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Motivation
• [Mizera, 2018] [Mizera, Mastrolia, 2019] identified twisted cohomology as

appropriate mathematical framework for Feynman integrals (in
dimensional regularization) [Background e.g. in Eric’s talk]

• On the other hand: In common IBP approaches e.g. using [Laporta,

2000][see Gaia’s, Rourou’s, Tiziano’s talks] symmetries play a crucial role to
reduce number of master integrals
• [Gasparotto, Weinzierl, Xu, 2023][Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia,

Mattiazzi et al, 2019] describe how symmetries can be understood for
spanning differential forms of a cohomology integrated over the
Feynman contour
• Effects of the symmetry on the periods and intersection pairings is

so far less understood
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IBP-reduction
(or remember from [Wojciech’s talk])

→ 3 master integrals

exclude symmetries
→ 11 master integrals

Twisted cohomology
→ dim(H5) = 11

- We can find a corresponding 3 dim. intersection matrix

of some smaller cohomology

? How is it related to the 11. dim one?

? How does the period matrix transform?
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Outline

• Symmetry
• in loop-momentum space
• in Baikov representation
• for the vector of master integrals

• Symmetry-reduced basis of a cohomology group

• Action of the symmetry on period and intersection pairing

• Some nice consequences
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Loop-Momentum Space Symmetry
m
m

m

m

p p symmetry
=

m
m

m

m

p p

D1 = k2
1 − m2

D2 = k2
2 − m2

D3 = (k1 − k3)2 − m2

D4 = (k2 − k3 − p)2 − m2

k3→−k1+k2−p−−−−−−−−−−−→
k1→k2−k3

D1 = (k2 − k3 − p)2 − m2

D2 = k2
2 − m2

D3 = (k1 − k3)2 − m2

D4 = k2
1 − m2

Resulting Symmetry e.g.:

I2,1,1,1 =
∫
Γ
dDk1dDk2dDk3

N
D2

1D2D3D4
I1,1,1,2

I3,1,1,1 =
2m2I3,1,1,1 − (𝜖 + 1) (I1,1,1,2 + I2,1,1,1)

2m2
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Symmetries

In Loop-Momentum Space:

Generally: We are considering symmetries stemming from transforming
integration variables interchanging propagators (graph symmetries)
[Z. Wu, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] . . .

ki → Aijkj + Bikpk , det A = ±1

In Baikov Representation:

• zi → Ãijzj + B̃ikpk det Ã ≠ 0
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Toy Baikov Symmetry
ΨF2 = x𝛼1

1 x
𝛼2
2 (1 − x1)𝛼3 (1 − x2)𝛼4 (1 − x1y1 − x2y2)𝛼5

↓ y1 = y2 =: y

Ψ = x𝛼1
1 x

𝛼2
2 (1 − x1)𝛼3 (1 − x2)𝛼4 (1 − x1y − x2y)𝛼5

Invariant under x1 ↔ x2

A basis: ®𝜑 =

{
dx1∧dx2
(1−x1 )x2

, dx1∧dx2
(1−x2 )x1

, dx1∧dx2
(1−x1 ) (1−x2 ) ,

dx1∧dx2
x2x1

}
Symmetry:

∫ 1
0

∫ 1
0 Ψ𝜑2 =

∫ 1
0

∫ 1
0 Ψ𝜑1
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Symmetry for Master Integrals
For a group G a representation R is map G→ GL(V), with V finite dim.
vector space

Symmetry for Master Integrals
A symmetry for a vector of master integrals I acts like

RI = I

where R is a representation matrix of the graph symmetry group G

• Symmetry group of F2 is S2 (with
Sn = {permutations on the set {1,. . . ,n}})

• Representation of S2 acting on basis I is R =

©­­­«
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

ª®®®¬
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Symmetry Groups
• Symmetry group of four-loop equal mass banana is S4

• One of the representation matrices e.g. looks like

R =

©­­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0

2m2 + s 0 0 0 0 0 0 2 −2 −2 0
−s 0 0 0 0 0 0 −1 1 0 0
−s 0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0

m2 − s
2 0 0 0 0 − 1

2 −1 0 0 0 0
0 𝜖+1

2m2 0 0 −𝜖−1
2m2 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®¬
m
m

m

m

p p
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Symmetry and Cohomology
Naively: Reduced master integrals because of symmetry→ reduced
dimension of twisted cohomology group?

Ψ = x𝛼1
1 x𝛼2

2 (1−x1)𝛼3 (1−x2)𝛼4 (1−x1y−x2y)𝛼5 , ®𝜑 =

{
dx1∧dx2
(1−x1 )x2

, dx1∧dx2
(1−x2 )x1

, dx1∧dx2
(1−x1 ) (1−x2 ) ,

dx1∧dx2
x2x1

}

C y1=y2∼
©­­­­«

1 2
7 − 3

7 −
3
7

2
7 1 − 3

7 −
3
7

− 3
7 −

3
7 1 2

7
− 3

7 −
3
7

2
7 1

ª®®®®¬

det C ≠ 0!
Since∫
Γ
Ψ𝜑1 =

∫
Γ
Ψ𝜑2

but

𝜑1 ≠ 𝜑2

[Gasparotto, Weinzierl, Xu,

2023], [Frellesvig, Gasparotto,

Laporta, Mandal, Mastrolia,

Mattiazzi et al, 2019]

→ The dimension of the twisted cohomology
group does not reduce
(The Euler characteristic (mentioned in [Saiei’s and

Simon’s talks]) does not drop
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Symmetry and Cohomology
• For a subgroup G′ of G that leaves Ψ invariant [Gasparotto, Weinzierl, Xu,

2023] teaches us how we can find the lower-dimensional basis of a
smaller cohomology group HnG′ :

• E.g. Here
∫ 1

0

∫ 1
0 Ψ𝜑1 =

∫ 1
0

∫ 1
0 Ψ𝜑2

→ Choose 𝜑sym =
( 1

2 (𝜑1 + 𝜑2), 𝜑3, 𝜑4,
1
2 (𝜑1 − 𝜑2)

)T
→

∫ 1
0

∫ 1
0 Ψ𝜑sym,4 = 0 and R ®𝜑G,j = ®𝜑G,j for j ≤ 3 new masters

• Can be generalized to more complicated groups by identifying the
distinct non-zero orbits, building invariant integrands

? What happens over other contours/the cycles

? How do the period matrix and intersection pairings transform?
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Symmetries

In Loop-Momentum Space:

Generally: We are considering symmetries stemming from transforming
integration variables interchanging propagators (graph symmetries)
[Z. Wu, Y. Zhang, 2025] [Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, 2024] . . .

ki → Aijkj + Bikpk , det A = ±1

In Baikov Representation:

• f : zi → Ãijzj + B̃ikpk , det Ã ≠ 0
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Symmetries

For the cohomology

We can show that such a transformation f

1. leaves the Baikov polynomial/twist invariant

2. leaves the intersection pairing invariant RCRT = C

3. acts on the period paring as ⟨f ∗𝜑 |𝛾 ] = ⟨𝜑 |f∗𝛾 ]
such that the period pairing is invariant up to interchanging cycles
RP = PAT with dA = 0

In Loop-Momentum Space:
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Consequences for Intersection Pairing

Ψ = x𝛼1
1 x𝛼2

2 (1−x1)𝛼3 (1−x2)𝛼4 (1−x1y−x2y)𝛼5 , ®𝜑 =

{
dx1∧dx2
(1−x1 )x2

, dx1∧dx2
(1−x2 )x1

, dx1∧dx2
(1−x1 ) (1−x2 ) ,

dx1∧dx2
x2x1

}
After the basis change to Isym =

( 1
2 (I1 + I2), I3, I4,

1
2 (I1 − I2)

)T
Csym ∼

©­­­«
9
14 − 3

7 −
3
7 0

− 3
7 1 2

7 0
− 3

7
2
7 1 0

0 0 0 5
14

ª®®®¬
CG

The invariant differentials decouple.

We can show that this holds more generally and is a direct consequence
of Schur’s lemma if the group action is decomposed in terms of
irreducible representations
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Irreducible Representations
• A representation is completely reducible if R = R1 ⊕ · · · ⊕ Rk

MR(g)M−1 =
©­­«
R1

. . .

Rk

ª®®¬ , (1)

e.g. for a basis change to Isym =
( 1

2 (I1 + I2), I3, I4,
1
2 (I1 − I2)

)T we get

Rsym =

©­­­«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

ª®®®¬
R1

R2
Csym =

©­­­«
c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

ª®®®¬
C11

C22

C12

C21

This corresponds exactly to the irreps R = id3 ⊕ (−1)

We had C = R(g)CR(g)T , ∀g ∈ G Schur→ C12 = C21 = 0
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Symmetric Bananas
• For Sn finite number of irreducibles related to characters, e.g.

S4 id (12) (34) (12) (123) (1234)
1 1 1 1 1
1 1 -1 1 -1

2 2 0 -1 0
3 -1 1 0 -1
3 -1 -1 0 1

• 3-loop equal-mass banana: We find a basis that transforms under

R =

©­­­­­­­­­«

ª®®®®®®®®®¬
dim(HnG) = 3

• For a sub-symmetry, e.g. the m1, m2 = m3 = m4 configuration the
number of masters follows from purely group theoretical arguments
e.g. → ⊕
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More Block Structures

• Homology basis can be decomposed similarly→ same block
structure as well as period matrix P and DEQ matrix Ω

x1

x2

H1

H2

H3

H4
H
5

1

1
y1

1 1
y2

ℤ2←→

x2

x1

H2

H1

H4

H3
H
5

1

1
y2

1 1
y1

All relevant information is captured in G-invariant (co-)homology groups
HnG and Hn,G with period pairing PG



Cathrin Semper Symmetry and Cohomology 13/14

Some Consequences
• Observation: the group representation acting on canonical integrals

(in the spirit of [Henn ’13], [Primo, Tancredi ’17], [Adams, Weinzierl ’18] [Broedel,
Duhr, Dulat, Penante, Tancredi ’19]) is independent of the kinematics
→ Decompose canonical intersection matrix into irreducibles by a

constant rotation.
→ Canonical intersection matrix is constant [Duhr, Porkert, Stawinski, CS

’25]: It takes block structure for generic kinematic configurations
even in the absence of symmetry. e.g. for 3-loop banana

Δ =

©­­­­­­­­­­­­­­­­­«

1 0 − 1
2 0 0 0 0 0 0 0 0

0 1 − 1
2 0 0 0 0 0 0 0 0

− 1
2 − 1

2 1 0 0 0 0 0 0 0 0
0 0 0 − 1

2 − 1
4 0 0 0 0 0 0

0 0 0 − 1
4 − 1

2 0 0 0 0 0 0
0 0 0 0 0 − 1

3
1
6 0 0 0 0

0 0 0 0 0 1
6 − 1

6
1

24 0 0 0
0 0 0 0 0 0 1

24 − 1
24 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1
2

0 0 0 0 0 0 0 0 0 −6 0
0 0 0 0 0 0 0 0 − 1

2 0 11
12

ª®®®®®®®®®®®®®®®®®¬
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Summary

• Generally dim(Hn) ≥ dim(IBP master integrals)
• For a cohomology Hn: Symmetry leaves twist and intersection

pairings invariant

✓ The G-invariant cohomology group HnG
→ Decompose group action on differentials in terms of its irreducibles
→ Basis of HnG: Differentials ®𝜑G that transform under the identity of G
→ The number of masters for sub-symmetries directly follows from the

maximal symmetry

✓ Blockstructure
→ All pairings and the DEQ decompose into block-diagonal form with

dimension of blocks given by the dimension of the irreps.
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Outlook

• Can we understand the "canonical" symmetry better?

• [Erik’s idea]: Can we find a topological interpretation? (Euler
characteristic at the fixed point)

• Is there a twist associated to the G-invariant cohomology group?
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Symmetry and Cohomolgy
Can be generalized to more complicated groups [Gasparotto, Weinzierl, Xu,

2023]:

• Sort the basis such that ®𝜑 = {𝜑1, . . . , 𝜑NO , . . . 𝜑N}
• With NO the number of non-zero orbits such that the first NO

elements are in distinct orbits
• The new set of master integrands is given by

oj =
1
|G|

∑︁
g∈G

R(g)𝜑j , with g ∈ G and 1 ≤ j ≤ NO∫
Γ
Ψ→ 𝜑j =

∫
Γ
Ψoj

- What happens over other contours/the cycles?

- How does the period matrix/the intersection paring transform?
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Irreducible Representations

• A representation is completely reducible if R = R1 ⊕ · · · ⊕ Rk

MR(g)M−1 =
©­­«
R1

. . .

Rk

ª®®¬ , (2)

• Character + dimension of a representation→ decomposition in
terms of irreducible representations
• Schur’s lemma if R1 and R2 of different dimension
R1(g)A = AR2(g) , ∀G ,→ A = 0.
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Blockstructure

For a basis change to Isym =
( 1

2 (I1 + I2), I3, I4,
1
2 (I1 − I2)

)T we get

Rsym =

©­­­«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

ª®®®¬
R1

R2
Csym =

©­­­«
c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

ª®®®¬
C11

C22

C12

C21

This corresponds exactly to the irreps R = id3 ⊕ (−1)

We had C = R(g)CR(g)T , ∀g ∈ G
→ For symmetric group R−1 = RT such that R(g)C = CR(g)

R(g)C = CR(g) →
(
C1,1R1 C1,2R1

C2,1R2 C2,2R2

)
=

(
C1,1R1 C1,2R2

C2,1R1 C2,2R2

)
Schur→ C12 = C21 = 0

Schur’s Lemma
• R1 : G→ GL(V), R2 : G→ GL(W) irreducible with V ; W
• Matrix A of dimW × dim V with R1(g)A = AR2(g) , ∀G ,
→ A = 0.
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