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Motivation

[Mizera, 2018] [Mizera, Mastrolia, 2019] identified twisted cohomology as
appropriate mathematical framework for Feynman integrals (in
dimensional regularization) [Background e.g. in Eric's talk]

On the other hand: In common IBP approaches e.g. using [Laporta,
2000][see Gaia’s, Rourou’s, Tiziano’s talks] symmetries play a crucial role to
reduce number of master integrals

[Gasparotto, Weinzierl, Xu, 2023][Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia,
Mattiazzi et al, 2019] describe how symmetries can be understood for
spanning differential forms of a cohomology integrated over the
Feynman contour

Effects of the symmetry on the periods and intersection pairings is
so far less understood
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Motivation

IBP-reduction Twisted cohomology
(or remember from [Wojciech’s talk]) — dim(H>) =1
— 3 master integrals
exclude symmetries
— 11 master integrals
We can find a corresponding 3 dim. intersection matrix
of some smaller cohomology
How is it related to the 11. dim one?

How does the period matrix transform?



Outline [T ] [ ]

Symmetry

in loop-momentum space
in Baikov representation
for the vector of master integrals

Symmetry-reduced basis of a cohomology group
Action of the symmetry on period and intersection pairing

Some nice consequences



Loop-Momentum Space Symmetry

m

D, = 2 — m? Dy = (k, — Ry —p)* —m’
D, =R —m’ ks ——ky+hy—p D, =R —m’

D; = (R, —Ry)> —m? fi—ka—ks D; = (R, — k) —m?

D, = (R, — k3 —p)*> —m’ D, =k —m’

Resulting Symmetry e.g.:

N
I2,1,1,1 = /de1de2de32—
T D1 D2D3D4
2mzl3,‘l,1,1 —(e+ 1)(’1,1,1,2 + 12,1,1,1)
2m?

’1,1,1,2

I3,1,1
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Symmetries

In Loop-Momentum Space:

Generally: We are considering symmetries stemming from transforming
integration variables interchanging propagators (graph symmetries)
[Z. Wu, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] ...

ki — A,'jkj + Bijkprk detA = +1

Cathrin Semper



Symmetries

In Loop-Momentum Space:

Generally: We are considering symmetries stemming from transforming
integration variables interchanging propagators (graph symmetries)
[Z. Wu, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] ...

ki — A,'jkj + Bijkprk detA = +1

In Baikov Representation:

Zi — Z\,'jzl' + éikpk detA # 0
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Toy Baikov Symmetry

Y, = Xf“sz (1= X)) % (1= %)% (1 = Xqy1 — Xp),) %
lyn=y=ty

P =X (1= x) B (1= %) % (1= Xy — xy) %

Invariant under x, & x,

.. > | dxAdx, dx;Adx dx, Adx dx, Adx
A basis: ¢ = {(#mxi’ (mrax? Tox) (1) o, }

Symmetry: f; /01\I’<p2 :f01 E‘I’(m
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Symmetry for Master Integrals

For a group G a representation R is map G — GL(V), with V finite dim.
vector space

Cathrin Semper Symmetry



Symmetry for Master Integrals
For a group G a representation R is map G — GL(V), with V finite dim.
vector space

Symmetry for Master Integrals
A symmetry for a vector of master integrals I acts like

RI =1

where R is a representation matrix of the graph symmetry group G |
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Symmetry for Master Integrals

For a group G a representation R is map G — GL(V), with V finite dim.
vector space

Symmetry for Master Integrals
A symmetry for a vector of master integrals I acts like

RI =1

where R is a representation matrix of the graph symmetry group G

Symmetry group of F, is S, (with
Sp = {permutations on the set {1,...,n}})

Representation of S, acting on basis I isR =

O O = O
O O O -
O =~ O O
- O O O
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Symmetry Groups

Symmetry group of four-loop equal mass banana is S,

One of the representation matrices e.g. looks like

1 o o0 o0 o o o o o o o
o o o0 o0 1 o o o o o o
o o 1 0 o0 o o o O o o
0 o o 1 o o o o O o0 ©o
o 1 00 O o o0 o O o0 o
R=| 2m*+s o o0 o o O 0 2 -2 -2 0
-s o o0 o0 o o 0o -1 1 0 o
—s o 0o o0 o o -1 0o 1 0 O
o O o0 o0 o o o o 1 0 o0
m-2 o o0 o -3 -1 0 0 o0 O
0 €2 00 5% o o o o o 1
m
p p
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Symmetry and Cohomology

Naively: Reduced master integrals because of symmetry — reduced
dimension of twisted cohomology group?
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Symmetry and Cohomology

Naively: Reduced master integrals because of symmetry — reduced
dimension of twisted cohomology group?

a; - dx;Adx,  dxgAdx: dx; Adx: dx; Adx:
W=t (1—x1)“3 (1_X2)ah(1_x1y_xzy)a5 P = { (11X1)X22 ’ (11X2)X21 ! (1—x:)(1—2X2) ’ :(2X1 : }
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Symmetry and Cohomology

Naively: Reduced master integrals because of symmetry — reduced
dimension of twisted cohomology group?

V- X?'X? (‘I—X1)a3(1—X2)a“(1—X1y—X2y)a5 , lﬁ — { dxAdx,  dxyAdx, dx; Adx, dx; Adx, }

(1=x)% " (1=x2)x " (1=x) (1=x2) " XoXq

_3 _3 detC # o!

7 7 .
_3 _3 Since

7 7

2 —

1 2 [ Yo, = [V,
2

; 1 but

P #F P,

[Gasparotto, Weinzierl, Xu,
2023], [Frellesvig, Gasparotto,
Laporta, Mandal, Mastrolia,
Mattiazzi et al, 2019]

Cathrin Semper Symmetry and Cohomology



Symmetry and Cohomology

Naively: Reduced master integrals because of symmetry — reduced
dimension of twisted cohomology group?

V- X?'X? (1—X1)a3(1—X2)a“(1—X1y—X2y)a5 , @» — { dxAdx,  dxyAdx, dx; Adx, dx; Adx, }

(1=x)% " (1=x2)x " (1=x) (1=x2) " XoXq
1 2] -3 _3 det C # o!
2 : _g _2 Since
C Y1=Y2 7 1 7 7
3 3 2 —
- 5 A Yo, = fl“ Yo,
) B but
— The dimension of the twisted cohomology P £ @,

group does not reduce
(The Euler characteristic (mentioned in [Saiei’s and
Simon’s talks]) does not drop

[Gasparotto, Weinzierl, Xu,
2023], [Frellesvig, Gasparotto,
Laporta, Mandal, Mastrolia,
Mattiazzi et al, 2019]
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Symmetry and Cohomology

For a subgroup G’ of G that leaves W invariant [Gasparotto, Weinzierl, Xu,
2023] teaches us how we can find the lower-dimensional basis of a
smaller cohomology group H7, :
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Symmetry and Cohomology

For a subgroup G’ of G that leaves W invariant [Gasparotto, Weinzierl, Xu,
2023] teaches us how we can find the lower-dimensional basis of a

smaller cohomology group H7, :

E.g.Herefo1fo1‘I’(p1:fo1fo1‘I’(p2

Choose @gym = (%(% + 02), 03, Py 5 (91 — (Pz))T

f01 /01 W Psym, = 0and RPs;j = P for j < 3 new masters

Symmetry and Cohomology
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Symmetry and Cohomology

For a subgroup G’ of G that leaves W invariant [Gasparotto, Weinzierl, Xu,
2023] teaches us how we can find the lower-dimensional basis of a
smaller cohomology group H7, :

E.g.Herefo1fo1‘I’(p1:fo1fo1‘I’(p2

Choose @gym = (%(% + 02), 03, Py 5 (91 — (Pz))T

f; /01 W Psym, = 0and RPs;j = P for j < 3 new masters

Can be generalized to more complicated groups by identifying the
distinct non-zero orbits, building invariant integrands
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Symmetry and Cohomology

For a subgroup G’ of G that leaves W invariant [Gasparotto, Weinzierl, Xu,
2023] teaches us how we can find the lower-dimensional basis of a
smaller cohomology group H7, :

E.g.Herefo1fo1‘I’(p1:/01fo1\P(p2

Choose @gym = (%(% + 02), 03, Py 5 (91 — (Pz))T

f; /01 W Psym, = 0and RPs;j = P for j < 3 new masters

Can be generalized to more complicated groups by identifying the
distinct non-zero orbits, building invariant integrands

What happens over other contours/the cycles

How do the period matrix and intersection pairings transform?
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Symmetries

In Loop-Momentum Space:

Generally: We are considering symmetries stemming from transforming
integration variables interchanging propagators (graph symmetries)
[Z. Wu, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] ...

ki — AjRj + Birpr , detA = +1

In Baikov Representation:

f:zi— A,’I'ZI' + é,-kpk , detA # o0
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Symmetries

Cathrin Semper

In Loop-Momentum Space:

Generally: We are considering symmetries stemming from transforming
integration variables interchanging propagators (graph symmetries).
[Z. Wy, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] ...

ki = Ajjkj + Birpr, detA =1
In Baikov Representation:

f: zi — Az + Biepr, detA #o0
These transformations leave the Baikov polynomial invariant
[Gasparotto, Weinzierl, Xu, 2023]
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In Loop-Momentum Space:
° o . . .
S m m etrl es Generally: We are considering symmetries stemming from transforming
y integration variables interchanging propagators (graph symmetries).
[Z. Wy, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] ...
ki = Ajjkj + Birpr, detA =1
In Baikov Representation:

2z — Agzj+ Birpr, detA #o0
These transformations leave the Baikov polynomial invariant

[Gasparotto, Weinzierl, Xu, 2023]

For the cohomology

We can show that such a transformation f
leaves the Baikov polynomial/twist invariant
leaves the intersection pairing invariant RCR" = C
acts on the period paring as {f* ¢|y] = (@I|f.7]

such that the period pairing is invariant up to interchanging cycles
RP = PAT withdA =0
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Consequences for Intersection Pairing

- dx;Ad dx;,Ad dx;,Ad dx;Ad
\P:xf“xé“(1—X1)“3(1—x2)%(1—x1y—x2y)“5,(/,:{ XA D ACK, X A X1 XE}

(1=x1)%2 7 (1=x2)x1? (1=x1) (1=X2)*  XaXq

After the basis change to lgym = (2 (I + 1,), I, 1, 2 (1 — Iz))T

~

Csym

gl 0 o oY

The invariant differentials decouple.
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Consequences for Intersection Pairing

Y= X:waér; (1—X1)a3(1—X2)““(1—X1y—xzy)“5 : (7} _ { dx;Adx,  dx,Adx, dx; Adx, dx, Adx, }

(1=x1)%2? (1=%2)%1” (1=x1) (1=x%2) > XaX4

After the basis change to lgym = (2 (I + 1,), I, 1, 2 (1 — ’2))1

gl 0 o oY

The invariant differentials decouple.

We can show that this holds more generally and is a direct consequence
of Schur's lemma if the group action is decomposed in terms of
irreducible representations
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Irreducible Representations

A representation is completely reducible if R=R, & --- ® R
R,
MR(g)M™" = : (1)
Re
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Irreducible Representations

A representation is completely reducible if R=R, & --- ® R
R,
MR(g)M™" = : (1)
Re

e.g. for a basis change to lsym = (1 (I + ), I3, I, 3 (I — Iz))T we get
11

R S EE——
1.0 o] O Cin Ciz Ci3 || G\ Cpp
YMTlo o 1] o R, Moy G Gy | G
o o o[- G N ¢ calc)c
‘ 21 41 42 43 Lty 22

This corresponds exactly to the irreps R = id; & (—1)

h
We had C = R(g)CR(g)", Vg e 6B, =Cn=0
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Symmetric Bananas

For S, finite number of irreducibles related to characters, e.g.
[ s, [[id | (12)(34) | (12) | (123) | (1234) |

jnnun 1 1 1 1 1

E 1 1 -1 1 -1
jaal 2 2 o -1 o
ool 3 -1 1 o -1
F 3 -1 -1 o 1
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Symmetric Bananas

For S, finite number of irreducibles related to characters, e.g.
[ s, [[id | (12)(34) | (12) | (123) | (1234) |

oI 1 1 1 1 1

E 1 1 -1 1 -1
H 2 2 o -1 o
jans] 3 -1 1 (o) -1
Eﬂ 3 -1 -1 o 1

3-loop equal-mass banana: We find a basis that transforms under

R = HH lim(HE) =3
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Symmetric Bananas

For S, finite number of irreducibles related to characters, e.g.
[ s, [[id | (12)(34) | (12) | (123) | (1234) |

oI 1 1 1 1 1

E 1 1 -1 1 -1
H 2 2 o -1 o
jans] 3 -1 1 (o) -1
Eﬂ 3 -1 -1 o 1

3-loop equal-mass banana: We find a basis that transforms under

Ea
R

lim(Hg) =3

]
I
H

[EEEE]
[EEEE]
[EEEE]

For a sub-symmetry, e.g. the m,, m, = m; = m,, configuration the
number of masters follows from purely group theoretical arguments
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More Block Structures

Homology basis can be decomposed similarly — same block
structure as well as period matrix P and DEQ matrix Q

Xy X1

Haooa 1 Hioq 1

All relevant information is captured in G-invariant (co-)homology groups
H¢ and H,, ¢ with period pairing Pg

Cathrin Semper Symmetry and Cohomology



Some Consequences

Observation: the group representation acting on canonical integrals
(in the spirit of [Henn "13], [Primo, Tancredi '17], [Adams, Weinzierl 18] [Broedel,
Duhr, Dulat, Penante, Tancredi '19]) is independent of the kinematics
Decompose canonical intersection matrix into irreducibles by a
constant rotation.
Canonical intersection matrix is constant [Duhr, Porkert, Stawinski, CS
'25]: It takes block structure for generic kinematic configurations
even in the absence of symmetry. e.g. for 3-loop banana

1 o -2 o o o0 o© o o o o
o 1 -2 o o o0 o© [ o o o
-2 -1 1 o o o o o o o o
o o o -1 -7 o o o o o o
o o o —% -3 o o o o o o
A= o o o o o -1 ¢ o o o o
o o o o o0 § -z zx O 0 o
o o o o o o 217 —;7' o o o
o o o o o o o o o o -3
o o o o o o o o o -6 o0
o o o o o o o o - o 2
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Summary

Generally dim(H") > dim(IBP master integrals)
For a cohomology H": Symmetry leaves twist and intersection
pairings invariant
. . n
The G-invariant cohomology group H;
Decompose group action on differentials in terms of its irreducibles
Basis of Hg: Differentials (¢ that transform under the identity of G

The number of masters for sub-symmetries directly follows from the
maximal symmetry

Blockstructure

All pairings and the DEQ decompose into block-diagonal form with
dimension of blocks given by the dimension of the irreps.
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Outlook

Can we understand the "canonical" symmetry better?

[Erik’s ideal: Can we find a topological interpretation? (Euler
characteristic at the fixed point)

Is there a twist associated to the G-invariant cohomology group?
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Symmetry and Cohomolgy

Can be generalized to more complicated groups [Gasparotto, Weinzierl, Xu,

2023]:

Sort the basis such that @ = {@y, ..., @n,, ... Pn}

With Ng the number of non-zero orbits such that the first Ng
elements are in distinct orbits

The new set of master integrands is given by

1

:EZR(Q)@, withg € Gand1<j < Ny

gei

I r

What happens over other contours/the cycles?

0

How does the period matrix/the intersection paring transform?

Cathrin Semper ‘ Outlook ‘



Irreducible Representations

A representation is completely reducible ifR=R, ® --- ® Ry
R
MR(g)M™" = ) (2)

Re
Character + dimension of a representation — decomposition in
terms of irreducible representations

Schur’s lemma if R, and R, of different dimension
R.(g)A =AR,(g), VG,— A=o0.
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Schur’s Lemma
R, : G — GL(V), R, : G — GL(W) irreducible with V # W

Matrix A of dim W X dim V with R,(g)A = AR,(g9), VG,
Blockstructure ™
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Schur's Lemma
R, : G — GL(V), R, : G — GL(W) irreducible with V # W

Matrix A of dim W X dim V with R,(g)A = AR,(g9), VG,
Blockstructure "

For a basis change to lsym = (3 (I + 1), 13, 4, 2(h — Iz))T we get
R
1.0 o] O Cu\ Cop
r o 1 0o Ca
YMTlo 0o 1) o |R, C3
0O 0 O |§ C42 Ci3 l' Cx

This corresponds exactly to the irreps R = id; & (—1)
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Schur's Lemma
R, : G — GL(V), R, : G — GL(W) irreducible with V # W

Matrix A of dim W X dim V with R,(g)A = AR,(g9), VG,
Blockstructure ™

For a basis change to lsym = (3 (I + 1), 13, 4, 2(h — Iz))T we get
R
1.0 o] O Cu\ Cop
O 1 0| O Cay
R = C =
YMTlo 0o 1) o |R, sym C3
O O O l! C42 C43 l' Cx

This corresponds exactly to the irreps R = id; & (—1)

We had € = R(g)CR(g)", Vge€G
For symmetric group R™" = R' such that R(g)C = CR(g)

CaRi GoRy CiaRi GiaRy | Schur
R(g)C = CR(g) — ’ ’ = ’ ' =Cx=0
(9) (9) ( GaRy GaRs GaR GoRy ’ “
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