
Flavor physics: known and unknown

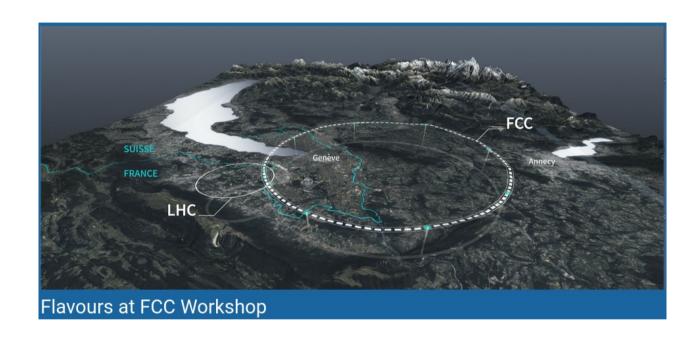
Zoltan Ligeti

(ligeti@berkeley.edu)

Mainz Institute for Theoretical Physics

Preliminaries

- Will try to merge two somewhat different stories:
 - I am most excited by the upcoming large increases in data: what can they teach us? BSM discovery potential + complementarity with high- p_T searches Luminosity ratio: (Full LHC) / (Run 1 + Run 2) is slightly greater for LHCb than at ATLAS & CMS
 - Or one could focus on current "anomalies" (i.e., tensions with SM predictions)
 Stimulated theoretical and experimental progress + might get first established
- Beyond LHC & Belle II: FCC


What I was asked to talk about...

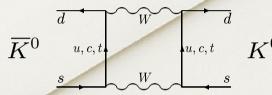
- "Global view on precision Physics: How do high-energy LHC and flavor physics programs complement each other?" to trigger a discussion addressing questions like:
 - What has been achieved in the field after the Higgs discovery? (i) B_s constraints caught up with B_d ; (ii) $R(D^{(*)})$ started in 2012; (iii) ΔA_{CP} late 2011
 - ullet What are the perspectives of the field? If BSM scale > few ${
 m TeV}$, flavor may be the best chance to detect its first signals
 - What needs to be developed to create further advance
 - ... regarding HL-LHC?
 - Theory improvements could have big impact on BSM sensitivity... some examples
 - ... regarding future collider projects?
 - I think FCC-ee flavor program must be richer than what's known ⇒ think about it...

Workshop advertisement

Physics at the Flavoured Circular Collider: Now – summer 2027, deepen understanding of the potential of the FCC for heavy flavour physics in the quark and lepton sector

Flavor physics — many puzzles

- Flavor \equiv what distinguishes the three generations? (break $[U(3)]^5$ global sym.) Experimentally: rich and sensitive ways to probe the SM, and search for NP
- SM flavor: masses? mixing angles? 3 generations? most of the SM parameters Flavor in SM is simple: only from Yukawa couplings to Higgs, many testable relations
- ullet BSM flavor: TeV scale (hierarchy puzzle) \ll "naive" scale of flavor & CP violation New particles that couple to quarks or leptons \Rightarrow new flavor param's, clues about BSM
- Baryon asymmetry requires CPV beyond the SM how precisely can we test it?
 (Not necessarily in flavor changing processes, nor necessarily in the quark sector)
- If NP is beyond HL-LHC reach, flavor is especially crucial (high scale sensitivity)



Origin of high scale sensitivity

- Large suppressions in the SM back of an envelope calculation of Δm_K :
- Why is $\Delta m_K/m_K \sim 7 \times 10^{-15}$?

In the SM:
$$\frac{\Delta m_K}{m_K} \sim lpha_w^2 \left|V_{cs}V_{cd}\right|^2 \frac{m_c^2}{m_W^4} f_K^2$$

Predicted $m_c \sim 1.5 \, {\rm GeV}$ (Gaillard & Lee; Vainshtein & Khriplovich, 1974)

• If exchange of a heavy particle *X* contributes at the SM level:

$$d$$
 g
 X
 g
 \bar{s}

$$\frac{1}{s} \sum_{\bar{s}}^{X} \frac{d}{\Delta m_K} \sim \frac{\Delta m_K^{(X)}}{\Delta m_K} \sim \frac{g^2 \Lambda_{\text{QCD}}^3}{M_X^2 \Delta m_K} \Rightarrow M_X > g \times 10^3 \,\text{TeV}$$

• Alternatively, sensitivity to TeV-scale particles with one-loop couplings $[g \sim \mathcal{O}(10^{-3})]$

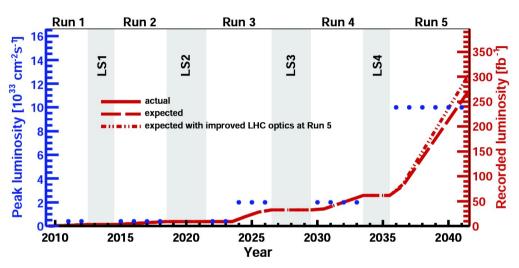
Similar story for many other flavor-changing neutral current (FCNC) processes

Some lessons — known since 1970s

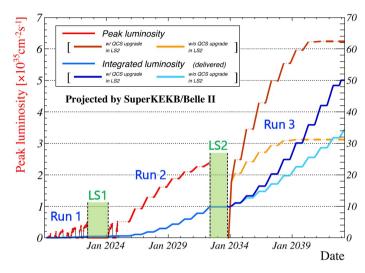
- Flavor was critical in developing the SM, and mostly an input to model building
- All TeV-scale NP models must contain some mechanism to avoid violating constraints
 E.g., in SUSY, to suppress flavor and CP violation, impose: universality, heavy squarks, alignment
 Devised to make deviations small from the SM, revisit model building when tensions with SM arise
- The SM suppressions are strongest for kaons (1st 2nd generation) For many models, Δm_K and ϵ_K are the most constraining 3rd gen. "looks" different The idea of (dominantly) 3rd generation NP goes back (at least) to the mid-90s [hep-ph/9512388, hep-ph/9607394]
- What can future data tell us?
 If deviations from SM, upper bound on BSM scale, help understand its structure

Outline

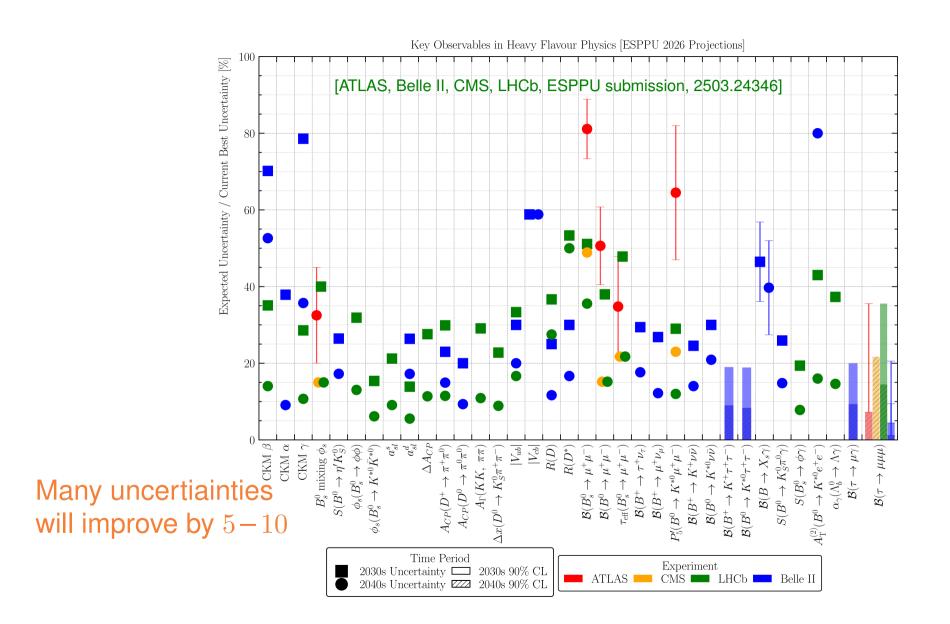
Testing quark flavor (CKM)


B decays & recent tensions with SM

• Far future: FCC



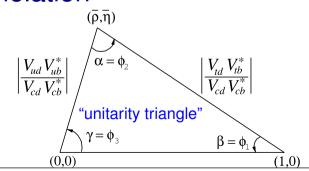
Dedicated B physics experiments



- Belle II goal: over $50 \times$ Belle data set
- Discussions about physics & feasibility of an upgrade (polarization? 250/ab?)

Extensive sensitivity projections: LHCb Upgrade II [1808.08865]; Belle II [1808.10567]; and including ATLAS & CMS @ HL-LHC [2503.24346]

Testing quark flavor

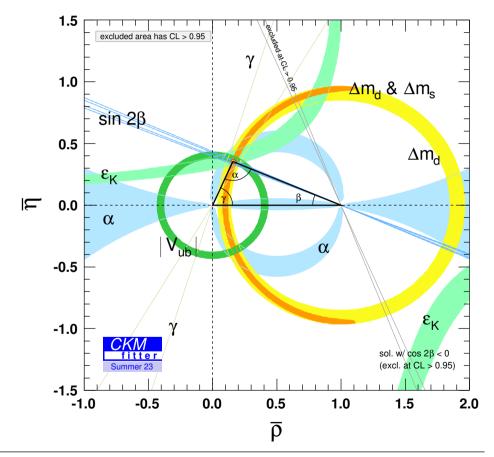

• (u, c, t) $W^{\pm}(d, s, b)$: 9 complex couplings \Rightarrow many relations Are they consistent?

$$V_{\text{CKM}} = \underbrace{\begin{pmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ V_{td} \ V_{ts} \ V_{tb} \end{pmatrix}}_{\text{CKM matrix}} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \dots$$

Only 4 parameters: λ ("Cabibbo angle", from $K \to \pi \ell \nu$), A (from $b \to c \ell \nu$) used to be less precise: $\bar{\rho}$ and $\bar{\eta}$ (only source of CP violation)

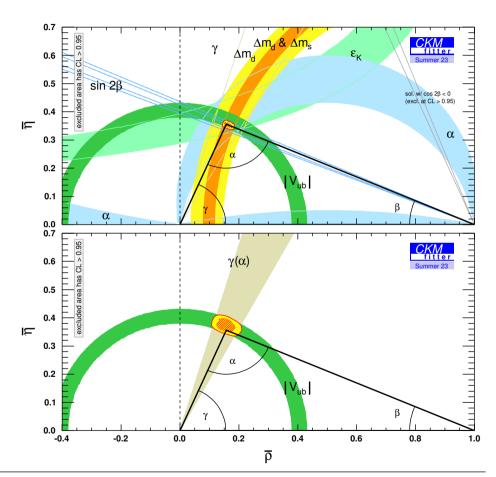
Measurements: magnitudes \sim decay rates; phases \sim CP violation

- Many observables are $f(\rho, \eta)$ want to compare:
 - $-b \rightarrow u\ell\bar{\nu} \Rightarrow |V_{ub}/V_{cb}|^2 \propto \rho^2 + \eta^2$
 - $-\Delta m_{B_d}/\Delta m_{B_s} \Rightarrow |V_{td}/V_{ts}|^2 \propto (1-\rho)^2 + \eta^2$
 - CP violation in K, B, B_s decays



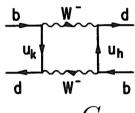
The CKM fit in the SM

- Spectacular progress in last 25 years
- The CKM mechanism describes consistently
 CP violation and flavor changing processes



The CKM fit in the SM

- Spectacular progress in last 25 years
- The CKM mechanism describes consistently
 CP violation and flavor changing processes
- Looser constraints if NP is allowed in fits
 Full fit (upper plot) vs. tree-level (lower plot)
- LHCb: B_s constraints caught up with B_d
- \bullet $\mathcal{O}(20\%)$ NP contributions to most loop-level processes (FCNC) are still allowed



Fits with NP parameters added to the SM

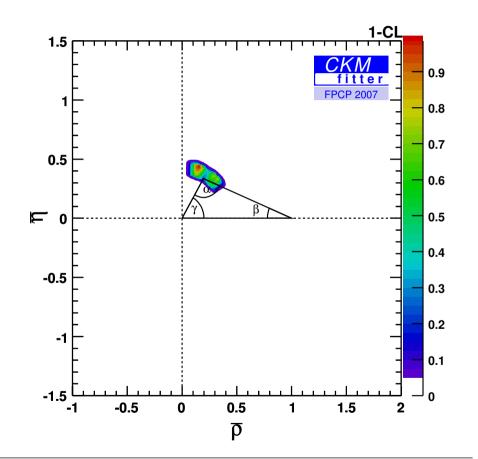
- What if BSM parameters are added to these fits?
- Consider: tree-level decays dominated by SM, BSM only significant in FCNCs (loops)
- General parametrization of many scenarios by two real BSM parameters; redo CKM fit:

$$h e^{2i\sigma} = A_{\rm NP}(B^0 \to \overline{B}^0) / A_{\rm SM}(B^0 \to \overline{B}^0)$$

SM:
$$rac{C_{
m SM}}{m_W^2}$$

NP:
$$\frac{C_{
m NI}}{\Lambda^2}$$

- Is $\eta = 0$ allowed? If not, then CKM mechanism plays a role in CP violation (If $\eta = 0$, CKM matrix conserves CP)
- Is $h \gtrsim 1$ allowed? If not, then CKM mechanism is dominant

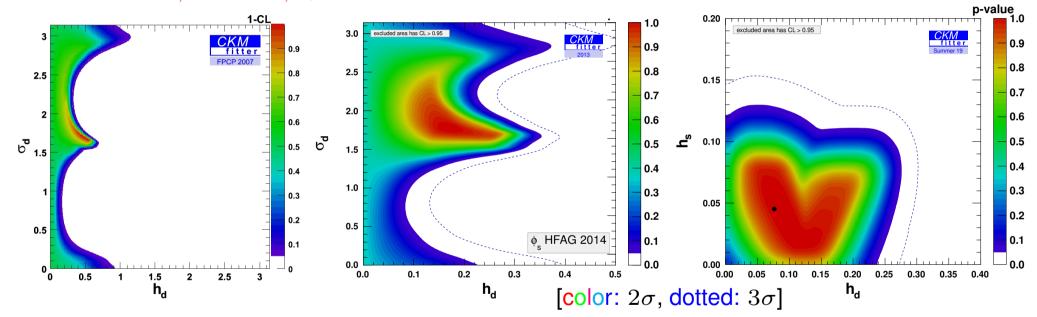


Is $\eta = 0$ allowed?

• CKM fit with h and σ parameters added:

$$h e^{2i\sigma} = A(B^0 \to \overline{B}^0)/A_{\rm SM}(B^0 \to \overline{B}^0) - 1$$

 Weak interaction plays a role in CP violation, even if NP is present (only known since 2004!)

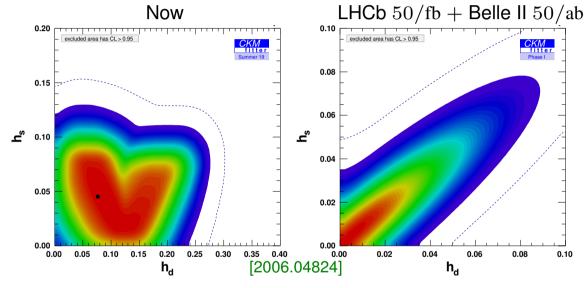


Is $h \sim \mathcal{O}(1)$ allowed?

• CKM fit with $h_{d,s}$ and $\sigma_{d,s}$ parameters added: $h e^{2i\sigma} = A_{\rm NP}(B^0 \to \overline{B}^0)/A_{\rm SM}(B^0 \to \overline{B}^0)$

$$h e^{2i\sigma} = A_{\rm NP}(B^0 \to \overline{B}^0)/A_{\rm SM}(B^0 \to \overline{B}^0)$$

- ullet LHCb: BSM contributions to B_s mixing are even more constrained than those to B_d
- Weak interaction dominates observed CP violation: BSM/SM $\lesssim 20\%$



Improvements in next ~ 10 years

- At 95% CL: NP \lesssim (0.25 \times SM) \Rightarrow NP \lesssim (0.08 \times SM)
- Scale: $h \simeq \frac{|C_{ij}|^2}{|V_{ti}^* V_{tj}|^2} \bigg(\frac{4.5\,\mathrm{TeV}}{\Lambda}\bigg)^2$

$$\Rightarrow \Lambda \sim egin{cases} 2.3 imes 10^3 \, \mathrm{TeV} \ 20 \, \mathrm{TeV} \ (ext{tree} + ext{CKM}) \ 2 \, \mathrm{TeV} \ (ext{loop} + ext{CKM}) \end{cases}$$

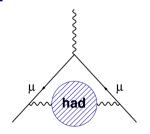
- Complementary to high- p_T searches (E.g., similar to HL-LHC $m_{\tilde{g}}$ reach)
- BSM sensitivity will continue to improve

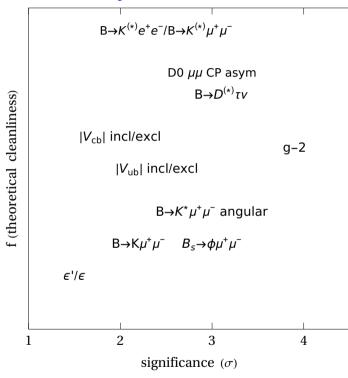
[color: 2σ , dotted: 3σ]

Recent "anomalies"

NB: I dislike this phrase... Recent examples of "who ordered that?"

(Puzzles in the data / theory / Nature?)

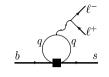

Hints of deviations from the SM — few years ago


• Intriguing tensions with the SM \Rightarrow experimental scrutiny, new theory ideas

 Some could be unambiguous NP signals (vertical axis is an unspecified function)

Except for theoretically cleanest cases, cross-checks needed to build robust case

- measurements of related observables
- independent theory / lattice QCD calc.
- g-2 used to be most significant: HVP contributions scrutinized Big lattice QCD effort


Won't cover many; e.g., 1st-row unitarity tension on the mend? [Gorchtein, Katyal, Ohayon, Sahoo, Seng, 2502.17070]

Hints of LFU violation — major recent focus

Lepton non-universality would be clear evidence for NP

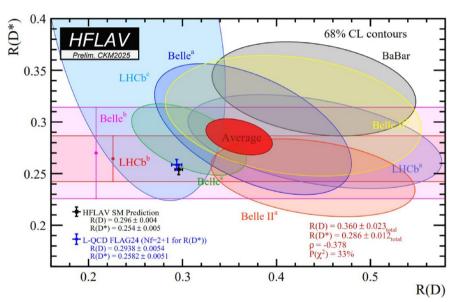
- 1) R_K and R_{K^*}
 - $(B \to X \mu^+ \mu^-)/(B \to X e^+ e^-) \sim 20\%$ correction to SM loop
- 2) R(D) and $R(D^*)$ $(B \to X au ar{
 u})/(B \to X(e,\mu)ar{
 u}) \sim 20\%$ correction to SM tree

Accessible scales: $R_{K^{(*)}} \lesssim \text{few} \times 10^1 \, \text{TeV}$, $R(D^{(*)}) \lesssim \text{few} \times 10^0 \, \text{TeV}$

- Theor. less clean: 3) P_5' angular distribution $(B \to K^* \mu^+ \mu^-)$
 - 4) $B_s \to \phi \mu^+ \mu^-$ and similar $b \to s \mu^+ \mu^-$ rates

Could fit 1), 3), 4) with one operator: $C_{9,\mu}^{(NP)}/C_{9,\mu}^{(SM)} \sim -0.2$, $O_{9,\mu} = (\bar{s}\gamma_{\alpha}P_Lb)(\bar{\mu}\gamma^{\alpha}\mu)$

- Viable BSM models... leptoquarks? No clear connection to DM & hierarchy puzzle
- What are smallest deviations from SM, which can be unambiguously established?



The $B o D^{(*)} auar u$ decay rates

• BaBar, Belle, LHCb: $R(X) = \frac{\Gamma(B \to X \tau \bar{\nu})}{\Gamma(B \to X (e/\mu)\bar{\nu})}$

 $\sim 3.5\sigma$ from SM expectations: theory robust due to heavy quark symmetry + lattice QCD

• Imply NP scale \lesssim few TeV Mediators within / near ATLAS & CMS reach

- Tree level: three ways to insert mediator: $(b\nu)(c\tau), (b\tau)(c\nu), (bc)(\tau\nu)$ overlap with ATLAS & CMS searches for \tilde{b} , leptoquark, H^{\pm}
- Models built to fit these impacted ATLAS & CMS searches, motivated LFV searches

Aside: why not do this in SMEFT?

• Operator analysis (Lorentz invariance, not adding ν_R):

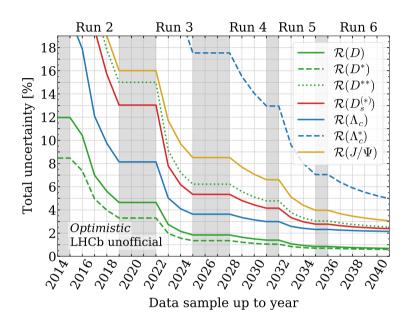
$$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu), \ (\bar{c}\gamma_{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu), \ (\bar{c}P_{R}b)(\bar{\tau}P_{L}\nu), \ (\bar{c}P_{L}b)(\bar{\tau}P_{L}\nu), \ (\bar{c}\sigma^{\mu\nu}P_{L}b)(\bar{\tau}\sigma_{\mu\nu}P_{L}\nu)$$

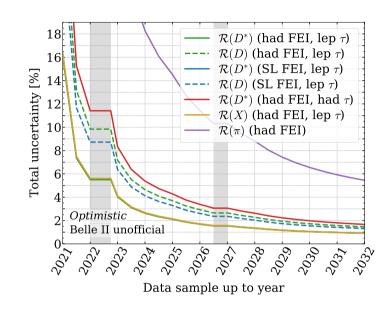
Whether b, τ, c in L- or R-handed fields, connection to $b \to s\tau^+\tau^-, b \to s\nu\bar{\nu}, t \to c\tau^+\tau^-$

2nd and 5th terms can only arise from dim-8 ⇒ often neglected

Connection to different generation transitions, only if some flavor structure is imposed

• Semileptonic operators $(l\bar{l}q\bar{q})$ are a large fraction of the operator basis:


SMEFT: 1053 semileptonic operators, 42% of the 2499 parameters of the dim-6 B & L conserving terms in the 3-generation SMEFT (558 CP-even, 495 CP-odd) [2402.09535]


LEET: 1944 semileptonic param's, 54% of the 3631 terms (1017 CP-even, 927 CP-odd)

Large future improvements

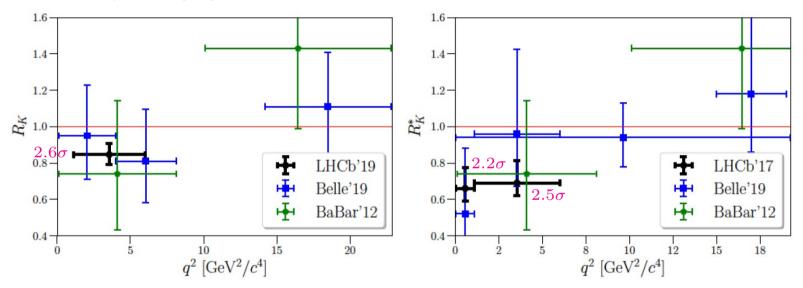
[2101.08326]

- Measurements will improve a lot, and reach few % in several decay modes
- May establish NP, even if deviations from SM decrease
- ullet Will at least lead to much more robust $|V_{cb}|$ critical for precision in many observables

Motivated many groups to push HQET further

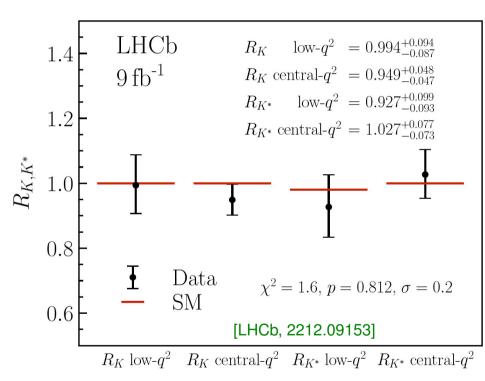
- Determine all $6\ B \to D^{(*)} l \bar{\nu}$ form factors from 4 distributions in e, μ modes $(m_l=0)$ One Isgur-Wise function $+\ 3$ at $\mathcal{O}(\Lambda_{\rm QCD}/m_{c,b}) + \mathcal{O}(\Lambda_{\rm QCD}^2/m_{c,b}^2,\ \alpha_s^2)$ [1703.05330, 2206.11281]
- $\mathcal{O}(1/m_{c,b}^2)$: number of unknown functions proliferate Studied truncations of $\mathcal{O}(1/m^2)$ terms: vanishing chromomagnetic (VC) limit or residual chiral (RC) expansion (Other approach is to include $1/m_c^2$ using light-cone sum rules) [1908.09398]

HQET	Isgur-Wise functions					
order	All	RC Expansion	VC Limit			
1	1	1	1			
$1/m_{c,b}$	3	3	2			
$1/m_c^2$	20	1	2			
$\frac{1/m_c^2}{1/m_{c,b}^2}$	32	3	3			

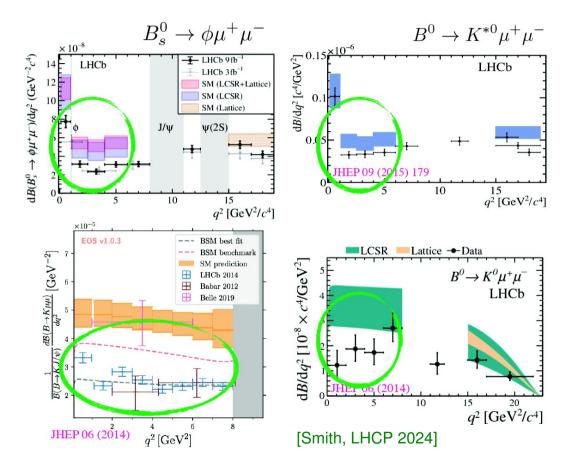

Many open questions — focus for continuum methods and lattice QCD
Justify truncations from first principles?
Best way to fit data; truncation of a model independent (BGL) parametrization?
Optimal combination with constraints from unitarity and lattice QCD?
Some tension of FNAL/MILC vs. data?

R_K and R_{K^st} until 2022

• LHCb: $R_{K^{(*)}} = \frac{B \to K^{(*)} \mu^+ \mu^-}{B \to K^{(*)} e^+ e^-} < 1$ three bins $\sim 2.5 \sigma$ from lepton universality



- Theorists' fits quoted $3-5\sigma$ (sometimes including P_5' and/or $B_s \to \phi \mu^+ \mu^-$)
- Modifying one Wilson coefficient in \mathcal{H}_{eff} gave good fit: $\delta C_{9,\mu} \sim -1$

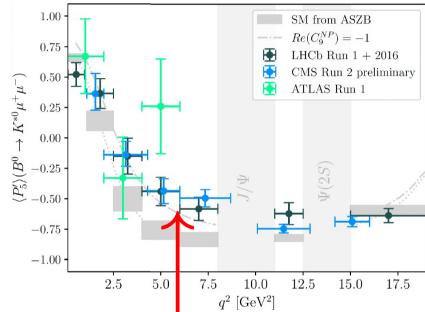


R_K and R_{K^*} now: SM-like, but rates too small?

 $0.1 < q^2 < 1.1 \,\mathrm{GeV}^2 \,(\mathrm{low-}q^2), \ 1.1 < q^2 < 6.0 \,\mathrm{GeV}^2 \,(\mathrm{central})$

The P_5' angular distribution in $B o K^*\mu^+\mu^-$

"Optimized observables" [1202.4266 + long history]
 (assumptions about factorizable / nonfactorizable)


Global fits: best fit, still: NP reduces C_9

[Altmannshofer, Straub; Descotes-Genon, Matias, Virto; Jager, Martin Camalich; Bobet, Hiller, van Dyk; many more]

Difficult for lattice QCD, large recoil

What calculation determines how far below $m_{J/\psi}$ this comparison is reliable? (Different than $e^+e^- \to \text{hadrons}$)

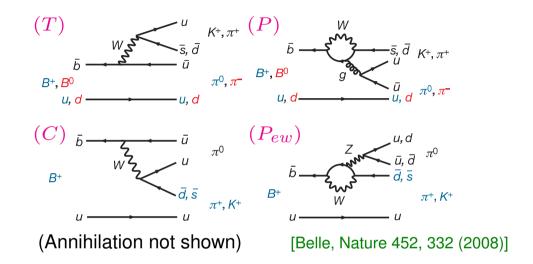
- Tests: other observables, q^2 dep., B_s and Λ_b decays
- Is the $c\bar{c}$ loop tractable? Impacts many interesting decay rates & CP viol. observables

BSM, fluctuation, SM theory?

Intense discussions of theory uncertainties

- My hope: data will help to make progress
 Large data sets often inspired progress in theory, and developing new approaches
- Only robust deviations based on modelindependent theory will be seen as signs of new physics

(Still) not understood: the $B o K\pi$ puzzle


• Have we seen new physics in CPV?

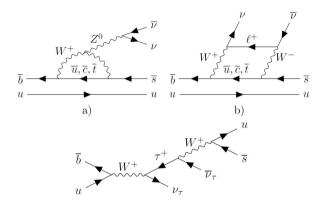
$$A_{K^+\pi^-} = -0.0831 \pm 0.0031$$
 (P+T)

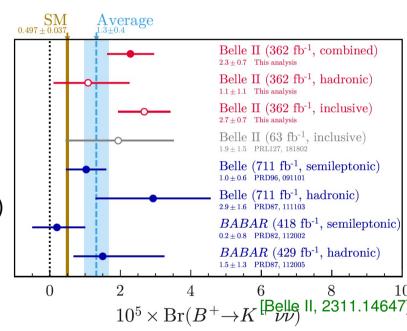
$$A_{K^{+}\pi^{0}} = 0.027 \pm 0.012 \ (P + T + C + A + P_{ew})$$

Large difference — small SM sources?

$$A_{K^{+}\pi^{0}} - A_{K^{+}\pi^{-}} = 0.111 \pm 0.012$$

SCET / factorization predicts: $\arg{(C/T)} = \mathcal{O}(\Lambda_{\rm QCD}/m_b)$ and $A + P_{ew}$ small


- Large fluctuations? Breakdown of 1/m expansion? Missing something subtle? BSM?
- Can we unambiguously understand theory, so that such data could disprove the SM?



$B o K u ar{ u}$ — unique to $e^+ e^-$ colliders

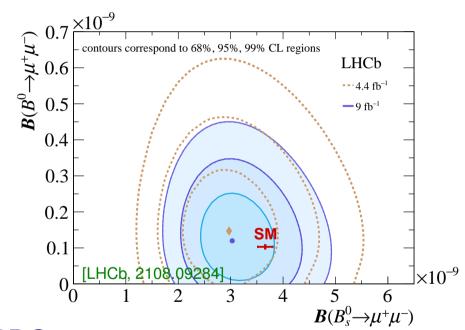
Similar short-distance contributions, and much simpler long-distance ones

- Also relevant for dark sector searches ($B \rightarrow K+$ invis.) (Is the excess in one bin of q^2 ?) [2309.00075, 2311.14629, etc.]
- Input: precise form factor calculation [HPQCD, 2207.12468]
- If this tension becomes more significant, stopping NA62 after LHC Run 3 will look even more mistaken

Belle II: 2.7σ from SM

$B_{d,s} o \mu^+ \mu^-$: interesting well beyond HL-LHC

- $\mathcal{B}_{SM}(B_s \to \mu^+ \mu^-) \sim 3 \times 10^{-9}$, BSM predictions extended orders of magnitudes higher
- $\mathcal{B}_{SM}(B_d \to \mu^+ \mu^-) \sim 10^{-10}$, LHCb expects 10% (300/fb), CMS expects 15% (3/ab)

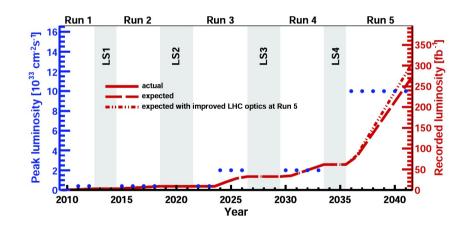

SM uncertainty $\simeq (2\%) \oplus f_{B_q}^2 \oplus \operatorname{CKM},$ and may be further reduced

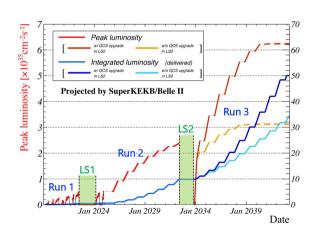
• Measure $|V_{ub}|$, using only isospin, from:

$$\mathcal{B}(B_u \to \ell \bar{\nu})/\mathcal{B}(B_d \to \mu^+ \mu^-)$$

(Most precise $|V_{ub}|$ at FCC-hh?)

• A decay with mass-scale sensitivity (dim.-6 operator) that competes with $K \to \pi \nu \bar{\nu}$


PDG average: [LHCb, CMS, ATLAS] $\mathcal{B}(R) = (2.24 \pm 0.27)$


$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.34 \pm 0.27) \times 10^{-9}$$

Far future

Only FCC-ee would go well beyond LHCb + Belle II goals — clear case if BSM is seen

FCC-ee data sets for flavor

• $10^5 \times \text{LEP}$ is the right target (mass scale) \propto (uncertainty) $^{-1/2} \propto$ (stat) $^{-1/4}$

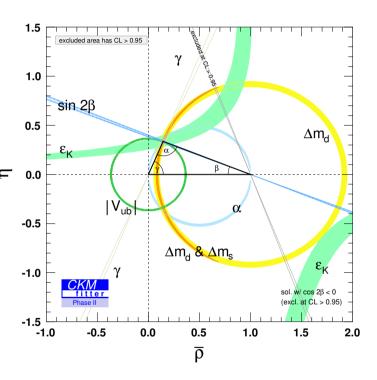
Production yields compared to Belle II: [2106.01259]

Particle production (10^9)	$B^0 + \overline{B}{}^0$	B^{\pm}	$B_s^0 + \overline{B}_s^0$	$\Lambda_b + ar{\Lambda}_b$	B_c^\pm	$car{c}$	$ au^+ au^-$
Belle II (50 ab^{-1})	27	27	tbd		_	65	45
tera- Z ($6 \times 10^{12}~Z$)	600	600	150	130	3	600	170

Comparison with LHCb more complex: roles of trigger, LHCb has advantage if final state is fully reconstructed, if there are neutrals, tera- \mathbb{Z} may win

- ullet WW threshold $(10^8~WW)$: $W \to b ar c$ can give a qualitatively new determination of $|V_{cb}|$ Estimate 0.2% uncertainty, independent of B decays [Monteil @ 7th FCC Workshop, Jan 2024]; [2405.08880]
- Some electroweak precision measurements also concern flavor (R_ℓ for each flavor, τ_τ , m_τ)

Towards theory at the per mille level


- ullet Theory uncertainty of γ is negligible (2nd order EW) Theory uncertainty of "everything else" being discussed
- Maybe β is most likely to be second best? There are claims of possibly large $|V_{ub}|$ ("penguin") contamination \models

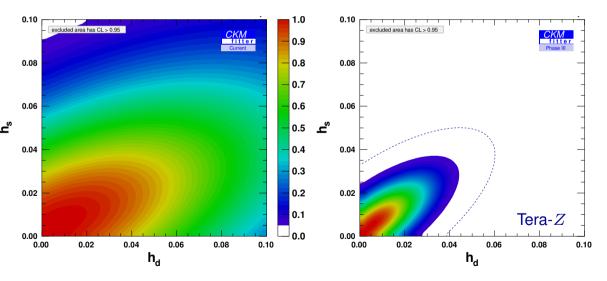
Recently noticed SU(3) relation (+ $B_s \rightarrow \psi K_S$ data):

[ZL, Nir, Schein, 2506.21675]

$$S_{\psi K_S}^d - s_{2eta} = - \left| rac{V_{cd}}{V_{cs}}
ight|^2 rac{c_{2eta}}{c_{2eta_s}} imes (S_{\psi K_S}^s + s_{2eta_s})$$

$$S_{\psi K_S}^d - s_{2\beta} = -0.037 \times (-0.04 \pm 0.41) = +0.001 \pm 0.015$$

• Uncertainty dominated now by experimental measurement of $S_{\psi K_S}^s$ in $B_s \to \psi K_S$

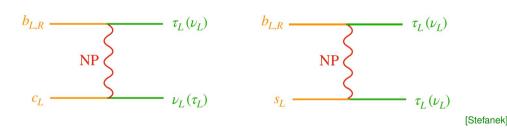


Sensitivity to new physics in B mixing

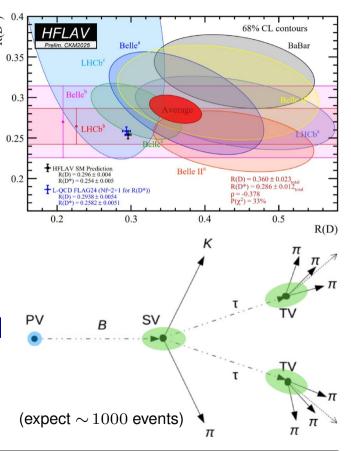
• In many BSM scenarios, dominant deviations from SM may be in neutral meson mixing Assume: (i) 3×3 CKM matrix is unitary; (ii) tree-level decays dominated by SM

General parametrization: $h e^{2i\sigma} = A_{\rm NP}(B^0 \to \overline{B}^0)/A_{\rm SM}(B^0 \to \overline{B}^0)$ ($h_{d,s}, \sigma_{d,s}$: NP param's)

- CKM fit with 4 BSM param's added; combines many measurements and theory inputs [Charles et al., 2006.04824]
 (⇒ conservative view of future progress)
- $|V_{cb}|$ becomes a bottleneck; Tera-Z sensitivity will be better (no LQCD extrapolations)



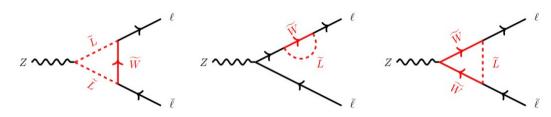
If BSM in $b \to c au ar{ u}$, must study $u ar{ u}$ & au au modes


- SM and data in 3σ tension in $R(D^{(*)})$, if established, $\hat{\mathbb{S}}$ requires $\mathcal{O}(10\%)$ correction to a tree-level SM process
- If NP is charged under SU(2), unavoidable connection to $b \to s\tau^+\tau^-$ or $b \to s\nu\bar{\nu}$ correlations distinguish models

Only tera-Z can measure $B \to K^* \tau^+ \tau^-$, $K^* \nu \bar{\nu}$ at SM level

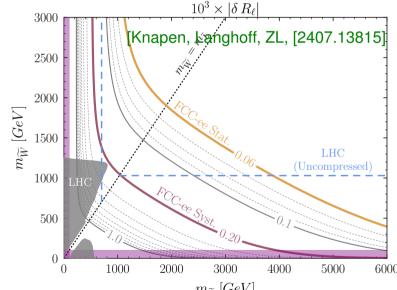
Belle II: $\mathcal{B}(B \to K^* \tau^+ \tau^-) < 1.8 \times 10^{-3} \text{ (SM} \sim 10^{-6})$ [2504.10042]

ullet Boost of B in Z decay provides ideal environment



Actual discovery potential? E.g., SUSY in $Z \rightarrow \ell^+ \ell^-$

• Consider a SUSY simplified model: \tilde{q}, \tilde{q} heavy, only electroweakinos & sleptons light


• Measurement:
$$R_\ell = \frac{\Gamma_{\ell^+\ell^-}}{\Gamma_{
m hadrons}}$$

ullet Measurement: $R_\ell = rac{\Gamma_{\ell^+\ell^-}}{\Gamma_{
m hadrons}}$ $rac{R_\ell^{
m Z}~(imes 10^3)}{
m Systematic \ limitation \ in \ Midterm \ Report \ resolved \ by \ Feasibility \ Study}{
m Systematic \ Systematic \$ Ratio of hadrons to leptons Acceptance for leptons

- Ultimate sensitivity depends on α_s , $\sin^2 \theta_w$, etc. Several measurements combined for best physics reach Even better sensitivity to flavor violating effects $(e/\mu/\tau)$
- Can probe beyond (or between) HL-LHC exclusions

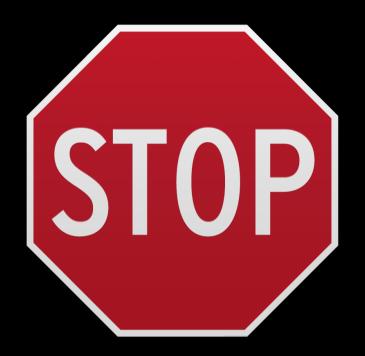
Final remarks

What are the largest useful data sets?

- No one has seriously explored it!
- Many measurements will remain far from being limited by theory uncertainties:
 - For $\gamma \equiv \phi_3$, theory uncertainty only from higher order EW
 - $B_{s,d} \to \mu\mu$, $B \to \mu\nu$ and other leptonic decays (lattice QCD, [double] ratios)
 - $A_{\rm SL}^{d,s}$ will experimental systematics become limiting?
 - Lepton flavor violation & lepton universality violation searches
 - Probably many more...
- Very broad program, dark sector searches, etc.
- In some decays, even in 2040s we'll have (exp. bound)/SM $\gtrsim 10^3$ (E.g., $B_{d,s} \to e^+e^-, \, \tau^+\tau^-$)
- NP sensitivity would improve with data \gg LHCb, Belle II, tera-Z (flavor exp. for FCC-hh!?)

Theory challenges / opportunities

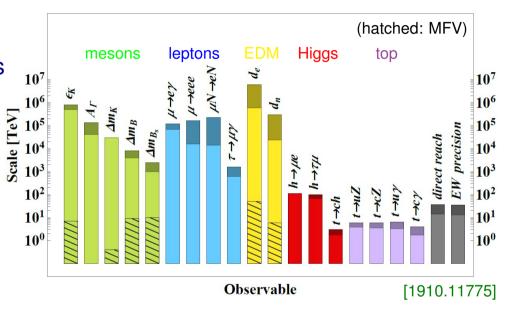
- New methods & ideas: recall that the best α and γ measurements are in modes proposed in light of Belle & BaBar data (i.e., not in the BaBar Physics Book)
 - Better SM upper bounds on $S_{\eta'K_S}-S_{\psi K_S}$, $S_{\phi K_S}-S_{\psi K_S}$, and $S_{\pi^0K_S}-S_{\psi K_S}$ And similarly in B_s decays, and for $\sin 2\beta_{(s)}$ itself
 - How big can CP violation be in $D^0 \overline{D}{}^0$ mixing (and in D decays) in the SM?
 - Many lattice QCD calculations (operators within and beyond SM)
 - Better understanding of inclusive & exclusive semileptonic decays
 - Factorization at subleading order (different approaches), charm loops
 - Can direct CP asymmetries in nonleptonic modes be understood enough to make them "discovery modes"? [SU(3), the heavy quark limit, etc.]
- We know how to make progress on some + discover new frameworks / methods?



Summary

- Flavor physics probes scales $\gg 1\,\mathrm{TeV}$, sensitivity limited by statistics New physics could show up any time measurements improve
- In most FCNC processes NP/SM $\sim 20\%$ still allowed (discovery \Rightarrow upper bound on NP scale)
- Few tensions with SM some of these (or others) could soon become decisive
- Interesting challenges both for experiment and theory to maximize sensitivity
 Explosion of data always triggered unforeseen developments
- ullet Complementarity between high- p_T and precision probes of new physics will continue
- FCC-ee can be a discovery machine; tera-Z is a leap from LEP, rich physics program In flavor physics, the only way to go well beyond Belle II & LHC(b)

Extra slides


What is the scale of new physics?

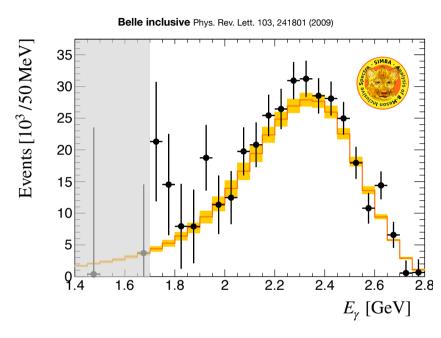
• Flavor, K,B,D: $\frac{(\bar{b} \; \Gamma d)^2}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10^2 - 10^5 \; \mathrm{TeV}$ Various mechanisms devised so that NP obeys bounds Note special sensitivity of meson mixings

• Electroweak:
$$\frac{(H^{\dagger}D_{\mu}H)^2}{\Lambda^2} \Rightarrow \Lambda \gtrsim 10 \, \mathrm{TeV}$$

• Actual scales may be much less; e.g., in SM:

$$\frac{\Delta m_K}{m_K} \sim \frac{g_2^4}{16\pi^2} |V_{cs}V_{cd}|^2 \frac{m_c^2}{m_W^4} f_K^2 \sim 7 \times 10^{-15}$$

- \bullet Lack of NP in flavor tells us something; motivates tera-Z part of comprehensive search
- If NP is within any collider's reach, it must possess nontrivial structures (e.g., MFV-like)



Another FCNC, $B o X_s \gamma$

- Maybe the most complex SM calculation; develop EFTs and RGEs, multi-loop techniques, SCET
 Exp. & theor. uncertainty small in different regions
- Extract from global fit short-distance and hadronic parameters (shape functions) fully consistently
 [Bernlochner, Lacker, ZL, Stewart, Tackmann, Tackmann, 2007.04320]
- SIMBA: Consistent theory across E_{γ} spectrum Model-independent treatment of shape fn.

$$|C_7^{\text{incl}}V_{tb}V_{ts}| = (14.77 \pm 0.51_{\text{fit}} \pm 0.59_{\text{theory}} \pm 0.08_{\text{param}}) \times 10^{-3}$$

 $m_b^{1S} = (4.750 \pm 0.027_{\text{fit}} \pm 0.033_{\text{theory}} \pm 0.003_{\text{param}}) \text{ GeV}$

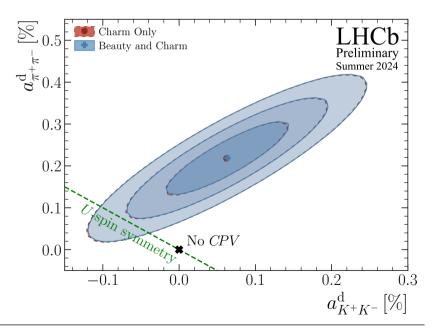
We find underestimated uncertainty by HFLAV ⇒ more room for NP

CP violation in D decays and mixing

• CP violation in D decays:

LHCb, Nov. 2011: $\Delta A_{CP} \equiv A_{K^+K^-} - A_{\pi^+\pi^-} = -(8.2 \pm 2.4) \times 10^{-3}$ (I think a stretch in the SM)

LHCb, Mar. 2019: $\Delta A_{CP} = -(1.82 \pm 0.33) \times 10^{-3}$

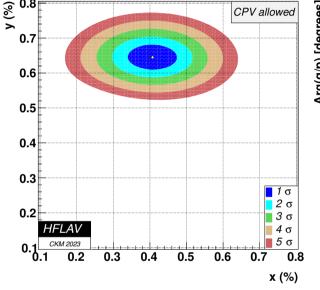

[1903.08726]

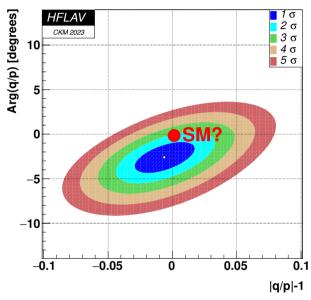
• What is the maximal CPV that could be due to SM?

CKM factors: $|V_{cb}V_{ub}/(V_{cd}V_{ud})| \simeq 7 \times 10^{-4}$

Before measurements, most theory papers stated (assumed) that strong interaction suppresses CPV further

• Can we establish if CP violation in decay or mixing (more "inclusive") could still probe BSM?

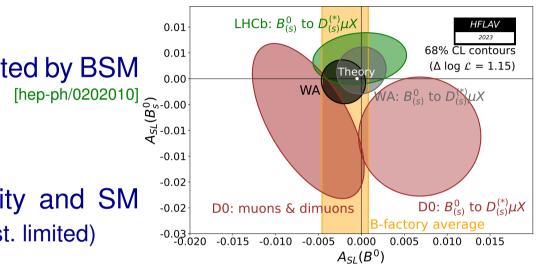




CP violation in $D-\overline{D}$ mixing

- Mixing generated by down quarks
- SUSY: up-type squarks in box diagrams, interplay of D & K bounds
 ⇒ alignment, universality, heavy squarks?
- Connections to FCNC top decays
- Only learned recently: $x/y = \mathcal{O}(1)$ (Only in 2021 was $\Delta m \neq 0$ established at $> 3\sigma$)

Very high scales probed, further improvements expected



CP violation in $B_{d,s}$ mixing: $A_{\mathrm{SL}}^{d,s}$

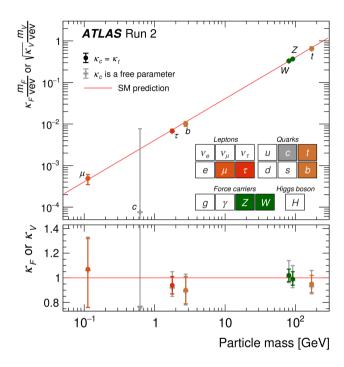
 Only observed in Kaons $B_{(s)}$: SM suppressed by m_c^2/m_b^2 , may be lifted by BSM

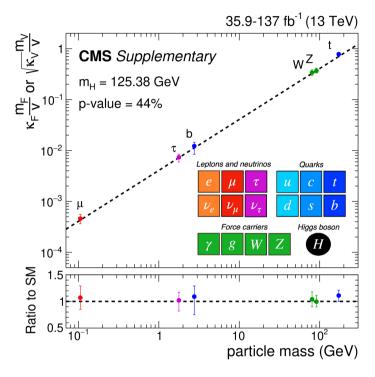
$$A_{\rm SL} = \frac{\Gamma[\overline{B}^0(t) \to \ell^+ X] - \Gamma[B^0(t) \to \ell^- X]}{\Gamma[\overline{B}^0(t) \to \ell^+ X] + \Gamma[B^0(t) \to \ell^- X]}$$

Plenty of room between current sensitivity and SM predictions (not yet known if LHCb becomes syst. limited)

• Current status: Exp:
$$A_{\rm SL}^d = -(2.1 \pm 1.7) \times 10^{-3}$$
 $A_{\rm SL}^s = -(0.6 \pm 2.8) \times 10^{-3}$

SM:
$$A_{\rm SL}^d = -(4.7 \pm 0.6) \times 10^{-4}$$


SM:
$$A_{\rm SL}^d = -(4.7 \pm 0.6) \times 10^{-4}$$
 $A_{\rm SL}^s = (2.22 \pm 0.27) \times 10^{-5}$ [1603.07770]


• Unique to Tera-Z: uncertainty $\sim 2.5 \times 10^{-5}$ for both $A_{\rm SL}^d$ and $A_{\rm SL}^s$, reach SM level

Higgs to fermion couplings is what flavor is...

- No constraint yet on origin of 1st generation fermion masses
- FCC-ee can establish role of Higgs in y_c , get close to y_s and y_e

Similar decay of kaons: $K o \pi u ar{ u}$

- Kaon CPV is at the right level (can fit ϵ_K with KM phase, but ϵ_K' notoriously hard)
- $K^+ \to \pi^+ \nu \bar{\nu}$ searched for since 1960s (longer than Higgs), sensitive to $100 \, \mathrm{TeV}$ scale

Irreducible theory uncertainty few % (& $|V_{cb}|^4$)

• Recently: first $> 5\sigma$ observation [NA62, 2412.12015]

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.0^{+3.3}_{-3.0}) \times 10^{-11}$$

Consistent with SM ($\approx 8 \times 10^{-11}$), at 1.7σ

• KOTO: $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) < 2 \times 10^{-9}$

