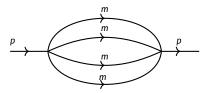


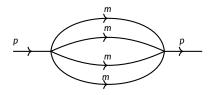
Symmetry Invariant Twisted Cohomology

MathemAmplitudes 2025

Cathrin Semper
Based on work in progress
with Claude Duhr, Sara Maggio, Franziska Porkert and Sven Stawinski
csemper@uni-bonn.de

- [Mizera, 2018] [Mizera, Mastrolia, 2019] identified twisted cohomology as appropriate mathematical framework for Feynman integrals (in dimensional regularization) [Background e.g. in Eric's talk]
- On the other hand: In common IBP approaches e.g. using [Laporta, 2000][see Gaia's, Rourou's, Tiziano's talks] symmetries play a crucial role to reduce number of master integrals
- [Gasparotto, Weinzierl, Xu, 2023][Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi et al, 2019] describe how symmetries can be understood for spanning differential forms of a cohomology integrated over the Feynman contour
- Effects of the symmetry on the periods and intersection pairings is so far less understood

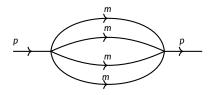




IBP-reduction

(or remember from [Wojciech's talk])

 \rightarrow 3 master integrals



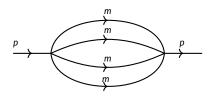
IBP-reduction

Twisted cohomology

(or remember from [Wojciech's talk])

 $\rightarrow \dim(H^5) = 11$

ightarrow 3 master integrals



IBP-reduction

Twisted cohomology

 $\rightarrow \dim(H^5) = 11$

(or remember from [Wojciech's talk])

- \rightarrow 3 master integrals exclude symmetries
- \rightarrow 11 master integrals



IBP-reduction

Twisted cohomology

(or remember from [Wojciech's talk])

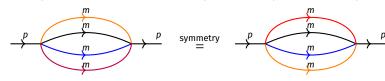
$$\rightarrow \dim(H^5) = 11$$

- → 3 master integrals exclude symmetries
- → 11 master integrals
- We can find a corresponding 3 dim. intersection matrix of some smaller cohomology
- ? How is it related to the 11. dim one?
- ? How does the period matrix transform?

Outline

- Symmetry
 - in loop-momentum space
 - in Baikov representation
 - for the vector of master integrals
- Symmetry-reduced basis of a cohomology group
- Action of the symmetry on period and intersection pairing
- Some nice consequences

Loop-Momentum Space Symmetry



$$D_{1} = k_{1}^{2} - m^{2}$$

$$D_{2} = k_{2}^{2} - m^{2}$$

$$D_{3} = (k_{1} - k_{3})^{2} - m^{2}$$

$$D_{4} = (k_{2} - k_{3} - p)^{2} - m^{2}$$

$$D_{5} = k_{1}^{2} - m^{2}$$

$$D_{6} = k_{1}^{2} - m^{2}$$

$$D_{7} = (k_{2} - k_{3} - p)^{2} - m^{2}$$

$$D_{8} = (k_{1} - k_{3})^{2} - m^{2}$$

$$D_{8} = k_{1}^{2} - m^{2}$$

$$D_{9} = k_{1}^{2} - m^{2}$$

$$D_{9} = k_{1}^{2} - m^{2}$$

Resulting Symmetry e.g.:

$$I_{2,1,1,1} = \int_{\Gamma} d^{D}k_{1}d^{D}k_{2}d^{D}k_{3} \frac{\mathcal{N}}{D_{1}^{2}D_{2}D_{3}D_{4}} I_{1,1,1,2}$$

$$I_{3,1,1,1} = \frac{2m^{2}I_{3,1,1,1} - (\epsilon + 1)(I_{1,1,1,2} + I_{2,1,1,1})}{2m^{2}}$$

In Loop-Momentum Space:

Generally: We are considering symmetries stemming from transforming integration variables interchanging propagators (graph symmetries)

[Z. Wu, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] ...

$$k_i \rightarrow A_{ii}k_i + B_{ik}p_k$$
, $\det A = \pm 1$

In Loop-Momentum Space:

Generally: We are considering symmetries stemming from transforming integration variables interchanging propagators (graph symmetries)

[Z. Wu, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] ...

$$k_i \rightarrow A_{ij}k_j + B_{ik}p_k$$
, $\det A = \pm 1$

In Baikov Representation:

•
$$z_i \rightarrow \tilde{A}_{ij}z_j + \tilde{B}_{ik}p_k$$
 $\det \tilde{A} \neq 0$

Toy Baikov Symmetry

$$\begin{split} \Psi_{F2} &= x_1^{\alpha_1} x_2^{\alpha_2} (1-x_1)^{\alpha_3} (1-x_2)^{\alpha_4} (1-x_1 y_1 - x_2 y_2)^{\alpha_5} \\ \downarrow y_1 &= y_2 =: y \\ \Psi &= x_1^{\alpha_1} x_2^{\alpha_2} (1-x_1)^{\alpha_3} (1-x_2)^{\alpha_4} (1-x_1 y - x_2 y)^{\alpha_5} \end{split}$$

Invariant under $x_1 \leftrightarrow x_2$

A basis:
$$\vec{\varphi} = \left\{ \frac{dx_1 \wedge dx_2}{(1-x_1)x_2}, \frac{dx_1 \wedge dx_2}{(1-x_2)x_1}, \frac{dx_1 \wedge dx_2}{(1-x_1)(1-x_2)}, \frac{dx_1 \wedge dx_2}{x_2x_1} \right\}$$

Symmetry:
$$\int_0^1 \int_0^1 \Psi \varphi_2 = \int_0^1 \int_0^1 \Psi \varphi_1$$

Symmetry for Master Integrals

For a group G a representation R is map $G \to GL(V)$, with V finite dim. vector space

Symmetry for Master Integrals

For a group G a representation R is map $G \to GL(V)$, with V finite dim. vector space

Symmetry for Master Integrals

A symmetry for a vector of master integrals I acts like

RI = I

where R is a representation matrix of the graph symmetry group G

Symmetry for Master Integrals

For a group G a representation R is map $G \to GL(V)$, with V finite dim. vector space

Symmetry for Master Integrals

A symmetry for a vector of master integrals I acts like

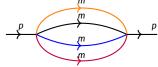
$$RI = I$$

where R is a representation matrix of the graph symmetry group G

- Symmetry group of F₂ is S₂ (with
 S_n = {permutations on the set {1,...,n}})
- Representation of S_2 acting on basis I is $R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Symmetry Groups

- Symmetry group of four-loop equal mass banana is S₄
- One of the representation matrices e.g. looks like



Naively: Reduced master integrals because of symmetry \rightarrow reduced dimension of twisted cohomology group?

Naively: Reduced master integrals because of symmetry \rightarrow reduced dimension of twisted cohomology group?

$$\Psi = x_1^{\alpha_1} x_2^{\alpha_2} (1 - x_1)^{\alpha_3} (1 - x_2)^{\alpha_4} (1 - x_1 y - x_2 y)^{\alpha_5} \text{ , } \vec{\phi} = \left\{ \frac{dx_1 \wedge dx_2}{(1 - x_1)x_2}, \frac{dx_1 \wedge dx_2}{(1 - x_2)x_1}, \frac{dx_1 \wedge dx_2}{(1 - x_1)(1 - x_2)}, \frac{dx_1 \wedge dx_2}{x_2 x_1} \right\}$$

$$C \stackrel{y_1 = y_2}{\sim} \begin{pmatrix} 1 & \frac{2}{7} & -\frac{3}{7} & -\frac{3}{7} \\ \frac{2}{7} & 1 & -\frac{3}{7} & -\frac{3}{7} \\ -\frac{3}{7} & -\frac{3}{7} & 1 & \frac{2}{7} \\ -\frac{3}{7} & -\frac{3}{7} & \frac{2}{7} & 1 \end{pmatrix}$$

Naively: Reduced master integrals because of symmetry \rightarrow reduced dimension of twisted cohomology group?

$$\Psi = x_1^{\alpha_1} x_2^{\alpha_2} (1-x_1)^{\alpha_3} (1-x_2)^{\alpha_4} (1-x_1y-x_2y)^{\alpha_5} \ , \ \vec{\phi} = \left\{ \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{(1-x_1)x_2}, \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{(1-x_2)x_1}, \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{(1-x_1)(1-x_2)}, \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{x_2x_1} \right\}$$

$$C \stackrel{y_1=y_2}{\sim} \begin{pmatrix} 1 & \frac{2}{7} & -\frac{3}{7} & -\frac{3}{7} \\ \frac{2}{7} & 1 & -\frac{3}{7} & -\frac{3}{7} \\ -\frac{3}{7} & -\frac{3}{7} & 1 & \frac{2}{7} \\ \frac{3}{7} & -\frac{3}{7} & \frac{2}{7} & 1 \end{pmatrix}$$

$$\det C \neq o!$$
 Since

$$\int_{\Gamma} \Psi \varphi_1 = \int_{\Gamma} \Psi \varphi_2$$
 but

$$\varphi_1 \neq \varphi_2$$

[Gasparotto, Weinzierl, Xu, 2023], [Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi et al, 2019]

Naively: Reduced master integrals because of symmetry \rightarrow reduced dimension of twisted cohomology group?

$$\Psi = \mathbf{x}_1^{\alpha_1} \mathbf{x}_2^{\alpha_2} (\mathbf{1} - \mathbf{x}_1)^{\alpha_3} (\mathbf{1} - \mathbf{x}_2)^{\alpha_4} (\mathbf{1} - \mathbf{x}_1 \mathbf{y} - \mathbf{x}_2 \mathbf{y})^{\alpha_5} \ , \ \vec{\varphi} = \left\{ \frac{\mathrm{d} \mathbf{x}_1 \wedge \mathrm{d} \mathbf{x}_2}{(\mathbf{1} - \mathbf{x}_1) \mathbf{x}_2}, \ \frac{\mathrm{d} \mathbf{x}_1 \wedge \mathrm{d} \mathbf{x}_2}{(\mathbf{1} - \mathbf{x}_1) \mathbf{x}_1}, \ \frac{\mathrm{d} \mathbf{x}_1 \wedge \mathrm{d} \mathbf{x}_2}{(\mathbf{1} - \mathbf{x}_1) (\mathbf{1} - \mathbf{x}_2)}, \ \frac{\mathrm{d} \mathbf{x}_1 \wedge \mathrm{d} \mathbf{x}_2}{\mathbf{x}_2 \mathbf{x}_1} \right\}$$

$$C \stackrel{y_1=y_2}{\sim} \begin{pmatrix} 1 & \frac{2}{7} & -\frac{3}{7} & -\frac{3}{7} \\ \frac{2}{7} & 1 & -\frac{3}{7} & -\frac{3}{7} \\ -\frac{3}{7} & -\frac{3}{7} & 1 & \frac{2}{7} \\ \frac{3}{7} & -\frac{3}{7} & \frac{2}{7} & 1 \end{pmatrix}$$

→ The dimension of the twisted cohomology group does not reduce (The Euler characteristic (mentioned in [Saiei's and Simon's talks]) does not drop

det C ≠ o! Since

$$\int_{\Gamma} \Psi \varphi_1 = \int_{\Gamma} \Psi \varphi_2$$
 but

$$\varphi_1 \neq \varphi_2$$

[Gasparotto, Weinzierl, Xu, 2023], [Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi et al, 2019]

• For a subgroup G' of G that leaves Ψ invariant [Gasparotto, Weinzierl, Xu, 2023] teaches us how we can find the lower-dimensional basis of a smaller cohomology group $H_{G'}^n$:

- For a subgroup G' of G that leaves Ψ invariant [Gasparotto, Weinzierl, Xu, 2023] teaches us how we can find the lower-dimensional basis of a smaller cohomology group $H^n_{G'}$:
- E.g. Here $\int_0^1 \int_0^1 \Psi \, \varphi_1 = \int_0^1 \int_0^1 \Psi \, \varphi_2$

$$\rightarrow$$
 Choose $\varphi_{\mathsf{sym}} = \left(\frac{1}{2}(\varphi_1 + \varphi_2), \varphi_3, \varphi_4, \frac{1}{2}(\varphi_1 - \varphi_2)\right)^\mathsf{T}$

 $\rightarrow \int_0^1 \int_0^1 \Psi \varphi_{\text{sym,4}} = 0$ and $R \vec{\varphi}_{G,j} = \vec{\varphi}_{G,j}$ for $j \leq 3$ new masters

• For a subgroup G' of G that leaves Ψ invariant [Gasparotto, Weinzierl, Xu, 2023] teaches us how we can find the lower-dimensional basis of a smaller cohomology group $H^n_{G'}$:

• E.g. Here
$$\int_0^1 \int_0^1 \Psi \, \varphi_1 = \int_0^1 \int_0^1 \Psi \, \varphi_2$$

 \rightarrow Choose $\varphi_{\text{sym}} = \left(\frac{1}{2}(\varphi_1 + \varphi_2), \, \varphi_3, \, \varphi_4, \, \frac{1}{2}(\varphi_1 - \varphi_2)\right)^T$
 $\rightarrow \int_0^1 \int_0^1 \Psi \, \varphi_{\text{sym,4}} = \text{o and } R \, \vec{\varphi}_{\text{G},j} = \vec{\varphi}_{\text{G},j} \text{ for } j \leq 3 \text{ new masters}$

 Can be generalized to more complicated groups by identifying the distinct non-zero orbits, building invariant integrands

- For a subgroup G' of G that leaves Ψ invariant [Gasparotto, Weinzierl, Xu, 2023] teaches us how we can find the lower-dimensional basis of a smaller cohomology group $H^n_{G'}$:
- E.g. Here $\int_0^1 \int_0^1 \Psi \varphi_1 = \int_0^1 \int_0^1 \Psi \varphi_2$

$$\rightarrow$$
 Choose $\varphi_{\text{sym}} = \left(\frac{1}{2}(\varphi_1 + \varphi_2), \varphi_3, \varphi_4, \frac{1}{2}(\varphi_1 - \varphi_2)\right)^T$

$$\rightarrow \int_0^1 \int_0^1 \Psi \varphi_{\text{sym,4}} = 0$$
 and $R \vec{\varphi}_{G,j} = \vec{\varphi}_{G,j}$ for $j \leq 3$ new masters

- Can be generalized to more complicated groups by identifying the distinct non-zero orbits, building invariant integrands
- ? What happens over other contours/the cycles
- ? How do the period matrix and intersection pairings transform?

7/14

In Loop-Momentum Space:

Generally: We are considering symmetries stemming from transforming integration variables interchanging propagators (graph symmetries)

[Z. Wu, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] ...

$$k_i \rightarrow A_{ii}k_i + B_{ik}p_k$$
, $\det A = \pm 1$

In Baikov Representation:

•
$$f: z_i \to \tilde{A}_{ij}z_j + \tilde{B}_{ik}p_k$$
, $\det \tilde{A} \neq 0$

In Loop-Momentum Space:

Generally: We are considering symmetries stemming from transforming integration variables interchanging propagators (graph symmetries).

[Z. Wu, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] ...

$$k_i \rightarrow A_{ij}k_j + B_{ik}p_k$$
, $\det A = \pm 1$

In Baikov Representation:

•
$$f: z_i \to \tilde{A}_{ii}z_i + \tilde{B}_{ik}p_k$$
, $\det \tilde{A} \neq 0$

 These transformations leave the Baikov polynomial invariant [Gasparotto, Weinzierl, Xu, 2023]

In Loop-Momentum Space:

Generally: We are considering symmetries stemming from transforming integration variables interchanging propagators (graph symmetries).

[Z. Wu, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] ...

$$k_i \rightarrow A_{ii}k_i + B_{ib}p_b$$
, $\det A = \pm 1$

In Baikov Representation:

- $f: z_i \to \tilde{A}_{ij}z_j + \tilde{B}_{ik}p_k$, $\det \tilde{A} \neq 0$
- These transformations leave the Baikov polynomial invariant [Gasparotto, Weinzierl, Xu, 2023]

For the cohomology

We can show that such a transformation f

- leaves the Baikov polynomial/twist invariant
- 2. leaves the intersection pairing invariant $RCR^T = C$
- 3. acts on the period pairing as $\langle f^* \varphi | \gamma \rangle = \langle \varphi | f_* \gamma \rangle$ such that the period pairing is invariant up to interchanging cycles $RP = PA^T$ with dA = 0

Consequences for Intersection Pairing

$$\Psi = x_1^{\alpha_1} x_2^{\alpha_2} (1-x_1)^{\alpha_3} (1-x_2)^{\alpha_4} (1-x_1y-x_2y)^{\alpha_5} \ , \ \vec{\phi} = \left\{ \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{(1-x_1)x_2}, \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{(1-x_2)x_1}, \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{(1-x_1)(1-x_2)}, \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{x_2x_1} \right\}$$

After the basis change to $I_{\text{sym}} = \left(\frac{1}{2}(I_1 + I_2), I_3, I_4, \frac{1}{2}(I_1 - I_2)\right)^T$

$$C_{\text{sym}} \sim \begin{pmatrix} \frac{9}{14} & -\frac{3}{7} & -\frac{3}{7} & 0\\ -\frac{3}{7} & 1 & \frac{2}{7} & 0\\ -\frac{3}{7} & \frac{2}{7} & 1 & 0\\ 0 & 0 & 0 & \frac{5}{14} \end{pmatrix}$$

The invariant differentials decouple.

Consequences for Intersection Pairing

$$\Psi = x_1^{\alpha_1} x_2^{\alpha_2} (1-x_1)^{\alpha_3} (1-x_2)^{\alpha_4} (1-x_1y-x_2y)^{\alpha_5} \ , \ \vec{\phi} = \left\{ \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{(1-x_1)x_2}, \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{(1-x_2)x_1}, \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{(1-x_1)(1-x_2)}, \frac{\mathrm{d}x_1 \wedge \mathrm{d}x_2}{x_2x_1} \right\}$$

After the basis change to $I_{\text{sym}} = \left(\frac{1}{2}(I_1 + I_2), I_3, I_4, \frac{1}{2}(I_1 - I_2)\right)^T$

$$C_{\text{sym}} \sim \begin{pmatrix} \frac{9}{14} & -\frac{3}{7} & -\frac{3}{7} & 0\\ -\frac{3}{7} & 1 & \frac{2}{7} & 0\\ -\frac{3}{7} & \frac{2}{7} & 1\\ 0 & 0 & 0 & \frac{5}{14} \end{pmatrix}$$

The invariant differentials decouple.

We can show that this holds more generally and is a direct consequence of Schur's lemma if the group action is decomposed in terms of irreducible representations

Irreducible Representations

• A representation is completely reducible if $R = R_1 \oplus \cdots \oplus R_k$

$$MR(g)M^{-1} = \begin{pmatrix} R_1 & & \\ & \ddots & \\ & & R_k \end{pmatrix}, \tag{1}$$

Irreducible Representations

• A representation is completely reducible if $R = R_1 \oplus \cdots \oplus R_k$

$$MR(g)M^{-1} = \begin{pmatrix} R_1 & & \\ & \ddots & \\ & & R_k \end{pmatrix}, \tag{1}$$

e.g. for a basis change to $I_{sym} = (\frac{1}{2}(I_1 + I_2), I_3, I_4, \frac{1}{2}(I_1 - I_2))^T$ we get

This corresponds exactly to the irreps $R = id_3 \oplus (-1)$

We had
$$C = R(g)CR(g)^T$$
, $\forall g \in G \xrightarrow{Schur} C_{12} = C_{21} = O$

Symmetric Bananas

• For S_n finite number of irreducibles related to characters, e.g.

S ₄	id	(12)(34)	(12)	(123)	(1234)
ш	1	1	1	1	1
	1	1	-1	1	-1
	2	2	0	-1	0
	3	-1	1	0	-1
	3	-1	-1	0	1

Symmetric Bananas

For S_n finite number of irreducibles related to characters, e.g.

S ₄	id	(12)(34)	(12)	(123)	(1234)
ш	1	1	1	1	1
	1	1	-1	1	-1
	2	2	0	-1	0
	3	-1	1	0	-1
	3	-1	-1	0	1

3-loop equal-mass banana: We find a basis that transforms under

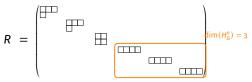


Symmetric Bananas

• For S_n finite number of irreducibles related to characters, e.g.

S ₄	id	(12)(34)	(12)	(123)	(1234)
ш	1	1	1	1	1
	1	1	-1	1	-1
	2	2	0	-1	0
F	3	-1	1	0	-1
	3	-1	-1	0	1

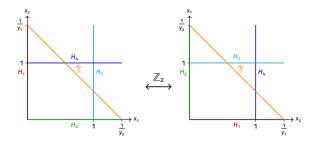
3-loop equal-mass banana: We find a basis that transforms under



• For a sub-symmetry, e.g. the m_1 , $m_2 = m_3 = m_4$ configuration the number of masters follows from purely group theoretical arguments

More Block Structures

• Homology basis can be decomposed similarly \rightarrow same block structure as well as period matrix P and DEQ matrix Ω



All relevant information is captured in G-invariant (co-)homology groups H_G^n and $H_{n,G}$ with period pairing P_G

Some Consequences

- Observation: the group representation acting on canonical integrals (in the spirit of [Henn '13], [Primo, Tancredi '17], [Adams, Weinzierl '18] [Broedel, Duhr, Dulat, Penante, Tancredi '19]) is independent of the kinematics
 - ightarrow Decompose canonical intersection matrix into irreducibles by a constant rotation.
 - → Canonical intersection matrix is constant [Duhr, Porkert, Stawinski, CS '25]: It takes block structure for generic kinematic configurations even in the absence of symmetry. e.g. for 3-loop banana

Summary

- Generally $dim(H^n) \ge dim(IBP master integrals)$
- For a cohomology Hⁿ: Symmetry leaves twist and intersection pairings invariant
- \checkmark The G-invariant cohomology group H_G^n
 - → Decompose group action on differentials in terms of its irreducibles
 - ightarrow Basis of H_G^n : Differentials $ec{arphi}_{\mathsf{G}}$ that transform under the identity of G
 - $\rightarrow\,$ The number of masters for sub-symmetries directly follows from the maximal symmetry

✓ Blockstructure

→ All pairings and the DEQ decompose into block-diagonal form with dimension of blocks given by the dimension of the irreps.

Outlook

- Can we understand the "canonical" symmetry better?
- [Erik's idea]: Can we find a topological interpretation? (Euler characteristic at the fixed point)
- Is there a twist associated to the G-invariant cohomology group?

Can be generalized to more complicated groups [Gasparotto, Weinzierl, Xu, 2023]:

- Sort the basis such that $\vec{\varphi} = \{ \varphi_1, \ldots, \varphi_{N_0}, \ldots \varphi_N \}$
- With N₀ the number of non-zero orbits such that the first N₀ elements are in distinct orbits
- The new set of master integrands is given by

$$o_j=rac{1}{|G|}\sum_{g\in G}R(g)\,arphi_j$$
 , with $g\in G$ and $1\leq j\leq N_0$
$$\int_\Gamma\Psi oarphi_j=\int_\Gamma\Psi o_j$$

- What happens over other contours/the cycles?
- How does the period matrix/the intersection paring transform?

Irreducible Representations

• A representation is completely reducible if $R = R_1 \oplus \cdots \oplus R_k$

$$MR(g)M^{-1} = \begin{pmatrix} R_1 & & \\ & \ddots & \\ & & R_k \end{pmatrix}, \tag{2}$$

- Character + dimension of a representation → decomposition in terms of irreducible representations
- Schur's lemma if R_1 and R_2 of different dimension $R_1(q)A = AR_2(q)$, $\forall G, \rightarrow A = 0$.

Blockstructure

Schur's Lemma

- $R_1: G \to \operatorname{GL}(V), R_2: G \to \operatorname{GL}(W)$ irreducible with $V \not\simeq W$
 - Matrix A of dim W × dim V with $R_1(g)A = AR_2(g)$, $\forall G$,
 - \rightarrow A = 0.

Blockstructure

• $R_1:G \to \operatorname{GL}(V),\ R_2:G \to \operatorname{GL}(W)$ irreducible with $V \not\simeq W$

• Matrix A of dim W \times dim V with $R_1(g)A = AR_2(g)$, $\forall G$,

$$\rightarrow$$
 A = 0.

For a basis change to $I_{\text{sym}} = (\frac{1}{2}(I_1 + I_2), I_3, I_4, \frac{1}{2}(I_1 - I_2))^T$ we get

$$R_{\text{sym}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}_{R_{2}} \qquad C_{\text{sym}} = \begin{pmatrix} c_{11} & c_{12} & c_{13} & c_{14} & c_{12} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{44} & c_{42} & c_{44} & c_{42} \end{pmatrix}_{C_{22}}$$

This corresponds exactly to the irreps $R = id_3 \oplus (-1)$

Blockstructure

• $R_1: G \to \operatorname{GL}(V), R_2: G \to \operatorname{GL}(W)$ irreducible with $V \not\simeq W$

 $\quad \text{Matrix A of } \dim W \times \dim V \text{ with } R_1(g) \text{A} = \text{A} R_2(g) \text{ , } \quad \forall \text{G ,}$

 \rightarrow A = 0.

For a basis change to $I_{\text{sym}} = (\frac{1}{2}(I_1 + I_2), I_3, I_4, \frac{1}{2}(I_1 - I_2))^T$ we get

This corresponds exactly to the irreps $R = id_3 \oplus (-1)$

We had
$$C = R(g)CR(g)^T$$
, $\forall g \in G$

 \rightarrow For symmetric group $R^{-1} = R^T$ such that R(g)C = CR(g)

$$R(g)C = CR(g) \rightarrow \begin{pmatrix} C_{1,1}R_1 & C_{1,2}R_1 \\ C_{2,1}R_2 & C_{2,2}R_2 \end{pmatrix} = \begin{pmatrix} C_{1,1}R_1 & C_{1,2}R_2 \\ C_{2,1}R_1 & C_{2,2}R_2 \end{pmatrix} \xrightarrow{\text{Schur}} C_{12} = C_{21} = 0$$