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o Cutting-edge Feynman diagrams for colliders have gigantic integrand

oo ~ 100MB.

@ Practical calculations reduce to basis of “master integrals”:

I,' = Z C,'jIj.

jEmasters

Important question: how do we explicitly compute the ¢;;? J

Many talks focusing on this: [Gaia, Seva, Giacomo, Stefano, Rourou, Tiziano, Catherine]
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Studying Feynman Integral Reduction

@ In appropriate representation (e.g. Baikov), total derivatives vanish

/dw =0.
[Tkachov, Chetyrkin '81]

e Feynman integrals live in (appropriate) cohomology groups:
Z; € Hr, Hr = QN /im(d).
@ Two major strategies for integral reduction.

Direct: “Intersection theory"”

Indirect: “Integration by parts”

Explicitly construct im(d).
“Mod out” with linear algebra.
[Laporta '00]

Ik=/¢k —  {(9io))-

[Mastrolia, Mizera '18]
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A Natural Question

Can the two approaches teach us about each other?

“(Datbp)” — “im(d)"?

This talk: if we construct im(d) from syzygies, then yes! J
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Setup: Baikov Representation and Syzygies
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Feynman Integrals in the Baikov Representation
/ng B(s, Z)VA/M] _
C

Heeprops(r) Ze
Set of propagators in described by graph I, eg. I = -CE?— )

@ Baikov variables split into “propagators” (edges) and ISPs:

{z1,...,z2n} = {ze e € props(N) } L {z : i € ISPs(I")}.

Function of kinematics s, and regulator € through v = o + 71e.

Complexity in "Baikov polynomial”, deg, (B[S, z]) = 2 x (# loops).
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Surface Terms in the Baikov Representation

e Physical integrands have restricted denominator. Live in QN subspace.

) [B(Z)VJ\/'(ZL . ,211)] '

Zl...29

e Want corresponding subspace of im(d) = “Surface terms”.

B”Y
Surface(l') = {S €ER : __Bs — 0 [Bv—AakB] }
HeEprOps(r) Ze HeEprops(r) zbe

[Ita '15]

o Total derivatives specified by polynomial & in
R = C(p; - pj, mi, €)[z1, ..., zn].
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Baikov Representation Syzygies and Surface Terms

@ Organize surface terms by constructing them from “syzygy equation”

B+ Y GezeB+ > a0iB+ Y 3.z.0.B=0.
ecprops(l') i€lSPs(I") ecprops(l’)

[Gluza, Kajda, Kosower '09; Ita '15; Zhang, Larsen '15]
@ Set of solutions & form so-called “syzygy module”, Syz(I).

AN ER, & e Syz(l') = ANa1+ b € SyZ(r).

@ Each element 3 € Syz(I') corresponds to an S € Surface(I'):

S@=a+ 3 Gz-—| 3 o+ S

ecprops(I') i€lSPs(I’ eeprops(r)
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Syzygies and Critical Points
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An Intriguing Connection

@ As e — oo, intersection numbers simplify: (NB, max-cut)

A

<¢a¢b> _ Z ¢a¢b

-1
) det(®) + O(e™ ).
Z;:dlog(B)=0

Zj

[Mizera, Pokraka '19],
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An Intriguing Connection

@ As e — oo, intersection numbers simplify: (NB, max-cut)

A

$ad
(@a) = D det(QI;)
Z;:dlog(B)=0

+0(eh).

Z;
[Mizera, Pokraka '19],

@ New observation: surface terms also simplify!

5r(d)|,,0 = a0l + O(e™).

[BP, Song '25],
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An Intriguing Connection

@ As e — oo, intersection numbers simplify: (NB, max-cut)

A

$ad
(Gadp) = D det(QI;)
Z;:dlog(B)=0

+0(eh).

Z;
[Mizera, Pokraka '19],

@ New observation: surface terms also simplify!

5r(d)|,,0 = a0l + O(e™).

[BP, Song '25],

@ Max-cut ag is relevant term. Is piece of the syzygy.

“Calculus becomes algebra” in limit. )
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Critical Points

@ Solution set of dlog(B) = 0 specifies algebraic variety, Ucrrit“og(B)],

0iB=0, ielSPs(l), ze=0, ecprops(l), B#0.
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Critical Points

@ Solution set of dlog(B) = 0 specifies algebraic variety, Ucrrit“og(B)],
0iB=0, ielSPs(l), ze=0, ecprops(l), B#0.

@ As a toy example (implicitly on cut): B =y?—x*(1-x),

okB=0

9,B=0

r
Ucrit[log(B)]
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The Syzygy on Critical Points

@ Let's consider syzygy equation on Ucrrit[log(B)]

0:[30134r S szB+ Y a0B+ Y EezeaeBhUr :

crit[log(B)]
ecprops(I) i€ISPs(I) ecprops(I)
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The Syzygy on Critical Points

o Let’'s consider syzygy equation on Ucrrit[bg(B)]

0= [aoB-l- Z dezeB + Z ai0;B + Z EeZeaeB:||Ucrrit[log(B)]’

eeprops(IN) i€ISPs(T) e€props(I)

=0
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The Syzygy on Critical Points

o Let’'s consider syzygy equation on Ucrrit[bg(s)]

0=[a0 B+ > dzB+ Y adB+ Y FezdeB|ly, . .

#0 eeprops(IN) i€ISPs(T) eeprops(IN)

=0
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The Syzygy on Critical Points

o Let’'s consider syzygy equation on Ucrrit[bg(s)]

0=[a0 B+ > dzB+ Y adB+ Y FezdeB|ly, . .

#0 eeprops(IN) i€ISPs(T) eeprops(IN)

=0

@ Simple vanishing condition for the ag term!

= a =
0 ’ Ucrrit[log(B)]
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The Syzygy on Critical Points

o Let’'s consider syzygy equation on Ucrrit[bg(s)]

0=[a0 B+ > dzB+ Y adB+ Y FezdeB|ly, . .

#0 eeprops(IN) i€ISPs(T) eeprops(IN)

=0

@ Simple vanishing condition for the ag term!

= a =
0 ’ Ucrrit[log(B)]

Questions:

@ This is a necessary condition. But is it sufficient?

@ Can we use this to construct syzygies?

= We turn to the theory of ideals.
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Ideal Basics

@ Polynomial ideal is set of polynomial combinations of generators:

(p1,...pn) = Zaipi 2 a; €Clz, ..., zn]
i
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Ideal Basics

@ Polynomial ideal is set of polynomial combinations of generators:

(P1,-..pn) = {Zaipi D a EC[Zl,--~,ZN]}-

@ Associated variety is zero set of generators:

V({p1,....pn)) ={Z€C": pi(2) = 0}.
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Ideal Basics

@ Polynomial ideal is set of polynomial combinations of generators:

(p1,...pn) = Zaipi o aj € Clzy, ..., zn]
i
@ Associated variety is zero set of generators:
V(<P1, cee 7pn>) = {ZE CN : P,(Z) = 0}

@ Geometric operations on varieties correspond to operations on ideals:

intersection of ideals <+ union of varieties

ideal quotients/saturations < difference of varieties

Ben Page

From Critical Points to Syzygies for Feynman Integrals



The ldeal of ay Terms

@ The ag of a syzygy belongs to a set of terms, Ag.

Agz{aoeR . aB e I }

syz

S =(9iB : i €ISPs(I) + (zeB, z.0.B : e & props(I)).

syz

Ben Page

From Critical Points to Syzygies for Feynman Integrals



The ldeal of ay Terms

@ The ag of a syzygy belongs to a set of terms, Ag.

Ag:{aoeR . aB € JL },

syz
S =(9iB : i €ISPs(I) + (zeB, z.0.B : e & props(I)).

syz

@ This can be interpreted as an “ideal quotient”, i.e.

Al =L, (B).

syz
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The ldeal of ay Terms

@ The ag of a syzygy belongs to a set of terms, Ag.

syz

S =(9iB : i €ISPs(I) + (zeB, z.0.B : e & props(I)).

syz

Ag:{aoeR . aB € JL },

@ This can be interpreted as an “ideal quotient”, i.e.

Al =L, (B).

syz

@ Geometrically, ideal quotient used to remove subvarieties.

V(Jy s (B)") = V() \ V((B)).

@ Saturation index p describes multiplicity of B=0 component of Jsryz.
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Simplifying the A Ideal

o Can “split” JsryZ up, using B factors as

JsryZ = ((0iB : i € ISPs(I')) + (ze : e € props(I'))) N (Jsryz + (B“)) )

—_———
r
Jcrit(B) JS%];IA

[BP, Song '25]
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Simplifying the A Ideal

o Can “split” JsryZ up, using B factors as

JsryZ = ((0iB : i € ISPs(I')) + (ze : e € props(I'))) N (Jsryz + (B“)) )

—_———
r
Jcrit(B) JS%];IA

[BP, Song '25]

o If =1, then second term in intersection is removed by quotient.

p=1 = Ap = Jrrit(B) L (BH).

C
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Simplifying the A Ideal

o Can “split” JsryZ up, using B factors as

JsryZ = ((0iB : i € ISPs(I')) + (ze : e € props(I'))) N (Jsryz + (B“)) )

—_———
r
Jcrit(B) JS%];IA

[BP, Song '25]

o If =1, then second term in intersection is removed by quotient.

r r .
p=1 = AO = Jcrit(B) : <B'u>
@ = Vanishing condition is generally necessary, but not sufficient.

Ag C /(Ucrit[log(B)])‘
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Total Derivatives from Critical Points
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Al and Master Integral Counting

@ The ag terms are intimately related to number of master integrals.

Hr = R/(Surface[l'] 4 (z. : e € props[[])) .

o If UT

crit[log(B))] is set of points, they count number of master integrals:

dim(Urrit[log(B)]) =0 = dimc(Hr) = dimC(R/[Jcrrit(B) = (BM)]).

C

[Lee, Pomeransky "13]
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Al and Master Integral Counting

@ The ag terms are intimately related to number of master integrals.

Hr = R/(Surface[l'] 4 (z. : e € props[[])) .

o If UT

crit[log(B))] is set of points, they count number of master integrals:

dim(Urrit[log(B)]) =0 = dimc(Hr) = dimC(R/[Jcrrit(B) = (BM)]).

C

[Lee, Pomeransky "13]

e If u = 1 max-cut surface terms in one-to-one correspondence with A}!

Al = Surface(I) + (ze : e € props(T")).
[BP, Song '25]
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Critical Syzygies

@ Intuition: need only surface terms independent as € — oo, max-cut.

Surface(lN)|cut =~ EILngoSurface(l_)|(-_ut.
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Critical Syzygies

@ Intuition: need only surface terms independent as € — oo, max-cut.

Surface(lM)|cut =~  lim Surface(I)|cut-
€—00
e This gives us a natural equivalence relation on Syz(I').

a o~ & ¢ lim S5r(d)]z=0 = lim 5r(&)|z=o.
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Critical Syzygies

@ Intuition: need only surface terms independent as € — oo, max-cut.

Surface(lM)|cut =~  lim Surface(I)|cut-
€—00
e This gives us a natural equivalence relation on Syz(I').

a o~ & ¢ lim S5r(d)]z=0 = lim 5r(&)|z=o.

@ Define ‘“critical syzygies" as inequivalent syzygies under ~.

CSyz(I') = Syz(I')/~ .
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Critical Surface Terms

@ Set of critical syzygies is “much smaller” than standard syzygies:

CSyz(T) = Ab/(z : e € props(T))

Vv
single-element, on-shell
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Critical Surface Terms

@ Set of critical syzygies is “much smaller” than standard syzygies:

CSyz(T) = Ab/(z : e € props(T))

Vv
single-element, on-shell

@ Motivated to build surface terms from critical syzygies

CSyzSurface(I') = {Sr(a) : 3 € CSyz(IN)}.
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Critical Surface Terms

@ Set of critical syzygies is “much smaller” than standard syzygies:

CSyz(T) = Ab/(z : e € props(T))

Vv
single-element, on-shell

@ Motivated to build surface terms from critical syzygies

CSyzSurface(I') = {Sr(a) : 3 € CSyz(IN)}.

@ By construction, if dim(Ucrrit[Iog(B)]) = 0, and the multiplicity, p =1,

CSyzSurface(I") ~ Surface(I")/(Surface(l') N (z. : e € props(I))).

= CSyzSurface(I") is complete up to surface terms from pinches. |
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Concrete Studies
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Building CSyz(I"), preliminaries.

o Goal: explicit generating set of CSyz(I').

CSyz(N) = (aM,..), &) e Al
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Building CSyz(I"), preliminaries.

o Goal: explicit generating set of CSyz(I').
CSyz(N) = (aM,..), &) e Al
@ Can show: cut Baikov is non-singular = only “principal” solutions.

r
smg =0 = A Jcrlt( B):

[See also: Zhang '16]
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Building CSyz(I"), preliminaries.

o Goal: explicit generating set of CSyz(I').
CSyz(N) = (aM,..), &) e Al
@ Can show: cut Baikov is non-singular = only “principal” solutions.

= A =J

crit(B)*
[See also: Zhang '16]

smg =0

@ In this case, a generating set of CSyz(I') is

30:8,'3, a,-:—B, aj7,g;:0, and §e:ae:0.

Ben Page

From Critical Points to Syzygies for Feynman Integrals



Building CSyz(I"), preliminaries.

o Goal: explicit generating set of CSyz(I').
CSyz(N) = (aM,..), &) e Al
@ Can show: cut Baikov is non-singular = only “principal” solutions.

= A =J

crit(B)*
[See also: Zhang '16]

smg =0

@ In this case, a generating set of CSyz(I') is

30:8,'3, a,-:—B, aj7,g;:0, and §e:ae:0.

@ In general, finding a generating set is hard. = Go computational.
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@ One-loop Baikov polynomial is a quadric = general analysis tractable.

1 Hr X g,‘ Zi
B(Z)=-(z,z.,1)| XT 0 B Z
2 57 BT 5 1

i e 0
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@ One-loop Baikov polynomial is a quadric = general analysis tractable.

1 Hr X g,‘ Zi
B(Z)=-(z,z.,1)| XT 0 B Z
2 57 BT 5 1

i e 0

o If Hr is invertible, B(Z) = 0 is singular variety if

0= B’Ur_(B): Bo —g,'THr_ll% .

“Cayley determinant”

@ “Most cases” have Cayley # 0 (box, bubble, pentagon ...).
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Singular Cases at One Loop

o Cayley= 0 cases associated to IR divergent triangles

@ Explicit calculation required, e.g. for massless triangle

1
5r(§) = —2s% — 822(5 + 2z — [21 + Z3]) (1 — ’7> + %(Zl + z3 + 222).
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Singular Cases at One Loop

o Cayley= 0 cases associated to IR divergent triangles

@ Explicit calculation required, e.g. for massless triangle

1
5r(§) = —2s% — 822(5 + 2z — [21 + Z3]) (1 — ’7> + %(Zl + z3 + 222).

@ Hr not invertible if Gram determinant is zero, e.g. p?> = 0 bubble,

—( O

@ In this case, dim(U" = 1 = critical syzygies insufficient.
(B))

crit(log
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o At two loops, B = 0 is always singular on cut, i.e. UL 0.

sing
e Four-dimensional locus is always (codim 3) sub-variety of Ul

sing*

¢ p1 p2 p3 pa
V({i7)) S Uging ”U:G<€JI- pr p2 p3 ps )’

@ = Non-trivial critical syzygies are unavoidable. Hard problem!
@ Here, we construct them computationally. [See paper for algorithm].
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Leading-Color pp — ttH Light Quark Loop

@ Built critical surface terms* for all (sub-)topologies of

“Implemented in Caravel and checked against FIRE.

° dim(Ucrrit[Iog(B)]) = 0 everywhere. p1 = 1 almost everywhere.

@ Single case where 1 > 1. (Interestingly: only 1 surface term missing).

o Insufficient surface terms from syzygies, needs “higher seeding”.
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Leading-Color pp — ttH Heavy Quark Loop Pentabox

r . - -
@ A number of cases where Ucrit[log(B)] is not zero-dimensional.

H = > f

@ Interestingly: dim(Ucrrit[Iog(B)]) = 1, maybe simple?

@ Require analyzing syzygies with ag = 0, “sub-critical syzygies".
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Conclusions

Summary:

@ Large-¢ limit surface terms vanish on critical points of the twist.
o Syzygy equation gives “lift"” from large to finite €.

o Critical syzygy formalism singles out minimal set of total derivatives.
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Conclusions

Summary:

@ Large-¢ limit surface terms vanish on critical points of the twist.
o Syzygy equation gives “lift"” from large to finite €.

o Critical syzygy formalism singles out minimal set of total derivatives.

Outlook:
e Can we construct analytic CSyz(I") generators from geometry?

o Natural step: “sub-critical” syzygies, when dim(Ucrrit[log(B)]) > 0.
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Geometrical significance of JsryZ

o V( SyZ) splits into subvarieties where B =0, B # 0.
Use = | U Usihg| Y Ueipintey
reCr
o First set of varieties correspond to singular loci of B = 0 on cuts.
B =0, 0iB=0 : i€lSPs(ly), ze=0 : e € props(lk).
@ Second variety corresponds to critical locus of log(B) on max cut.

Oilog(B) =0 : i €ISPs(I), ze =0 : e e props(l).
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