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Motivation

Cutting-edge Feynman diagrams for colliders have gigantic integrand

∼ 100MB.

Practical calculations reduce to basis of “master integrals”:

Ii =
∑

j∈masters

cijIj .

Important question: how do we explicitly compute the cij?

Many talks focusing on this: [Gaia, Seva, Giacomo, Stefano, Rourou, Tiziano, Catherine]
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Studying Feynman Integral Reduction

In appropriate representation (e.g. Baikov), total derivatives vanish∫
dω = 0.

[Tkachov, Chetyrkin ’81]

Feynman integrals live in (appropriate) cohomology groups:

Ii ∈ HΓ, HΓ = ΩN/im(d).

Two major strategies for integral reduction.

Indirect: “Integration by parts”

Explicitly construct im(d).

“Mod out” with linear algebra.

[Laporta ’00]

Direct: “Intersection theory”

Ik =

∫
ϕk −→ ⟨ϕiϕj⟩.

[Mastrolia, Mizera ’18]
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A Natural Question

Can the two approaches teach us about each other?

“⟨ϕaϕb⟩′′ ←→ “im(d)′′?

This talk: if we construct im(d) from syzygies, then yes!
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Setup: Baikov Representation and Syzygies
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Feynman Integrals in the Baikov Representation

∫
C
dNz⃗

[
B(s⃗, z⃗)γ

N (s⃗, z⃗)∏
e∈props(Γ) ze

]
.

Set of propagators in described by graph Γ, e.g. Γ = .

Baikov variables split into “propagators” (edges) and ISPs:

{z1, . . . , zN} = {ze : e ∈ props(Γ)} ⊔ {zi : i ∈ ISPs(Γ)}.

Function of kinematics s⃗, and regulator ϵ through γ = γ0 + γ1ϵ.

Complexity in “Baikov polynomial”, degz(B[s⃗, z⃗ ]) = 2× (# loops).
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Surface Terms in the Baikov Representation

Physical integrands have restricted denominator. Live in ΩN subspace.

=

∫
d11z

[
B(z⃗)γN (z1, . . . , z11)

z1 · · · z9

]
.

Want corresponding subspace of im(d) ⇒ “Surface terms”.

Surface(Γ) =

{
S ∈ R :

BγS∏
e∈props(Γ) ze

= ∂k

[
Bγ−∆ ak∏

e∈props(Γ) z
βe
e

]}
.

[Ita ’15]

Total derivatives specified by polynomial S in

R = C(pi · pj ,m2
k , ϵ)[z1, . . . , zN ].
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Baikov Representation Syzygies and Surface Terms

Organize surface terms by constructing them from “syzygy equation”

a0B +
∑

e∈props(Γ)

ãezeB +
∑

i∈ISPs(Γ)

ai∂iB +
∑

e∈props(Γ)

aeze∂eB = 0.

[Gluza, Kajda, Kosower ’09; Ita ’15; Zhang, Larsen ’15]

Set of solutions a⃗ form so-called “syzygy module”, Syz(Γ).

λi ∈ R, a⃗i ∈ Syz(Γ) ⇒ λ1a⃗1 + λ2a⃗2 ∈ Syz(Γ).

Each element a⃗ ∈ Syz(Γ) corresponds to an S ∈ Surface(Γ):

SΓ(a⃗) = a0 +
∑

e∈props(Γ)

ãeze −
1

γ

 ∑
i∈ISPs(Γ)

∂iai +
∑

e∈props(Γ)

(ze∂eae)

 .
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Syzygies and Critical Points
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An Intriguing Connection

As ϵ→∞, intersection numbers simplify: (NB, max-cut)

⟨ϕaϕb⟩ =
∑

z⃗i :dlog(B)=0

ϕ̂aϕ̂b

det(Φ)

∣∣∣∣∣
z⃗i

+O(ϵ−1).

[Mizera, Pokraka ’19],

New observation: surface terms also simplify!

SΓ(a⃗)|ze=0 = a0|ze=0 + O(ϵ−1).

[BP, Song ’25],

Max-cut a0 is relevant term. Is piece of the syzygy.

“Calculus becomes algebra” in limit.
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Critical Points

Solution set of d log(B) = 0 specifies algebraic variety, UΓ
crit[log(B)],

∂iB = 0, i ∈ ISPs(Γ), ze = 0, e ∈ props(Γ), B ̸= 0.

As a toy example (implicitly on cut): B = y2 − x2(1− x),

∂xB = 0

∂yB = 0

UΓ
sing(B)

UΓ
crit[log(B)]

B = 0

Ben Page UGent

From Critical Points to Syzygies for Feynman Integrals 11/27



Critical Points

Solution set of d log(B) = 0 specifies algebraic variety, UΓ
crit[log(B)],

∂iB = 0, i ∈ ISPs(Γ), ze = 0, e ∈ props(Γ), B ̸= 0.

As a toy example (implicitly on cut): B = y2 − x2(1− x),

∂xB = 0

∂yB = 0

UΓ
sing(B)

UΓ
crit[log(B)]

B = 0

Ben Page UGent

From Critical Points to Syzygies for Feynman Integrals 11/27



The Syzygy on Critical Points

Let’s consider syzygy equation on UΓ
crit[log(B)]

0 =
[
a0B +

∑
e∈props(Γ)

ãezeB +
∑

i∈ISPs(Γ)

ai∂iB +
∑

e∈props(Γ)

aeze∂eB
]
|UΓ

crit[log(B)]
,

Simple vanishing condition for the a0 term!

⇒ a0|UΓ
crit[log(B)]

= 0.

Questions:

This is a necessary condition. But is it sufficient?

Can we use this to construct syzygies?

⇒ We turn to the theory of ideals.
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Ideal Basics

Polynomial ideal is set of polynomial combinations of generators:

⟨p1, . . . pn⟩ =

{∑
i

aipi : ai ∈ C[z1, . . . , zN ]

}
.

Associated variety is zero set of generators:

V (⟨p1, . . . , pn⟩) = {z⃗ ∈ CN : pi (z⃗) = 0}.

Geometric operations on varieties correspond to operations on ideals:

intersection of ideals ↔ union of varieties

ideal quotients/saturations ↔ difference of varieties
· · ·

Ben Page UGent

From Critical Points to Syzygies for Feynman Integrals 13/27



Ideal Basics

Polynomial ideal is set of polynomial combinations of generators:

⟨p1, . . . pn⟩ =

{∑
i

aipi : ai ∈ C[z1, . . . , zN ]

}
.

Associated variety is zero set of generators:

V (⟨p1, . . . , pn⟩) = {z⃗ ∈ CN : pi (z⃗) = 0}.

Geometric operations on varieties correspond to operations on ideals:

intersection of ideals ↔ union of varieties

ideal quotients/saturations ↔ difference of varieties
· · ·

Ben Page UGent

From Critical Points to Syzygies for Feynman Integrals 13/27



Ideal Basics

Polynomial ideal is set of polynomial combinations of generators:

⟨p1, . . . pn⟩ =

{∑
i

aipi : ai ∈ C[z1, . . . , zN ]

}
.

Associated variety is zero set of generators:

V (⟨p1, . . . , pn⟩) = {z⃗ ∈ CN : pi (z⃗) = 0}.

Geometric operations on varieties correspond to operations on ideals:

intersection of ideals ↔ union of varieties

ideal quotients/saturations ↔ difference of varieties
· · ·

Ben Page UGent

From Critical Points to Syzygies for Feynman Integrals 13/27



The Ideal of a0 Terms

The a0 of a syzygy belongs to a set of terms, AΓ
0.

AΓ
0 =

{
a0 ∈ R : a0B ∈ JΓsyz

}
,

JΓsyz = ⟨∂iB : i ∈ ISPs(Γ)⟩+ ⟨zeB, ze∂eB : e ∈ props(Γ)⟩.

This can be interpreted as an “ideal quotient”, i.e.

AΓ
0 = JΓsyz : ⟨B⟩.

Geometrically, ideal quotient used to remove subvarieties.

V (JΓsyz : ⟨B⟩µ) = V (JΓsyz) \ V (⟨B⟩).

Saturation index µ describes multiplicity of B=0 component of JΓsyz.
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Simplifying the AΓ
0 Ideal

Can “split” JΓsyz up, using B factors as

JΓsyz = (⟨∂iB : i ∈ ISPs(Γ)⟩+ ⟨ze : e ∈ props(Γ)⟩)︸ ︷︷ ︸
JΓ
crit(B)

∩
(
JΓsyz + ⟨Bµ⟩

)
︸ ︷︷ ︸

J⊆Γ,µ
sing

.

[BP, Song ’25]

If µ = 1, then second term in intersection is removed by quotient.

µ = 1 ⇒ AΓ
0 = JΓcrit(B) : ⟨B

µ⟩.

⇒ Vanishing condition is generally necessary, but not sufficient.

AΓ
0 ⊆ I (Ucrit[log(B)]).
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Total Derivatives from Critical Points
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AΓ
0 and Master Integral Counting

The a0 terms are intimately related to number of master integrals.

HΓ = R/(Surface[Γ] + ⟨ze : e ∈ props[Γ]⟩) .

If UΓ
crit[log(B)] is set of points, they count number of master integrals:

dim(UΓ
crit[log(B)]) = 0 ⇒ dimC(HΓ) = dimC(R/[J

Γ
crit(B) : ⟨B

µ⟩]).
[Lee, Pomeransky ’13]

If µ = 1 max-cut surface terms in one-to-one correspondence with AΓ
0!

AΓ
0 ≃ Surface(Γ) + ⟨ze : e ∈ props(Γ)⟩.

[BP, Song ’25]
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Critical Syzygies

Intuition: need only surface terms independent as ϵ→∞, max-cut.

Surface(Γ)|cut ≃ lim
ϵ→∞

Surface(Γ)|cut.

This gives us a natural equivalence relation on Syz(Γ).

a⃗1 ∼ a⃗2 ↔ lim
ϵ→∞

SΓ(a⃗1)|ze=0 = lim
ϵ→∞

SΓ(a⃗2)|ze=0.

Define “critical syzygies” as inequivalent syzygies under ∼.

CSyz(Γ) = Syz(Γ)/∼ .
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Critical Surface Terms

Set of critical syzygies is “much smaller” than standard syzygies:

CSyz(Γ) ≃ AΓ
0/⟨ze : e ∈ props(Γ)⟩︸ ︷︷ ︸
single-element, on-shell

.

Motivated to build surface terms from critical syzygies

CSyzSurface(Γ) = {SΓ(a⃗) : a⃗ ∈ CSyz(Γ)}.

By construction, if dim(UΓ
crit[log(B)]) = 0, and the multiplicity, µ = 1,

CSyzSurface(Γ) ≃ Surface(Γ)/(Surface(Γ) ∩ ⟨ze : e ∈ props(Γ)⟩).

⇒ CSyzSurface(Γ) is complete up to surface terms from pinches.
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Concrete Studies
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Building CSyz(Γ), preliminaries.

Goal: explicit generating set of CSyz(Γ).

CSyz(Γ) = ⟨a⃗(1), . . .⟩, a⃗
(i)
0 ∈ AΓ

0.

Can show: cut Baikov is non-singular ⇒ only “principal” solutions.

UΓ
sing = ∅ ⇒ AΓ

0 = JΓcrit(B).

[See also: Zhang ’16]

In this case, a generating set of CSyz(Γ) is

a0 = ∂iB, ai = −B, aj ̸=i = 0, and ãe = ae = 0.

In general, finding a generating set is hard. ⇒ Go computational.
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One Loop

One-loop Baikov polynomial is a quadric ⇒ general analysis tractable.

B(z⃗) =
1

2
(z⃗i , z⃗e , 1)

 HΓ X B⃗i
XT O B⃗e
B⃗i

T B⃗e
T B0


 z⃗i

z⃗e
1

 .

If HΓ is invertible, B(z⃗) = 0 is singular variety if

0 = B|UΓ
crit(B)

= B0 − B⃗i
TH−1

Γ B⃗i︸ ︷︷ ︸
“Cayley determinant”

.

“Most cases” have Cayley ̸= 0 (box, bubble, pentagon ...).
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Singular Cases at One Loop

Cayley= 0 cases associated to IR divergent triangles

, , .

Explicit calculation required, e.g. for massless triangle

SΓ(a⃗) = −2s2 − 8z2(s + z2 − [z1 + z3])

(
1− 1

γ

)
+

s

γ
(z1 + z3 + 2z2).

HΓ not invertible if Gram determinant is zero, e.g. p2 = 0 bubble,

.

In this case, dim(UΓ
crit(log(B))) = 1 ⇒ critical syzygies insufficient.
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Two-Loop

At two loops, B = 0 is always singular on cut, i.e. UΓ
sing ̸= ∅.

Four-dimensional locus is always (codim 3) sub-variety of UΓ
sing.

V (⟨µij⟩) ⊆ UΓ
sing, µij = G

(
ℓi p1 p2 p3 p4
ℓj p1 p2 p3 p4

)
.

⇒ Non-trivial critical syzygies are unavoidable. Hard problem!

Here, we construct them computationally. [See paper for algorithm].
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Leading-Color pp → ttH Light Quark Loop

Built critical surface terms∗ for all (sub-)topologies of

∗Implemented in Caravel and checked against FIRE.

dim(UΓ
crit[log(B)]) = 0 everywhere. µ = 1 almost everywhere.

Single case where µ > 1. (Interestingly: only 1 surface term missing).

Insufficient surface terms from syzygies, needs “higher seeding”.

Ben Page UGent

From Critical Points to Syzygies for Feynman Integrals 25/27



Leading-Color pp → ttH Heavy Quark Loop Pentabox

A number of cases where UΓ
crit[log(B)] is not zero-dimensional.

Interestingly: dim(UΓ
crit[log(B)]) = 1, maybe simple?

Require analyzing syzygies with a0 = 0, “sub-critical syzygies”.
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Conclusions

Summary:

Large-ϵ limit surface terms vanish on critical points of the twist.

Syzygy equation gives “lift” from large to finite ϵ.

Critical syzygy formalism singles out minimal set of total derivatives.

Outlook:

Can we construct analytic CSyz(Γ) generators from geometry?

Natural step: “sub-critical” syzygies, when dim(UΓ
crit[log(B)]) > 0.
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Geometrical significance of JΓsyz

V (JΓsyz) splits into subvarieties where B = 0, B ̸= 0.

UΓ
syz =

 ⋃
Γk⊆Γ

UΓk
sing

 ∪ UΓ
crit[log(B)].

First set of varieties correspond to singular loci of B = 0 on cuts.

B = 0, ∂iB = 0 : i ∈ ISPs(Γk), ze = 0 : e ∈ props(Γk).

Second variety corresponds to critical locus of log(B) on max cut.

∂i log(B) = 0 : i ∈ ISPs(Γ), ze = 0 : e ∈ props(Γ).
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