From Critical Points to Syzygies for Feynman Integrals

Ben Page

University of Ghent

Mathemamplitudes 2025

September $22^{\text{nd}} - 26^{\text{th}}$ 2025

in collaboration with Qian Song [arXiv:2509.17681]

From Critical Points to Syzygies for Feynman Integrals

Motivation

Cutting-edge Feynman diagrams for colliders have gigantic integrand

Practical calculations reduce to basis of "master integrals":

$$\mathcal{I}_i = \sum_{j \in \mathsf{masters}} c_{ij} \mathcal{I}_j.$$

Important question: how do we explicitly compute the c_{ij} ?

Many talks focusing on this: [Gaia, Seva, Giacomo, Stefano, Rourou, Tiziano, Catherine]

From Critical Deints to Summing for Forman Internals

Studying Feynman Integral Reduction

• In appropriate representation (e.g. Baikov), total derivatives vanish

$$\int \mathrm{d}\omega = 0.$$

[Tkachov, Chetyrkin '81]

• Feynman integrals live in (appropriate) cohomology groups:

$$\mathcal{I}_i \in \mathcal{H}_{\Gamma}, \qquad \qquad \mathcal{H}_{\Gamma} = \Omega^N/\mathrm{im}(\mathrm{d}).$$

• Two major strategies for integral reduction.

Indirect: "Integration by parts"

Explicitly construct im(d).

"Mod out" with linear algebra.

[Laporta '00]

Direct: "Intersection theory"

$$\mathcal{I}_{\mathbf{k}} = \int \phi_{\mathbf{k}} \longrightarrow \langle \phi_{i} \phi_{j} \rangle.$$

[Mastrolia, Mizera '18]

A Natural Question

Can the two approaches teach us about each other?

$$\text{``}\langle\phi_{\mathsf{a}}\phi_{\mathsf{b}}\rangle''\qquad\longleftrightarrow\qquad\text{``}\operatorname{im}(\mathrm{d})''?$$

This talk: if we construct im(d) from syzygies, then yes!

Setup: Baikov Representation and Syzygies

Feynman Integrals in the Baikov Representation

$$\int_{\mathcal{C}} \mathrm{d}^{N} \vec{z} \left[B(\vec{s}, \vec{z})^{\gamma} \frac{\mathcal{N}(\vec{s}, \vec{z})}{\prod_{e \in \mathsf{props}(\Gamma)} z_{e}} \right].$$

- Set of propagators in described by graph Γ , e.g. $\Gamma = -$.
- Baikov variables split into "propagators" (edges) and ISPs:

$$\{z_1,\ldots,z_N\}=\{z_e:e\in\mathsf{props}(\Gamma)\}\sqcup\{z_i:i\in\mathsf{ISPs}(\Gamma)\}.$$

- Function of kinematics \vec{s} , and regulator ϵ through $\gamma = \gamma_0 + \gamma_1 \epsilon$.
- Complexity in "Baikov polynomial", $\deg_z(B[\vec{s}, \vec{z}]) = 2 \times (\# \text{ loops})$.

Surface Terms in the Baikov Representation

• Physical integrands have restricted denominator. Live in Ω^N subspace.

$$\mathbb{Z}_{\mathbf{z}_{1}\cdots\mathbf{z}_{9}}^{\mathbf{z}_{0}} = \int \mathrm{d}^{11}z \left[\frac{B(\vec{z})^{\gamma}\mathcal{N}(z_{1},\ldots,z_{11})}{z_{1}\cdots z_{9}} \right].$$

• Want corresponding subspace of $im(d) \Rightarrow$ "Surface terms".

$$\mathsf{Surface}(\Gamma) = \left\{ \, \mathcal{S} \in R \ : \ \frac{B^{\gamma} \mathcal{S}}{\prod_{e \in \mathsf{props}(\Gamma)} z_e} = \partial_k \left[B^{\gamma - \Delta} \frac{a_k}{\prod_{e \in \mathsf{props}(\Gamma)} z_e^{\beta_e}} \right] \, \right\}.$$

[lta '15]

ullet Total derivatives specified by polynomial ${\mathcal S}$ in

$$R = \mathbb{C}(p_i \cdot p_j, m_k^2, \epsilon)[z_1, \ldots, z_N].$$

Baikov Representation Syzygies and Surface Terms

Organize surface terms by constructing them from "syzygy equation"

$$a_0B + \sum_{e \in \mathsf{props}(\Gamma)} \tilde{a}_e z_e B + \sum_{i \in \mathsf{ISPs}(\Gamma)} a_i \partial_i B + \sum_{e \in \mathsf{props}(\Gamma)} \overline{a}_e z_e \partial_e B = 0.$$

[Gluza, Kajda, Kosower '09; Ita '15; Zhang, Larsen '15]

• Set of solutions \vec{a} form so-called "syzygy module", Syz(Γ).

$$\lambda_i \in R$$
, $\vec{a}_i \in \mathsf{Syz}(\Gamma)$ \Rightarrow $\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 \in \mathsf{Syz}(\Gamma)$.

• Each element $\vec{a} \in \operatorname{Syz}(\Gamma)$ corresponds to an $S \in \operatorname{Surface}(\Gamma)$:

$$S_{\Gamma}(\vec{a}) = a_0 + \sum_{e \in \mathsf{props}(\Gamma)} \tilde{a}_e z_e - \frac{1}{\gamma} \left[\sum_{i \in \mathsf{ISPs}(\Gamma)} \partial_i a_i + \sum_{e \in \mathsf{props}(\Gamma)} (z_e \partial_e \overline{a}_e) \right].$$

Syzygies and Critical Points

An Intriguing Connection

• As $\epsilon \to \infty$, intersection numbers simplify: (NB, max-cut)

$$\langle \phi_a \phi_b \rangle = \sum_{\vec{z}_i : \operatorname{dlog}(B) = 0} \left. \frac{\hat{\phi}_a \hat{\phi}_b}{\det(\Phi)} \right|_{\vec{z}_i} + \mathcal{O}(\epsilon^{-1}).$$

[Mizera, Pokraka '19],

An Intriguing Connection

• As $\epsilon \to \infty$, intersection numbers simplify: (NB, max-cut)

$$\langle \phi_{\mathsf{a}} \phi_{\mathsf{b}} \rangle = \sum_{\vec{z}_i : \mathrm{dlog}(B) = 0} \left. \frac{\hat{\phi}_{\mathsf{a}} \hat{\phi}_{\mathsf{b}}}{\det(\Phi)} \right|_{\vec{z}_i} + \mathcal{O}(\epsilon^{-1}).$$

[Mizera, Pokraka '19],

New observation: surface terms also simplify!

$$S_{\Gamma}(\vec{a})|_{z_e=0} = a_0|_{z_e=0} + \mathcal{O}(\epsilon^{-1}).$$

[BP, Song '25],

An Intriguing Connection

• As $\epsilon \to \infty$, intersection numbers simplify: (NB, max-cut)

$$\langle \phi_{\mathsf{a}} \phi_{\mathsf{b}} \rangle = \sum_{\vec{z}_i : \mathrm{dlog}(B) = 0} \left. \frac{\hat{\phi}_{\mathsf{a}} \hat{\phi}_{\mathsf{b}}}{\det(\Phi)} \right|_{\vec{z}_i} + \mathcal{O}(\epsilon^{-1}).$$

[Mizera, Pokraka '19],

New observation: surface terms also simplify!

$$S_{\Gamma}(\vec{a})|_{z_e=0} = a_0|_{z_e=0} + \mathcal{O}(\epsilon^{-1}).$$

[BP, Song '25],

• Max-cut a_0 is relevant term. Is piece of the syzygy.

"Calculus becomes algebra" in limit.

Critical Points

• Solution set of $d \log(B) = 0$ specifies algebraic variety, $U_{\text{crit}[\log(B)]}^{\Gamma}$,

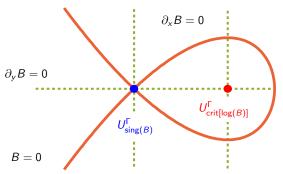
$$\partial_i B = 0, \quad i \in \mathsf{ISPs}(\Gamma), \qquad z_e = 0, \quad e \in \mathsf{props}(\Gamma), \quad B \neq 0.$$

Critical Points

• Solution set of $d \log(B) = 0$ specifies algebraic variety, $U_{\text{crit}\lceil\log(B)\rceil}^{\Gamma}$,

$$\partial_i B = 0, \quad i \in \mathsf{ISPs}(\Gamma), \qquad z_e = 0, \quad e \in \mathsf{props}(\Gamma), \quad B \neq 0.$$

• As a toy example (implicitly on cut): $B = y^2 - x^2(1 - x)$,



Ben Page **UGent** 11/27

ullet Let's consider syzygy equation on $U^{\Gamma}_{\mathrm{crit}[\log(B)]}$

$$0 = \left[a_0 B + \sum_{e \in \mathsf{props}(\Gamma)} \tilde{a}_e z_e B + \sum_{i \in \mathsf{ISPs}(\Gamma)} a_i \partial_i B + \sum_{e \in \mathsf{props}(\Gamma)} \overline{a}_e z_e \partial_e B \right] |_{U^{\Gamma}_{\mathsf{crit}[\log(B)]}},$$

ullet Let's consider syzygy equation on $U^{\Gamma}_{\mathrm{crit}[\log(B)]}$

$$0 = \left[a_0B + \underbrace{\sum_{e \in \mathsf{props}(\Gamma)} \tilde{a}_e z_e B + \sum_{i \in \mathsf{ISPs}(\Gamma)} a_i \partial_i B + \sum_{e \in \mathsf{props}(\Gamma)} \overline{a}_e z_e \partial_e B}_{=0}\right] |_{U^{\Gamma}_{\mathsf{crit}[\log(B)]}},$$

ullet Let's consider syzygy equation on $U^{\Gamma}_{\mathrm{crit}[\log(B)]}$

$$0 = \left[a_0 \underbrace{B}_{\neq 0} + \underbrace{\sum_{e \in \mathsf{props}(\Gamma)} \tilde{a}_e z_e B}_{\in \mathsf{ISPs}(\Gamma)} + \underbrace{\sum_{e \in \mathsf{props}(\Gamma)} \bar{a}_e z_e \partial_e B}_{=0}\right] |_{U^{\Gamma}_{\mathsf{crit}[\log(B)]}},$$

ullet Let's consider syzygy equation on $U^{\Gamma}_{\mathrm{crit}[\log(B)]}$

$$0 = \left[a_0 \underbrace{B}_{\neq 0} + \underbrace{\sum_{e \in \mathsf{props}(\Gamma)} \tilde{a}_e z_e B}_{\neq 0} + \underbrace{\sum_{i \in \mathsf{ISPs}(\Gamma)} a_i \partial_i B}_{=0} + \underbrace{\sum_{e \in \mathsf{props}(\Gamma)} \overline{a}_e z_e \partial_e B}_{=0}\right] |_{U^{\Gamma}_{\mathsf{crit}[\log(B)]}},$$

Simple vanishing condition for the a₀ term!

$$\Rightarrow a_0|_{U^\Gamma_{\operatorname{crit}[\log(B)]}} = 0.$$

ullet Let's consider syzygy equation on $U^{\Gamma}_{\mathrm{crit}[\log(B)]}$

$$0 = \left[a_0 \underbrace{B}_{\neq 0} + \underbrace{\sum_{e \in \mathsf{props}(\Gamma)} \tilde{a}_e z_e B}_{\neq 0} + \underbrace{\sum_{i \in \mathsf{ISPs}(\Gamma)} a_i \partial_i B}_{=0} + \underbrace{\sum_{e \in \mathsf{props}(\Gamma)} \overline{a}_e z_e \partial_e B}_{=0}\right] |_{U^{\Gamma}_{\mathsf{crit}[\log(B)]}},$$

• Simple vanishing condition for the a₀ term!

$$\Rightarrow a_0|_{U^\Gamma_{\operatorname{crit}[\log(B)]}} = 0.$$

Questions:

- This is a necessary condition. But is it sufficient?
- Can we use this to construct syzygies?

 \Rightarrow We turn to the theory of ideals.

Ben Page
From Critical Points to Syzygies for Feynman Integrals

Ideal Basics

Polynomial ideal is set of polynomial combinations of generators:

$$\langle p_1, \dots p_n \rangle = \left\{ \sum_i a_i p_i : a_i \in \mathbb{C}[z_1, \dots, z_N] \right\}.$$

Ideal Basics

Polynomial ideal is set of polynomial combinations of generators:

$$\langle p_1, \dots p_n \rangle = \left\{ \sum_i a_i p_i : a_i \in \mathbb{C}[z_1, \dots, z_N] \right\}.$$

Associated variety is zero set of generators:

$$V(\langle p_1,\ldots,p_n\rangle)=\{\vec{z}\in\mathbb{C}^N:p_i(\vec{z})=0\}.$$

Ideal Basics

Polynomial ideal is set of polynomial combinations of generators:

$$\langle p_1, \dots p_n \rangle = \left\{ \sum_i a_i p_i : a_i \in \mathbb{C}[z_1, \dots, z_N] \right\}.$$

Associated variety is zero set of generators:

$$V(\langle p_1,\ldots,p_n\rangle)=\{\vec{z}\in\mathbb{C}^N:p_i(\vec{z})=0\}.$$

Geometric operations on varieties correspond to operations on ideals:

intersection of ideals \leftrightarrow union of varieties

ideal quotients/saturations \leftrightarrow difference of varieties

. .

Ben Page
From Critical Points to Syzygies for Feynman Integrals

The Ideal of a_0 Terms

• The a_0 of a syzygy belongs to a set of terms, A_0^{Γ} .

$$\begin{split} A_0^\Gamma &= \left\{ \ a_0 \in R \ : \ a_0 B \in J_{\mathsf{syz}}^\Gamma \right\}, \\ J_{\mathsf{syz}}^\Gamma &= \left< \partial_i B \ : \ i \in \mathsf{ISPs}(\Gamma) \right> + \left< z_e B, z_e \partial_e B \ : \ e \in \mathsf{props}(\Gamma) \right>. \end{split}$$

The Ideal of a_0 Terms

• The a_0 of a syzygy belongs to a set of terms, A_0^{Γ} .

$$\begin{split} A_0^\Gamma &= \left\{ \ a_0 \in R \ : \ a_0 B \in J_{\mathsf{syz}}^\Gamma \right\}, \\ J_{\mathsf{syz}}^\Gamma &= \left< \partial_i B \ : \ i \in \mathsf{ISPs}(\Gamma) \right> + \left< z_e B, z_e \partial_e B \ : \ e \in \mathsf{props}(\Gamma) \right>. \end{split}$$

This can be interpreted as an "ideal quotient", i.e.

$$A_0^{\Gamma} = J_{\text{syz}}^{\Gamma} : \langle B \rangle.$$

The Ideal of a_0 Terms

• The a_0 of a syzygy belongs to a set of terms, A_0^{Γ} .

$$\begin{split} A_0^\Gamma &= \left\{ \ a_0 \in R \ : \ a_0 B \in J_{\mathsf{syz}}^\Gamma \right\}, \\ J_{\mathsf{syz}}^\Gamma &= \left< \partial_i B \ : \ i \in \mathsf{ISPs}(\Gamma) \right> + \left< z_e B, z_e \partial_e B \ : \ e \in \mathsf{props}(\Gamma) \right>. \end{split}$$

• This can be interpreted as an "ideal quotient", i.e.

$$A_0^{\Gamma} = J_{\mathsf{syz}}^{\Gamma} : \langle B \rangle.$$

Geometrically, ideal quotient used to remove subvarieties.

$$V(J_{\mathsf{syz}}^{\mathsf{\Gamma}}:\langle B
angle^{\mu}) = \overline{V(J_{\mathsf{syz}}^{\mathsf{\Gamma}}) \setminus V(\langle B
angle)}.$$

 \bullet Saturation index μ describes multiplicity of $B\!=\!0$ component of $J_{\rm syz}^{\Gamma}$

Ben Page From Critical Points to Syzygies for Feynman Integrals

Simplifying the A_0^{Γ} Ideal

• Can "split" J_{svz}^{Γ} up, using B factors as

$$J_{\mathsf{syz}}^{\Gamma} = \underbrace{\left(\langle \partial_i B : i \in \mathsf{ISPs}(\Gamma) \rangle + \langle z_e : e \in \mathsf{props}(\Gamma) \rangle \right)}_{J_{\mathsf{sing}}^{\Gamma}} \cap \underbrace{\left(J_{\mathsf{syz}}^{\Gamma} + \langle B^{\mu} \rangle \right)}_{J_{\mathsf{sing}}^{\subseteq \Gamma, \mu}}.$$

$$[\mathsf{BP, Song '25}]$$

Simplifying the A_0^{Γ} Ideal

• Can "split" J_{syz}^{Γ} up, using B factors as

$$J_{\mathsf{syz}}^{\Gamma} = \underbrace{\left(\langle \partial_i B : i \in \mathsf{ISPs}(\Gamma) \rangle + \langle z_e : e \in \mathsf{props}(\Gamma) \rangle \right)}_{J_{\mathsf{sing}}^{\Gamma}} \cap \underbrace{\left(J_{\mathsf{syz}}^{\Gamma} + \langle B^{\mu} \rangle \right)}_{J_{\mathsf{sing}}^{\subseteq \Gamma, \mu}}.$$

$$[\mathsf{BP, Song '25}]$$

• If $\mu = 1$, then second term in intersection is removed by quotient.

$$\mu = 1$$
 \Rightarrow $A_0^{\Gamma} = J_{\mathsf{crit}(B)}^{\Gamma} : \langle B^{\mu} \rangle.$

Simplifying the A_0^{Γ} Ideal

• Can "split" J_{syz}^{Γ} up, using B factors as

$$J_{\mathsf{syz}}^{\Gamma} = \underbrace{\left(\langle \partial_i B : i \in \mathsf{ISPs}(\Gamma) \rangle + \langle z_e : e \in \mathsf{props}(\Gamma) \rangle \right)}_{J_{\mathsf{sing}}^{\Gamma}} \cap \underbrace{\left(J_{\mathsf{syz}}^{\Gamma} + \langle B^{\mu} \rangle \right)}_{J_{\mathsf{sing}}^{\subseteq \Gamma, \mu}}.$$

$$[\mathsf{BP, Song '25}]$$

• If $\mu = 1$, then second term in intersection is removed by quotient.

$$\mu = 1 \qquad \Rightarrow \qquad A_0^{\Gamma} = J_{\operatorname{crit}(B)}^{\Gamma} : \langle B^{\mu} \rangle.$$

> Vanishing condition is generally necessary, but not sufficient.

$$A_0^{\Gamma} \subseteq I(U_{\operatorname{crit}[\log(B)]}).$$

Total Derivatives from Critical Points

A_0^{Γ} and Master Integral Counting

• The a₀ terms are intimately related to number of master integrals.

$$H_{\Gamma} = R/(\mathsf{Surface}[\Gamma] + \langle z_e : e \in \mathsf{props}[\Gamma] \rangle)$$
.

• If $U_{\text{crit}[\log(B)]}^{\Gamma}$ is set of points, they count number of master integrals:

$$\dim(U^{\Gamma}_{\mathsf{crit}[\mathsf{log}(B)]}) = 0 \quad \Rightarrow \quad \dim_{\mathbb{C}}(H_{\Gamma}) = \dim_{\mathbb{C}}(R/[J^{\Gamma}_{\mathsf{crit}(B)} : \langle B^{\mu} \rangle]).$$
[Lee, Pomeransky '13]

A_0^{Γ} and Master Integral Counting

• The a₀ terms are intimately related to number of master integrals.

$$H_{\Gamma} = R/(\mathsf{Surface}[\Gamma] + \langle z_e : e \in \mathsf{props}[\Gamma] \rangle)$$
.

• If $U_{\text{crit}[\log(B)]}^{\Gamma}$ is set of points, they count number of master integrals:

$$\dim(U^{\Gamma}_{\mathsf{crit}[\mathsf{log}(B)]}) = 0 \quad \Rightarrow \quad \dim_{\mathbb{C}}(H_{\Gamma}) = \dim_{\mathbb{C}}(R/[J^{\Gamma}_{\mathsf{crit}(B)} : \langle B^{\mu} \rangle]).$$
[Lee, Pomeransky '13]

• If $\mu=1$ max-cut surface terms in one-to-one correspondence with $A_0^\Gamma!$

$$A_0^{\Gamma} \simeq \mathsf{Surface}(\Gamma) + \langle z_e : e \in \mathsf{props}(\Gamma) \rangle.$$

[BP, Song '25]

Critical Syzygies

• Intuition: need only surface terms independent as $\epsilon \to \infty$, max-cut.

$$\mathsf{Surface}(\Gamma)|_{\mathsf{cut}} \ \simeq \ \lim_{\epsilon \to \infty} \mathsf{Surface}(\Gamma)|_{\mathsf{cut}}.$$

Critical Syzygies

• Intuition: need only surface terms independent as $\epsilon \to \infty$, max-cut.

$$\mathsf{Surface}(\Gamma)|_{\mathsf{cut}} \ \simeq \ \lim_{\epsilon \to \infty} \mathsf{Surface}(\Gamma)|_{\mathsf{cut}}.$$

• This gives us a natural equivalence relation on $Syz(\Gamma)$.

$$\vec{a}_1 \sim \vec{a}_2 \leftrightarrow \lim_{\epsilon \to \infty} S_{\Gamma}(\vec{a}_1)|_{z_e=0} = \lim_{\epsilon \to \infty} S_{\Gamma}(\vec{a}_2)|_{z_e=0}.$$

Critical Syzygies

• Intuition: need only surface terms independent as $\epsilon \to \infty$, max-cut.

$$\mathsf{Surface}(\Gamma)|_{\mathsf{cut}} \ \simeq \ \lim_{\epsilon \to \infty} \mathsf{Surface}(\Gamma)|_{\mathsf{cut}}.$$

• This gives us a natural equivalence relation on $Syz(\Gamma)$.

$$ec{a_1} \sim ec{a_2} \leftrightarrow \lim_{\epsilon \to \infty} S_{\Gamma}(ec{a_1})|_{z_e=0} = \lim_{\epsilon \to \infty} S_{\Gamma}(ec{a_2})|_{z_e=0}.$$

• Define "critical syzygies" as inequivalent syzygies under \sim .

$$\mathsf{CSyz}(\Gamma) = \mathsf{Syz}(\Gamma)/\sim$$
 .

Ben Page **UGent** 18/27

Critical Surface Terms

Set of critical syzygies is "much smaller" than standard syzygies:

$$\mathsf{CSyz}(\Gamma) \simeq \underbrace{\mathcal{A}_0^{\Gamma}/\langle z_e : e \in \mathsf{props}(\Gamma) \rangle}_{\mathsf{single-element, on-shell}}.$$

Critical Surface Terms

Set of critical syzygies is "much smaller" than standard syzygies:

$$\mathsf{CSyz}(\Gamma) \simeq \underbrace{\mathcal{A}_0^{\Gamma}/\langle z_e : e \in \mathsf{props}(\Gamma) \rangle}_{\mathsf{single-element, on-shell}}.$$

Motivated to build surface terms from critical syzygies

$$\mathsf{CSyzSurface}(\Gamma) = \{ S_{\Gamma}(\vec{a}) : \vec{a} \in \mathsf{CSyz}(\Gamma) \}.$$

Critical Surface Terms

Set of critical syzygies is "much smaller" than standard syzygies:

$$\mathsf{CSyz}(\Gamma) \simeq \underbrace{\mathcal{A}_0^{\Gamma}/\langle z_e : e \in \mathsf{props}(\Gamma) \rangle}_{\mathsf{single-element, on-shell}}.$$

Motivated to build surface terms from critical syzygies

$$\mathsf{CSyzSurface}(\Gamma) = \{ S_{\Gamma}(\vec{a}) : \vec{a} \in \mathsf{CSyz}(\Gamma) \}.$$

ullet By construction, if $\dim(U^{\Gamma}_{\mathrm{crit}[\log(B)]})=0,$ and the multiplicity, $\mu=1$,

$$\mathsf{CSyzSurface}(\Gamma) \simeq \mathsf{Surface}(\Gamma)/(\mathsf{Surface}(\Gamma) \cap \langle z_e : e \in \mathsf{props}(\Gamma) \rangle).$$

 \Rightarrow CSyzSurface(Γ) is complete up to surface terms from pinches.

Concrete Studies

• Goal: explicit generating set of $CSyz(\Gamma)$.

$$\mathsf{CSyz}(\Gamma) = \langle \vec{a}^{(1)}, \ldots \rangle, \qquad \vec{a}_0^{(i)} \in A_0^{\Gamma}.$$

Goal: explicit generating set of CSyz(Γ).

$$\mathsf{CSyz}(\Gamma) = \langle \bar{a}^{(1)}, \ldots \rangle, \qquad \bar{a}_0^{(i)} \in A_0^{\Gamma}.$$

• Can show: cut Baikov is non-singular \Rightarrow only "principal" solutions.

$$U_{\mathsf{sing}}^{\Gamma} = \emptyset \qquad \Rightarrow \qquad A_0^{\Gamma} = J_{\mathsf{crit}(B)}^{\Gamma}.$$

[See also: Zhang '16]

Goal: explicit generating set of CSyz(Γ).

$$\mathsf{CSyz}(\Gamma) = \langle \vec{a}^{(1)}, \ldots \rangle, \qquad \vec{a}_0^{(i)} \in A_0^{\Gamma}.$$

Can show: cut Baikov is non-singular ⇒ only "principal" solutions.

$$U_{\mathsf{sing}}^{\Gamma} = \emptyset \qquad \Rightarrow \qquad A_0^{\Gamma} = J_{\mathsf{crit}(B)}^{\Gamma}.$$

[See also: Zhang '16]

• In this case, a generating set of $CSyz(\Gamma)$ is

$$a_0 = \partial_i B$$
, $a_i = -B$, $a_{j \neq i} = 0$, and $\tilde{a}_e = \overline{a}_e = 0$.

Goal: explicit generating set of CSyz(Γ).

$$\mathsf{CSyz}(\Gamma) = \langle \vec{a}^{(1)}, \ldots \rangle, \qquad \vec{a}_0^{(i)} \in A_0^{\Gamma}.$$

Can show: cut Baikov is non-singular ⇒ only "principal" solutions.

$$U_{\mathsf{sing}}^{\Gamma} = \emptyset \qquad \Rightarrow \qquad A_0^{\Gamma} = J_{\mathsf{crit}(B)}^{\Gamma}.$$

[See also: Zhang '16]

• In this case, a generating set of $CSyz(\Gamma)$ is

$$a_0 = \partial_i B, \quad a_i = -B, \quad a_{j \neq i} = 0, \quad \text{and} \quad \widetilde{a}_e = \overline{a}_e = 0.$$

In general, finding a generating set is hard. ⇒ Go computational.

Ben Page
From Critical Points to Syzygies for Feynman Integrals

One Loop

One-loop Baikov polynomial is a quadric ⇒ general analysis tractable.

$$B(\vec{z}) = \frac{1}{2} (\vec{z_i}, \vec{z_e}, 1) \begin{pmatrix} \mathcal{H}_{\Gamma} & X & \vec{\mathcal{B}_i} \\ X^T & O & \vec{\mathcal{B}_e} \\ \vec{\mathcal{B}_i}^T & \vec{\mathcal{B}_e}^T & \mathcal{B}_0 \end{pmatrix} \begin{pmatrix} \vec{z_i} \\ \vec{z_e} \\ 1 \end{pmatrix}.$$

One Loop

• One-loop Baikov polynomial is a quadric \Rightarrow general analysis tractable.

$$B(\vec{z}) = \frac{1}{2} (\vec{z}_i, \vec{z}_e, 1) \begin{pmatrix} \mathcal{H}_{\Gamma} & X & \vec{\mathcal{B}}_i \\ X^T & O & \vec{\mathcal{B}}_e \\ \vec{\mathcal{B}}_i^T & \vec{\mathcal{B}}_e^T & \mathcal{B}_0 \end{pmatrix} \begin{pmatrix} \vec{z}_i \\ \vec{z}_e \\ 1 \end{pmatrix}.$$

• If \mathcal{H}_{Γ} is invertible, $B(\vec{z}) = 0$ is singular variety if

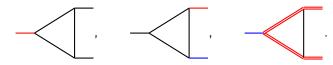
$$0 = B|_{U_{\text{crit}(B)}^{\Gamma}} = \underbrace{\mathcal{B}_0 - \vec{\mathcal{B}_i}^T \mathcal{H}_{\Gamma}^{-1} \vec{\mathcal{B}_i}}_{\text{"Cayley determinant"}}.$$

• "Most cases" have Cayley $\neq 0$ (box, bubble, pentagon ...).

Ben Page
From Critical Points to Syzygies for Feynman Integrals

Singular Cases at One Loop

Cayley= 0 cases associated to IR divergent triangles



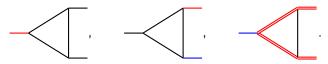
• Explicit calculation required, e.g. for massless triangle

$$S_{\Gamma}(\vec{a}) = -2s^2 - 8z_2(s + z_2 - [z_1 + z_3])\left(1 - \frac{1}{\gamma}\right) + \frac{s}{\gamma}(z_1 + z_3 + 2z_2).$$

UGent

Singular Cases at One Loop

Cayley= 0 cases associated to IR divergent triangles



Explicit calculation required, e.g. for massless triangle

$$S_{\Gamma}(\vec{a}) = -2s^2 - 8z_2(s + z_2 - [z_1 + z_3])\left(1 - \frac{1}{\gamma}\right) + \frac{s}{\gamma}(z_1 + z_3 + 2z_2).$$

• \mathcal{H}_{Γ} not invertible if Gram determinant is zero, e.g. $p^2 = 0$ bubble,

• In this case, $\dim(U^{\Gamma}_{\operatorname{crit}(\log(B))}) = 1 \Rightarrow$ critical syzygies insufficient.

Two-Loop

- At two loops, B=0 is always singular on cut, i.e. $U_{\text{sing}}^{\Gamma} \neq \emptyset$.
- ullet Four-dimensional locus is always (codim 3) sub-variety of $U_{
 m sing}^{\Gamma}$

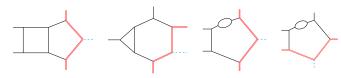
$$V(\langle \mu_{ij} \rangle) \subseteq U_{\mathsf{sing}}^{\Gamma}, \qquad \mu_{ij} = G \left(\begin{array}{cccc} \ell_i & p_1 & p_2 & p_3 & p_4 \\ \ell_j & p_1 & p_2 & p_3 & p_4 \end{array} \right).$$

• ⇒ Non-trivial critical syzygies are unavoidable. Hard problem!

Here, we construct them computationally. [See paper for algorithm].

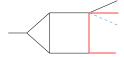
Leading-Color $pp o t\overline{t}H$ Light Quark Loop

Built critical surface terms* for all (sub-)topologies of



*Implemented in Caravel and checked against FIRE.

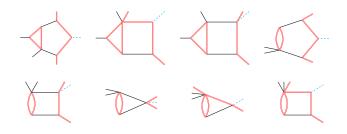
- $\dim(U^{\Gamma}_{\operatorname{crit}[\log(B)]}) = 0$ everywhere. $\mu = 1$ almost everywhere.
- ullet Single case where $\mu>1$. (Interestingly: only 1 surface term missing).



Insufficient surface terms from syzygies, needs "higher seeding".

Leading-Color $pp o t \overline{t} H$ Heavy Quark Loop Pentabox

• A number of cases where $U^{\Gamma}_{\operatorname{crit}[\log(B)]}$ is not zero-dimensional.



- Interestingly: $\dim(U^{\Gamma}_{\operatorname{crit}[\log(B)]})=1$, maybe simple?
- ullet Require analyzing syzygies with $a_0=0$, "sub-critical syzygies".

Conclusions

Summary:

- Large- ϵ limit surface terms vanish on critical points of the twist.
- Syzygy equation gives "lift" from large to finite ϵ .
- Critical syzygy formalism singles out minimal set of total derivatives.

Conclusions

Summary:

- Large- ϵ limit surface terms vanish on critical points of the twist.
- Syzygy equation gives "lift" from large to finite ϵ .
- Critical syzygy formalism singles out minimal set of total derivatives.

Outlook:

- Can we construct analytic $CSyz(\Gamma)$ generators from geometry?
- Natural step: "sub-critical" syzygies, when $\dim(U^{\Gamma}_{\operatorname{crit}[\log(B)]}) > 0$.

Geometrical significance of J_{syz}^{Γ}

• $V(J_{\text{syz}}^{\Gamma})$ splits into subvarieties where $B=0,\ B\neq 0.$

$$U_{\mathsf{syz}}^{\mathsf{\Gamma}} = \left[\bigcup_{\mathsf{\Gamma}_k \subseteq \mathsf{\Gamma}} U_{\mathsf{sing}}^{\mathsf{\Gamma}_k} \right] \cup U_{\mathsf{crit}[\mathsf{log}(B)]}^{\mathsf{\Gamma}}.$$

• First set of varieties correspond to singular loci of B=0 on cuts.

$$B=0, \qquad \partial_i B=0 \ : \ i \in \mathsf{ISPs}(\Gamma_k), \qquad z_e=0 \ : \ e \in \mathsf{props}(\Gamma_k).$$

Second variety corresponds to critical locus of log(B) on max cut.

$$\partial_i \log(B) = 0 : i \in \mathsf{ISPs}(\Gamma), \qquad z_e = 0 : e \in \mathsf{props}(\Gamma).$$