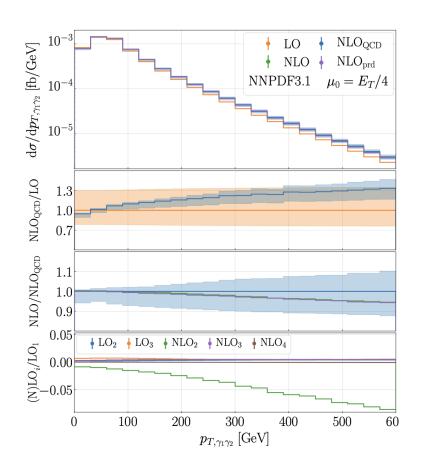
- Central value of $2 \rightarrow 7$ result is approximately 1 GeV higher than for $2 \rightarrow 3$ case
- Difference is covered by scale uncertainties of theoretical prediction
- Theoretical error grows from 0.3 0.4 GeV in $2 \rightarrow 3$ to 1 GeV in $2 \rightarrow 7$

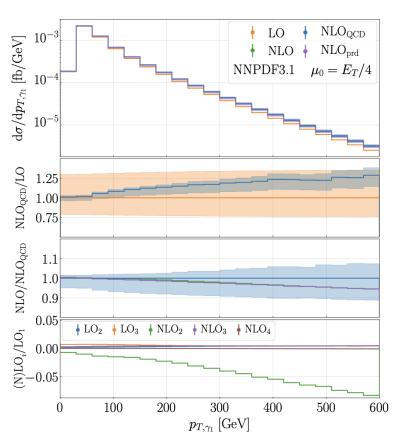

PART II — FIXED-ORDER PREDICTIONS: COMPLETE NLO

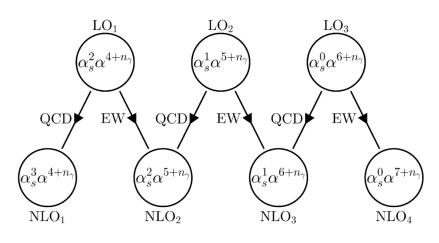
COMPLETE NLO CORRECTIONS

$pp \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$

		σ_i [fb]	Ratio to LO ₁
LO_1	$\mathcal{O}(lpha_s^2lpha^5)$	$55.604(8)_{-22.3\%}^{+31.4\%}$	1.00
LO_2	$\mathcal{O}(lpha_s^1lpha^6)$	$0.18775(5)_{-15.4\%}^{+20.1\%}$	+0.34%
LO_3	$\mathcal{O}(lpha_s^0lpha^7)$	$0.26970(4)_{-16.9\%}^{+14.3\%}$	+0.49%
NLO_1	$\mathcal{O}(lpha_s^3lpha^5)$	+3.44(5)	+6.19%
NLO_2	$\mathcal{O}(lpha_s^2lpha^6)$	-0.1553(9)	-0.28%
NLO_3	$\mathcal{O}(lpha_s^1lpha^7)$	+0.2339(3)	+0.42%
NLO_4	$\mathcal{O}(lpha_s^0lpha^8)$	+0.001595(8)	+0.003%
LO		$56.061(8)_{-22.1\%}^{+31.2\%}$	1.0082
NLO_{QCD}		$59.05(5)_{-5.9\%}^{+1.6\%}$	1.0620
$\mathrm{NLO}_{\mathrm{prd}}$		$59.08(5)_{-5.9\%}^{+1.5\%}$	1.0626
NLO		$59.59(5)_{-5.9\%}^{+1.6\%}$	1.0717

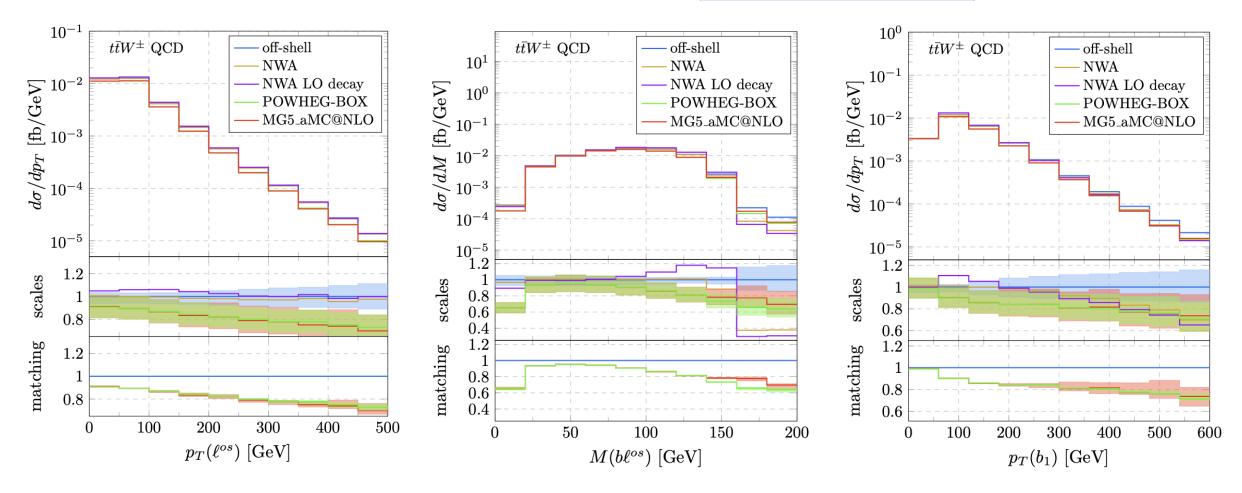

Stremmer, Worek, JHEP 07 (2024) 091


- EW Sudakov logarithms in NLO₂ leads to reduction in tails of up to 10% compared to NLO_{OCD} result
- Accidental cancellations between NLO₂ & NLO₃ → Should be considered together
- NLO_{prd} approximation models complete NLO result very well


$$NLO_{prd} = LO_1 + LO_2 + LO_3 + NLO_1 + NLO_{2,prd} + NLO_{3,prd} + NLO_{4,prd}$$

COMPLETE NLO CORRECTIONS

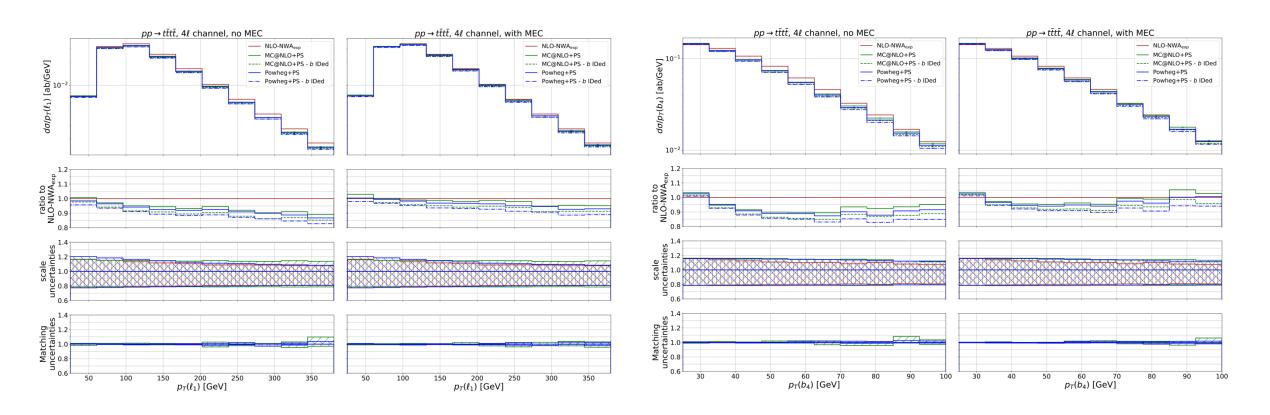
 $pp \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma \gamma$



Part III — Parton-Shower Based Predictions: NLO QCD + PS

FIXED ORDER VERSUS PARTON-SHOWER

• $l^{OS} \rightarrow \text{Opposite-Sign lepton}$


$$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu e^+ \nu_e b \overline{b}$$

Bevilacqua, Bi, Cordero, Hartanto, Kraus, Nasufi, Reina, Worek, Phys. Rev. D 105 (2022) 1, 014018

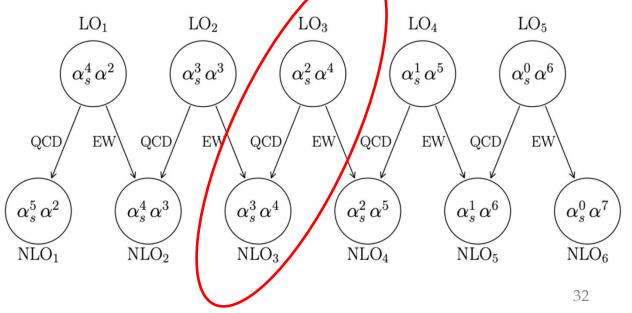
FIXED ORDER VERSUS PARTON-SHOWER WITH MEC

 $pp \rightarrow l^+ \nu_l l^- \overline{\nu}_l l^+ \nu_l l^- \overline{\nu}_l b \overline{b} b \overline{b}$

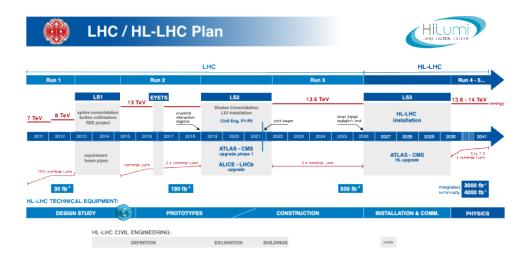
• Emission in $t \to bW$ decay is corrected by means of $t \to bWg$ tree-level matrix element

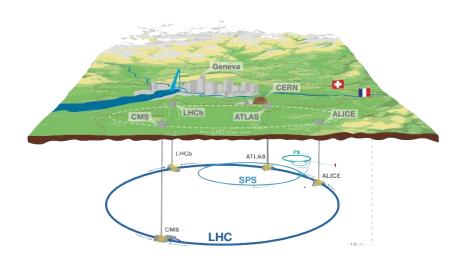
VARIOUS THEORETICAL PREDICTIONS

- FULL OFF-SHELL PP \rightarrow TT+X VERSUS ON-SHELL PP \rightarrow TT+X + PP \rightarrow TWB+X
 - Coherent sum versus incoherent sum
 - Comparison of various approaches important
 - Full off-shell = DR + SR + NR + interferences + Breit-Wigner propagators
 - NWA = DR restricts unstable t & W to on-shell states
 - Parton-shower based predictions = $pp \rightarrow tt + X$ production @ NLO + LO decays with spin correlations
 - ✓ Spin correlations important to probe new physics scenarios
- UNDERSTAND VARIOUS THEORETICAL APPROACHES IS IMPORTANT AS THEY CAN IMPACT:
 - IR-safe (integrated) cross sections: Normalisation
 - IR-safe (differential) cross section distributions: Shape of distributions
 - SM parameter extraction: $m_t \& \Gamma_t$
 - SM observables: Top Charge Asymmetry
 - BSM exclusion limits: $pp \rightarrow tt + Dark Matter$ with backgrounds $pp \rightarrow tt \& pp \rightarrow tt Z (Z \rightarrow vv)$
 - New Physics Modelling: $pp \rightarrow ttH$ with anomalous couplings $\rightarrow pp \rightarrow ttH$ in SMEFT
 - Systematic uncertainties: Subtraction of $pp \to tWb$ from $pp \to tt$
 - Matching to parton showers: Resonant aware matching when NLO decays are included


OPEN QUESTIONS & PROBLEMS

- FULL OFF-SHELL PREDICTIONS: $pp \to t\bar{t} \& t\bar{t} + X$, $X = H, \gamma, W^{\pm}(\to \ell \nu_{\ell}), Z(\to \nu_{\ell} \bar{\nu}_{\ell}), Z(\to \ell \ell), j, b\bar{b}, W^{\pm}j$
 - Multilepton final states only
 - Combined NLO EW & NLO QCD results as well as complete NLO predictions only for a few selected cases
 - Matching to PS for tt production only $\rightarrow bb4l \mathcal{E}$ only with POWHEG
 - Time-consuming computations requiring large computer resources $\mathcal E$ storage


 $pp \to \mu^- \overline{\nu}_{\mu} jj b \overline{b}$


- l+j top-quark decay channel only for tt (?) \rightarrow Additional problems with IR safety
- Fully hadronic final states are completely missing

SUMMARY

- PROPER MODELLING OF TOP-QUARK PRODUCTION & DECAY ESSENTIAL
 - Already now in presence of inclusive phase-space regions
- NLO QCD corrections to $pp \rightarrow t\bar{t} \& t\bar{t} + X$
 - FULL OFF-SHELL PREDICTIONS:

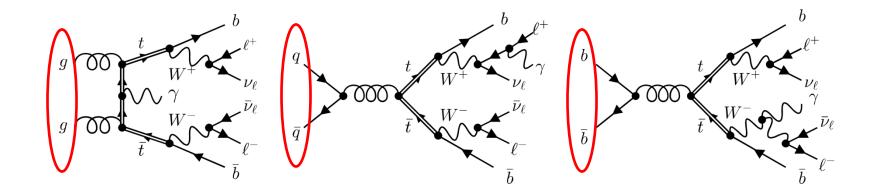
$$\checkmark X = H, \gamma, W^{\pm}, Z(\rightarrow \nu_{\ell} \overline{\nu}_{\ell}), Z(\rightarrow \ell \ell), j, b\overline{b}, W^{\pm}j$$

• NWA RESULTS: $X = jj, \gamma\gamma, tt$

IMPORTANT

- Corrections to production & decays important
- Complete off-shell effects important
 - ✓ kinematical edges & high p_T
- Same phase-space regions are also sensitive to
 - ✓ EW higher-order corrections
 - ✓ Subleading contributions
 - ✓ New Physics effects
- Photon emissions must be properly included at all stages
- Matching to parton showers \rightarrow To be used in addition to accurate matrix-element predictions, not instead of them

EVEN MORE IMPORTANT FOR

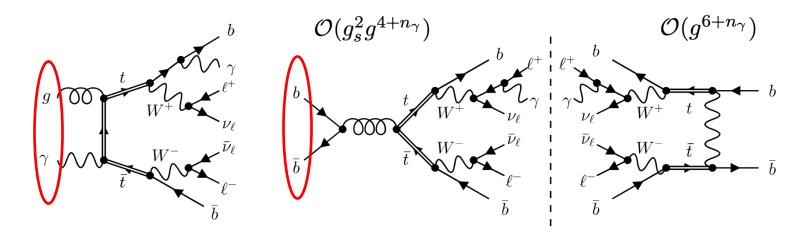

- Exclusive phase-space regions & HL-LHC
- New Physics searches & Exclusion limits
- SM parameter extraction & Various observables

BACKUP

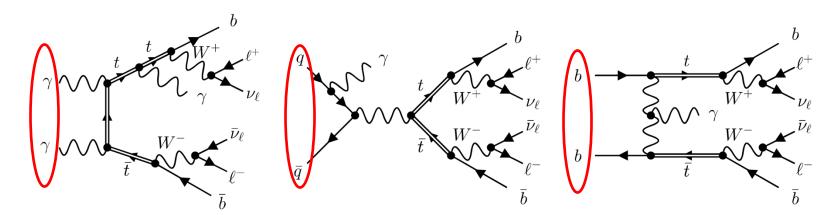
DEFINITION OF LO₁

$$pp \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$$

• LO₁: Dominant contributions at $\mathcal{O}(\alpha_s^2 \alpha^{4+n_\gamma})$ with n_{ν} being number of photons appearing @ Born-level


Typical QCD production of top-quark pair with photons with following partonic subprocesses

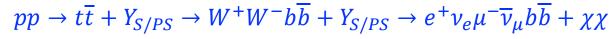
$$gg \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \,,$$
$$q\bar{q}/\bar{q}q \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \,, \qquad b\bar{b}/\bar{b}b \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \,,$$

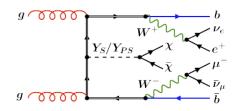

DEFINITION OF LO₂ & LO₃

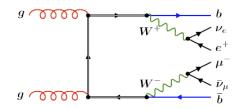
 $pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \gamma$

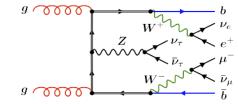
• LO₂: Contributions at $\mathcal{O}(\alpha_s^1 \alpha^{5+n_\gamma})$

- LO₃: Purely EW induced production of top-quark pair at $\mathcal{O}(\alpha^{6+n_{\gamma}})$
 - Suppressed by power coupling & without gluon PDFs

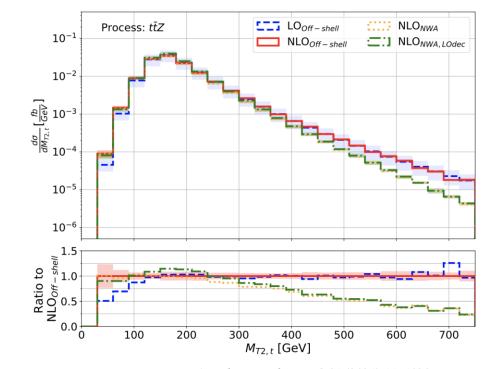

- Interference between gluon mediated diagrams with Z/γ mediated ones vanishes due to colour for qq initial state
- Interference does not vanish for bb due to t-channel diagrams with intermediate W boson
- When CKM matrix is not diagonal these contributions for qq initial state can also be nonzero but are CKM-suppressed


$$LO = LO_1 + LO_2 + LO_3$$


APPLICATION: BSM EXCLUSION LIMITS


 $pp \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \chi \chi$

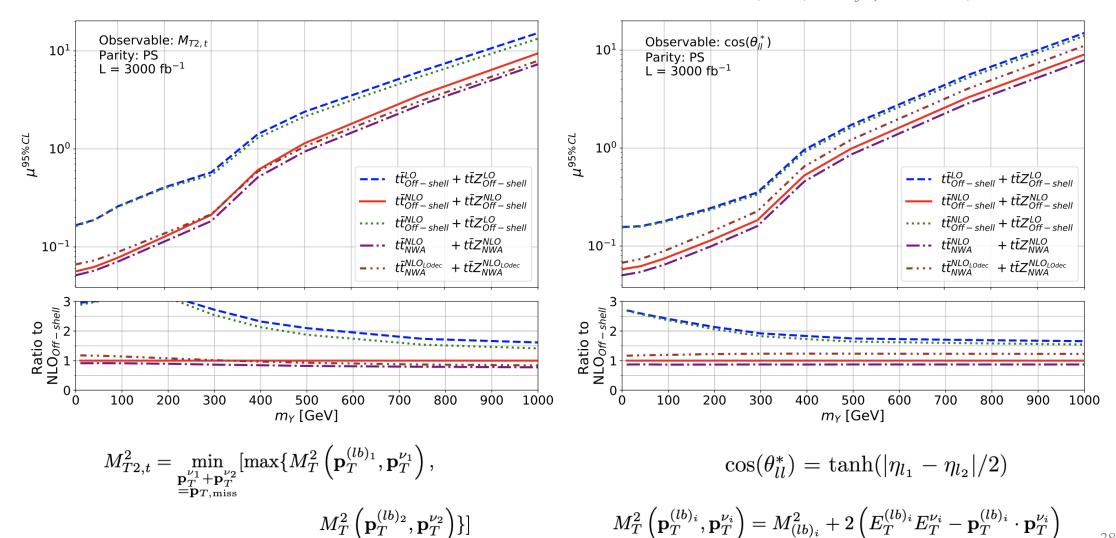
- BSM \rightarrow Kinematical edges & high p_T regions
- $t\bar{t} + DM \rightarrow \text{Top quark backgrounds: } t\bar{t} \& t\bar{t}Z$
- lacktriangledown Observable ightarrow $M_{T2,W} \ \& \ M_{T2,t} \ \& \ p_T^{miss}$



Before & after applying additional cuts

Process	Order	Scale	$\sigma_{ m uncut}$ [fb]	σ_{cut} [fb]	$\sigma_{ m cut}/\sigma_{ m uncut}$	Events for $L = 300 \text{ fb}^{-1}$
$tar{t}$ NWA	LO	$H_T/4$	1061	0	0.0%	0
	LO	$E_T/4$	984	0	0.0%	0
	LO	m_t	854	0	0.0%	0
	NLO	$H_T/4$	1097	0	0.0%	0
	NLO, LO dec	$H_T/4$	1271	0	0.0%	0
	LO	$H_T/3$	0.1223	0.0130	11%	47
	LO	$E_T/3$	0.1052	0.0116	11%	42
t ar t Z NWA	LO	$m_t + m_Z/2$	0.1094	0.0134	12%	48
	NLO	$H_T/3$	0.1226	0.0130	11%	47
	NLO, LO dec	$H_T/3$	0.1364	0.0140	10%	50
$tar{t}$ Off-shell	LO	$H_T/4$	1067	0.0144	0.0013%	17
	LO	$E_T/4$	989	0.0131	0.0013%	16
	LO	m_t	861	0.0150	0.0017%	18
	NLO	$H_T/4$	1101	0.0156	0.0014%	19
$tar{t}Z$ Off-shell	LO	$H_T/3$	0.1262	0.0135	11%	49
	LO	$E_T/3$	0.1042	0.0115	11%	41
	LO	$m_t + m_Z/2$	0.1135	0.0140	12%	50
	NLO	$H_T/3$	0.1269	0.0134	11%	48

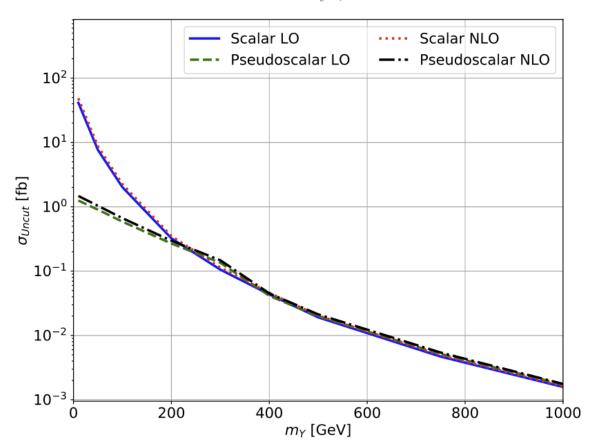
- After cuts 25% of events come from $t\bar{t}$
- NLO smaller uncertainties w.r.t LO, NLO + LO decays


Hermann, Worek, Eur. Phys. J. C 81 (2021) 11, 1029

APPLICATION: BSM EXCLUSION LIMITS

 $pp \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \chi \chi$

Comparison of signal strength exclusion limits


Hermann, Worek, Eur. Phys. J. C 81 (2021) 11, 1029

APPLICATION: YUKAWA COUPLING

 $pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_{\mu} b \overline{b} H$

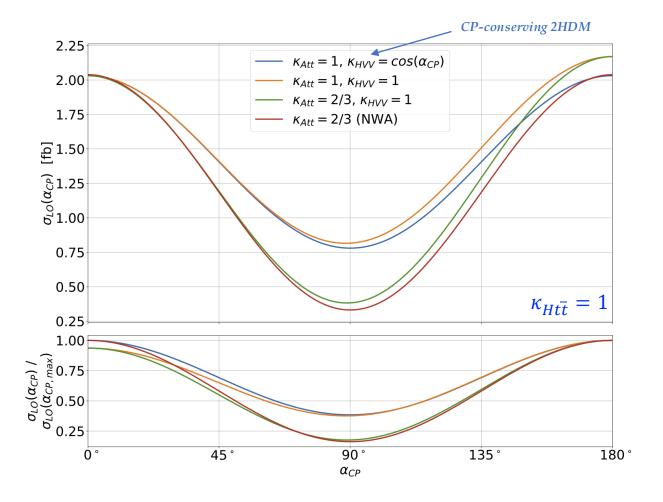
Hermann, Worek, Eur. Phys. J. C 81 (2021) 11, 1029

• Cross section for $pp \to b\overline{b}e^+\mu^-\nu_e\overline{\nu}_{\mu}\chi\overline{\chi}$ with scalar & pseudoscalar mediators depending on the mass m_Y

• Production of pseudoscalar in association with top quarks is suppressed compared to scalar for masses below ~ 200 GeV if the two couplings $\kappa_{Ht\bar{t}} = \kappa_{At\bar{t}} = 1$

Haisch, Pani, Polesello, JHEP 02 (2017) 131

■ This difference can be understood when looking at $t \rightarrow t$ + H/A fragmentation functions

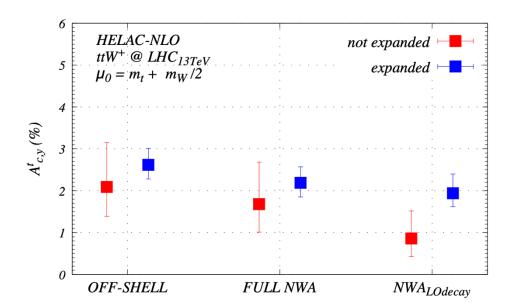

$$f_{t \to t+H}(x) = \frac{\kappa_{Ht\bar{t}}^2}{(4\pi)^2} \left[\frac{4(1-x)}{x} + x \ln\left(\frac{s}{m_t^2}\right) \right]$$
$$f_{t \to t+A}(x) = \frac{\kappa_{At\bar{t}}^2}{(4\pi)^2} \left[x \ln\left(\frac{s}{m_t^2}\right) \right],$$

Dawson, Reina, Phys. Rev. D 57 (1998) 5851

- x momentum fraction that Higgs boson carries
- Scalar fragmentation function has additional 1/x
- Enhanced production of soft scalar compared to pseudoscalars

APPLICATION: YUKAWA COUPLING

- Cross sections in NWA symmetric with respect to $\alpha_{CP} \rightarrow \pi \alpha_{CP}$
- Equivalent to changing sign of Y_t
- In full off-shell case symmetry is present if we set $\kappa_{HVV}(\alpha_{CP}) = \cos(\alpha_{CP})$
- Symmetry is broken if we take $\kappa_{HVV} = 1$
- *Interference*: Higgs boson radiated off *W/Z* ⇒ *SR* & *NR* ⇒ Higgs boson emitted top quarks ⇒ *DR* & *SR*
 - CP-even
 - CP-mixed
 - CP-odd


APPLICATION: TOP QUARK CHARGE ASYMMETRY

$$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu e^+ \nu_e b \overline{b}$$

Searching for more precise observables

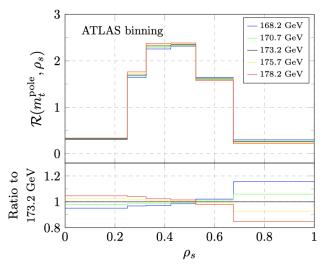
$$A_c^t = rac{\sigma_{
m bin}^+ - \sigma_{
m bin}^-}{\sigma_{
m bin}^+ + \sigma_{
m bin}^-}, \qquad \qquad \sigma_{
m bin}^\pm = \int heta(\pm \Delta |y|) \, heta_{
m bin} \, d\sigma$$

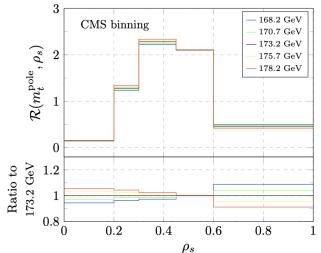
$$\Delta |y| = |y_t| - |y_{\bar t}|$$

• A_c^t charge asymmetry @ NLO for $pp \to t\bar{t}W^+$

- Asymmetry larger than for $pp \rightarrow t\bar{t}$
- Top quark momenta must be reconstructed
- Scale setting not important → Fixed & dynamical scale choice gives similar results

Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek, Eur. Phys. J. C 81 (2021) 7, 675

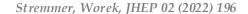

Top-quark modelling important

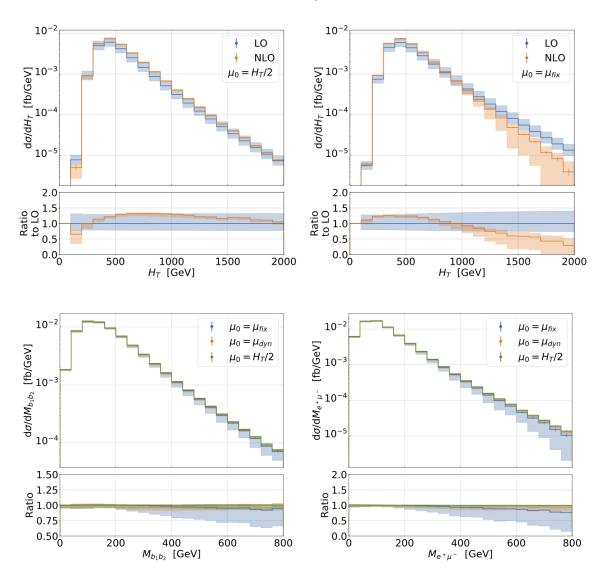

	$tar{t}W^+ igg ext{Off-shell}$		Full NWA	$ m NWA_{LOdecay}$	
	$\mu_0 = H_T/3$				
	$A_{c,y}^t \ [\%]$	$2.36(8)^{+1.19}_{-0.77}{}^{(50\%)}_{(33\%)}$	$1.93(5)^{+1.23}_{-0.72}{}^{(64\%)}_{(37\%)}$	$1.11(3)^{+0.55(49\%)}_{-0.53(48\%)}$	
	$A_{c,exp,y}^t \ [\%]$	$2.66(10)^{+0.38(14\%)}_{-0.34(13\%)}$	$2.20(5)^{+0.45(20\%)}_{-0.31(14\%)}$	$2.08(5)^{+0.24(11\%)}_{-0.40(19\%)}$	
	$t ar{t} W^+$	Off-shell	Full NWA	$ m NWA_{LOdecay}$	
$\mu_0 = 0$	$m_t + m_W/2$				
		$2.09(8)^{+1.06(51\%)}_{-0.70(33\%)}$	$1.68(4)^{+1.00(60\%)}_{-0.67(40\%)}$	$0.86\overline{(3)^{+0.66(77\%)}_{-0.43(50\%)}}$	
	$A_{c,exp,y}^t$ [%]	$2.62(10)^{+0.39}_{-0.34}{}^{(15\%)}_{(13\%)}$	$2.19(4)^{+0.38(17\%)}_{-0.34(16\%)}$	$1.94(5)^{+0.46}_{-0.32}{}^{(24\%)}_{(16\%)}$	

APPLICATION: TOP QUARK MASS

$$pp \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} j$$

$$\mathcal{R}(m_t^{pole},
ho_s) = rac{1}{\sigma_{tar{t}j}} rac{d\sigma_{tar{t}j}}{d
ho_s} (m_t^{pole},
ho_s) \,, \qquad \qquad ext{with} \qquad
ho_s = rac{2m_0}{M_{tar{t}j}}$$





Theory, NLO QCD CT14 PDF	$m_t^{out} \pm \delta m_t^{out}$ [GeV]	Averaged $\chi^2/\text{d.o.f.}$	Probability $p ext{-}value$	$m_t^{in} - m_t^{out}$ [GeV]
	31 bins			
Full, $\mu_0 = H_T/2$	173.09 ± 0.42	1.04	$0.41 \; (0.8\sigma)$	+0.11
Full, $\mu_0 = E_T/2$	172.45 ± 0.39	1.12	$0.30 \ (1.0\sigma)$	+0.75
Full, $\mu_0 = m_t$	173.76 ± 0.40	1.87	$0.003~(3.0\sigma)$	-0.56
$NWA, \mu_0 = m_t$	175.65 ± 0.31	2.99	$7 \cdot 10^{-8} \ (5.4\sigma)$	-2.45
$\mathit{NWA}_{Prod.},\mu_0=m_t$	169.59 ± 0.30	3.10	$2 \cdot 10^{-8} \ (5.6\sigma)$	+3.61
	5 bins			
Full, $\mu_0 = H_T/2$	173.08 ± 0.40	0.94	$0.44 \; (0.8\sigma)$	+0.12
Full, $\mu_0 = E_T/2$	172.48 ± 0.38	1.58	$0.18 \; (1.3\sigma)$	+0.72
Full, $\mu_0=m_t$	173.75 ± 0.40	6.76	$2 \cdot 10^{-5} \ (4.3\sigma)$	-0.55
$NWA, \mu_0 = m_t$	175.49 ± 0.30	5.31	$2 \cdot 10^{-4} \ (3.7\sigma)$	-2.29
$NWA_{Prod.}, \mu_0 = m_t$	169.39 ± 0.47	3.42	$8 \cdot 10^{-3} \ (2.6\sigma)$	+3.81
	$ATLAS\ binning$	1		
Full, $\mu_0 = H_T/2$	173.06 ± 0.44	0.97	$0.44 \; (0.8\sigma)$	+0.14
Full, $\mu_0 = E_T/2$	172.36 ± 0.44	1.38	$0.23 \ (1.2\sigma)$	+0.84
Full, $\mu_0 = m_t$	173.84 ± 0.42	5.12	$1 \cdot 10^{-4} \ (3.9\sigma)$	-0.64
$NWA, \mu_0 = m_t$	175.23 ± 0.37	5.28	$7 \cdot 10^{-5} \ (4.0\sigma)$	-2.03
$NWA_{Prod.}, \mu_0 = m_t$	169.43 ± 0.50	2.61	$0.02 \ (2.3\sigma)$	+3.77
	$CMS\ binning$			
Full, $\mu_0 = H_T/2$	173.09 ± 0.50	0.96	$0.43 \; (0.8\sigma)$	+0.11
Full, $\mu_0 = E_T/2$	172.22 ± 0.48	1.32	$0.26 \ (1.1\sigma)$	+0.98
Full, $\mu_0=m_t$	174.02 ± 0.46	6.57	$3 \cdot 10^{-5} \ (4.2\sigma)$	-0.82
$NWA, \mu_0 = m_t$	175.74 ± 0.34	6.00	$8 \cdot 10^{-5} \ (3.9\sigma)$	-2.54
$\mathit{NWA}_{Prod.},\mu_0=m_t$	170.22 ± 0.53	2.19	$0.07 \; (1.8\sigma)$	+2.98

•	Sensitivity to scale
	setting & top quark
	modelling

NLO QCD CORRECTIONS & SCALE SETTING

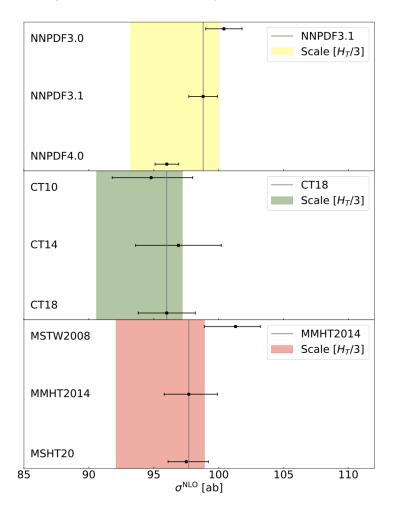
$$pp \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} H$$

Fixed scale choice

- Perturbative instabilities in ~ TeV regions
- LO & NLO uncertainties band do not overlap
- Scale uncertainties @ NLO larger than @ LO
- For some scale choices NLO results negative

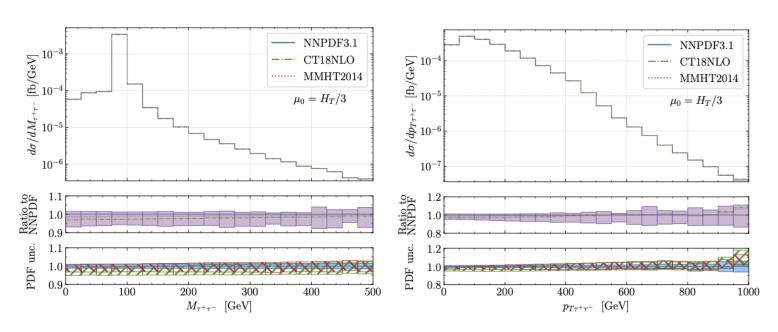
DYNAMICAL SCALE CHOICE

- Stabilizes tails
- NLO uncertainties bands within LO ones


$$H_T = p_{T,b_1} + p_{T,b_2} + p_{T,e^+} + p_{T,\mu^-} + p_{T,miss} + p_{T,H}$$

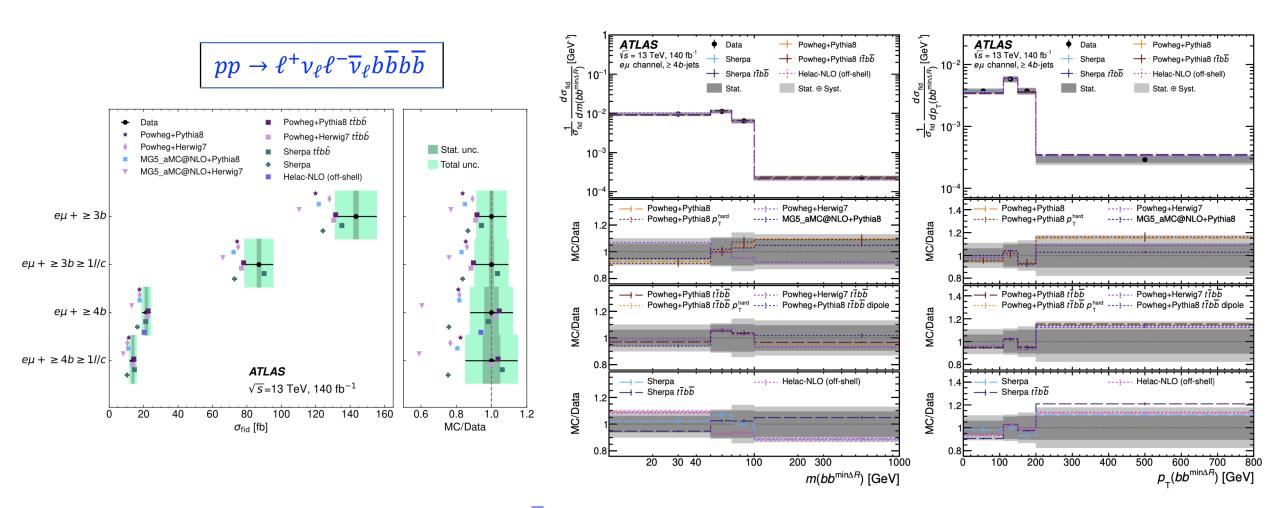
$$\mu_{dyn} = \left(m_{T,t} m_{T,\bar{t}} m_{T,H}\right)^{\frac{1}{3}} \qquad m_T = \sqrt{m^2 + p_T^2}.$$

$$\mu_{fix} = m_t + \frac{m_H}{2} = 236 \text{ GeV}$$


PDF UNCERTAINTIES

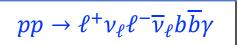
Bevilacqua, Hartanto, Kraus, Nasufi, Worek, JHEP 08 (2022) 060

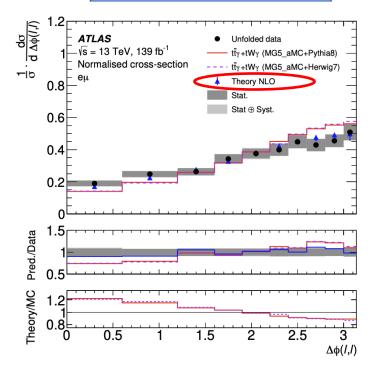
INTEGRATED LEVEL



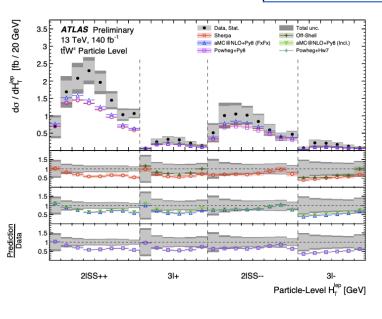
DIFFERENTIAL LEVEL

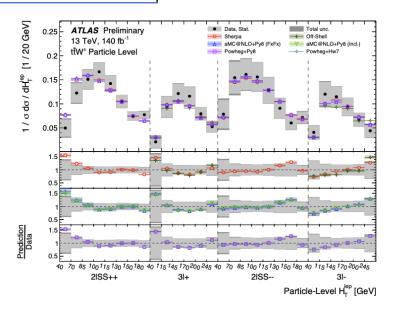
- PDF uncertainties for CT18 & MMHT14 similar
- Factor of 2 larger than PDF uncertainties for NNPDF3.1
- PDF uncertainties smaller than scale variation \rightarrow But are not constant over the phase space and can reach 10% for large p_T


COMPARISONS WITH LHC DATA



• NLO QCD full off-shell predictions for $t\bar{t}b\bar{b} \to DFLEPTON$ CHANNEL

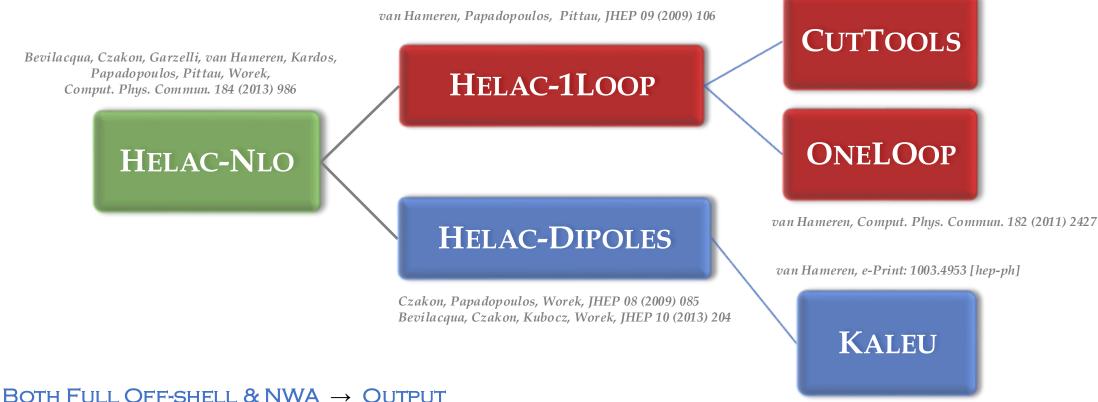

Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek, JHEP 08 (2021) 008 & Phys.Rev.D 107 (2023) 1, 014028


COMPARISONS WITH LHC DATA

$$pp o \ell^+
u_\ell \ell^- \overline{
u}_\ell \ell^\pm
u_\ell b \overline{b}$$

$$H_T^{lep} = p_T^{\ell^+} + p_T^{\ell^-} + p_T^{\ell^{\pm}}$$

• NLO QCD full off-shell predictions for $t\bar{t}W \to MULTFLEPTON$ CHANNEL


• NLO QCD full off-shell predictions for $t\bar{t}\gamma \rightarrow DFLEPTON$ CHANNEL

Bevilacqua, Hartanto, Kraus, Weber, Worek JHEP 10 (2018) 158 & JHEP 01 (2019) 188 & JHEP 03 (2020) 154 Bevilacqua, Bi, Hartanto, Kraus, Worek, JHEP 08 (2020) 043
Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek, Eur. Phys. J. C 81 (2021) 7, 675
Bevilacqua, Bi, Cordero, Hartanto, Kraus, Nasufi, Reina, Worek, Phys. Rev. D 105 (2022) 1, 014018

ATLAS Collaboration, JHEP 05 (2024) 131

HELAC-NLO

Ossola, Papadopoulos, Pittau, Nucl. Phys. B 763 (2007) 147 Ossola, Papadopoulos, Pittau, JHEP 03 (2008) 042

- - Predictions stored as partially unweighted "events" \rightarrow *ROOT-Ntuples Files & Les Houches Files*
 - Each "event" provided with supplementary matrix element & PDF information
 - Results for different scale settings & PDF choices by can be obtained by reweighting
 - Different observables and/or binning can be provided + more exclusive cuts \rightarrow With caveat

VARIOUS PHASE - SPACE REGIONS

■ 3 different resonance histories ⇒ Resolved jet at NLO gives 9 in total

(i)
$$t = W^+(\to e^+\nu_e) b$$

and

$$\bar{t} = W^-(\rightarrow \mu^- \bar{\nu}_\mu) \, \bar{b} \,,$$

(ii)
$$t = W^+(\rightarrow e^+\nu_e) b\gamma$$

and
$$\bar{t} = W^-(\to \mu^- \bar{\nu}_\mu) \, \bar{b} \,,$$

(iii)
$$t = W^+(\rightarrow e^+\nu_e) b$$

and

$$\bar{t} = W^-(\to \mu^- \bar{\nu}_\mu) \, \bar{b} \gamma$$

- Compute for each history Q and pick one that minimizes Q
- DOUBLE-RESONANT (DR)

$$|M(t) - m_t| < n \, \Gamma_t \,,$$

 and

$$|M(\bar{t}) - m_t| < n \Gamma_t$$

Two single-resonant regions (SR)

$$|M(t) - m_t| < n \Gamma_t$$

and

$$|M(\bar{t}) - m_t| > n \Gamma_t$$

$$|M(t) - m_t| > n \Gamma_t,$$

and

$$|M(\bar{t}) - m_t| < n \Gamma_t$$

NON-RESONANT REGION (NR)

$$|M(t)-m_t|>n\Gamma_t$$
,

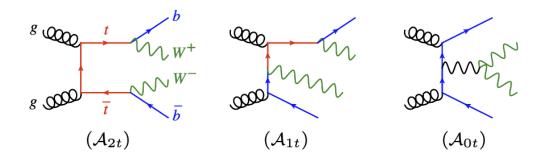
and

$$|M(\bar{t}) - m_t| > n \Gamma_t$$

$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_{\mu} b \overline{b} \gamma$

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 03 (2020) 154

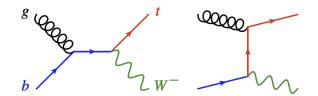
$$Q = |M(t) - m_t| + |M(\bar{t}) - m_t|$$


BOUNDARY PARAMETER

- Determines size of resonant region for each reconstructed top quark
- n = 5, 10, 15
- For n = 15

$$M(t) \in (152.9, 193.5) \text{ GeV}$$

TWB


Demartin, Maier, Maltoni, Mawatari, Zaro, Eur. Phys. J. C 77 (2017) 1, 34

DS (diagram subtraction):

$$|\mathcal{A}_{tWb}|_{DS}^2 = |\mathcal{A}_{1t} + \mathcal{A}_{2t}|^2 - \mathcal{C}_{2t},$$

- Local subtraction term C_{2t} by definition must cancel exactly the resonant matrix element $|\mathcal{A}_{2t}|^2$ when the kinematics is exactly on top of the resonant pole
- Be gauge invariant
- Decrease quickly away from the resonant region

• Squared matrix element for producing $tW^{-}\overline{b}$

$$|\mathcal{A}_{tWb}|^{2} = |\mathcal{A}_{1t} + \mathcal{A}_{2t}|^{2}$$

= $|\mathcal{A}_{1t}|^{2} + 2\text{Re}(\mathcal{A}_{1t}\mathcal{A}_{2t}^{*}) + |\mathcal{A}_{2t}|^{2}$,

• *DR1* (*without interference*):

$$|\mathcal{A}_{tWb}|_{\mathrm{DR1}}^2 = |\mathcal{A}_{1t}|^2.$$

• DR2 (with interference):

$$|\mathcal{A}_{tWb}|_{\mathrm{DR2}}^2 = |\mathcal{A}_{1t}|^2 + 2\mathrm{Re}(\mathcal{A}_{1t}\mathcal{A}_{2t}^*).$$

- DR schemes based on removing contributions all over the phase space
- They are not gauge invariant