THE UNIVERSITY of EDINBURGH

Refined Genealogical Constraints

Maria Polackova

Minimal cuts and Genealogical Constraints

arXiv:2406.05943

In collaboration with Hofie Hannesdottir, Luke Lippstreu, and Andrew McLeod

Refining Genealogical Constraints

Upcoming paper

In collaboration with Giulio Crisanti, Luke Lippstreu, and Andrew McLeod

Bootstrapping Feynman integrals:

 Compute the symbol since it preserves all analytical properties of the Feynman integral up to transcendental constants

$$S(I) = \sum c_{i_1, i_2, \dots, i_n} \lambda_{i_1} \otimes \dots \otimes \lambda_{i_n}$$

$$\lambda = \sum_{i} P_{i} Q_{i}^{\nu_{i}}$$

Bootstrapping Feynman integrals:

 Compute the symbol since it preserves all analytical properties of the Feynman integral integral up to transcendental constants

$$S(I) = \sum c_{i_1, i_2, \dots, i_n} \lambda_{i_1} \otimes \dots \otimes \lambda_{i_n}$$

For this we want to know all singularities using algorithms like PLD

 Mizera, Fevola, Telen (2023) or Sofia – Correia, Giroux, Mizera
 (2025)

Bootstrapping Feynman integrals:

 Compute the symbol since it preserves all analytical properties of the Feynman integral up to transcendental constants

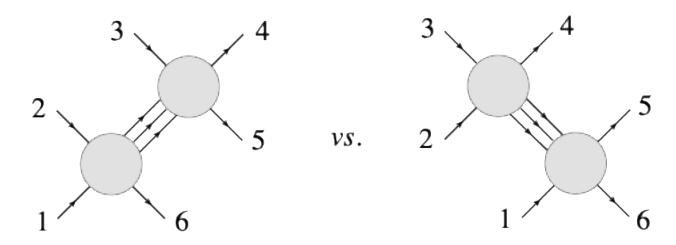
$$S(I) = \sum c_{i_1, i_2, \dots, i_n} \lambda_{i_1} \otimes \dots \otimes \lambda_{i_n}$$

- For this we want to know all singularities using algorithms like PLD

 Mizera, Fevola, Telen (2023) or Sofia Correia, Giroux, Mizera
 (2025)
- Then we can use Landau Bootstrap Hannesdottir, McLeod, Schwartz, Vergu (2024) to find the Symbol

• Steinmann relations:

 $\mathrm{Disc}_{S_{\mathcal{I}}}\mathrm{Disc}_{S_{\mathcal{I}}}I=0 \text{ for } \mathcal{I} \not\subset \mathcal{L} \wedge \mathcal{L} \not\subset \mathcal{I} \wedge \mathcal{I} \cap \mathcal{L} \neq 0$



Steinmann relations:

$$\mathrm{Disc}_{S_{\mathcal{I}}}\mathrm{Disc}_{S_{\mathcal{I}}}I=0 \text{ for } \mathcal{I} \not\subset \mathcal{L} \wedge \mathcal{L} \not\subset \mathcal{I} \wedge \mathcal{I} \cap \mathcal{L} \neq 0$$

- Generalized Steinmann relations (such as cluster adjacency constraints)
- Alpha positivity

Steinmann relations:

$$\mathrm{Disc}_{S_{\mathcal{I}}}\mathrm{Disc}_{S_{\mathcal{I}}}I=0 \text{ for } \mathcal{I} \not\subset \mathcal{L} \wedge \mathcal{L} \not\subset \mathcal{I} \wedge \mathcal{I} \cap \mathcal{L} \neq 0$$

- Generalized Steinmann relations (such as cluster adjacency constraints)
- Alpha positivity
- Hierarchical constraints

...
$$\operatorname{Disc}_{\lambda_2}$$
 ... $\operatorname{Disc}_{\lambda_1}$... $I = 0$

- Genealogical constraints
 - From minimal cuts
 - From master integrals basis

Steinmann relations:

$$\mathrm{Disc}_{S_{\mathcal{I}}}\mathrm{Disc}_{S_{\mathcal{I}}}I=0 \text{ for } \mathcal{I} \not\subset \mathcal{L} \wedge \mathcal{L} \not\subset \mathcal{I} \wedge \mathcal{I} \cap \mathcal{L} \neq 0$$

- Generalized Steinmann relations (such as cluster adjacency constraints)
- Alpha positivity
- Hierarchical constraints

...
$$\operatorname{Disc}_{\lambda_2}$$
 ... $\operatorname{Disc}_{\lambda_1}$... $I = 0$

- Genealogical constraints
 - From minimal cuts
 - From master integrals basis

To place hierarchical constraints, we need to figure out how letters constrain the Feynman integral space

Landau equations

Landau (1959)

In Feynman parametrisation (FP) space we have two types of singularities:

- a) Pinch singularity
- b) End-point singularity

Landau (1959)

Landau equations

In Feynman parametrisation (FP) space we have two types of singularities:

- a) Pinch singularity
- b) End-point singularity

$$I_F(p_i, m_i) \propto \int_0^\infty \frac{d \alpha_1 \dots d \alpha_E}{\mathcal{G}^{\frac{D}{2}}}.$$

$$G = U + F = (\alpha_i - r_1)(\alpha_i - r_2) \dots (\alpha_i - r_n)$$

$$\alpha_i = 0 \text{ or } \frac{\partial \mathcal{G}}{\partial \alpha_i} = 0 \text{ for } i = 1, \dots, E$$

Landau equations

Landau (1959)

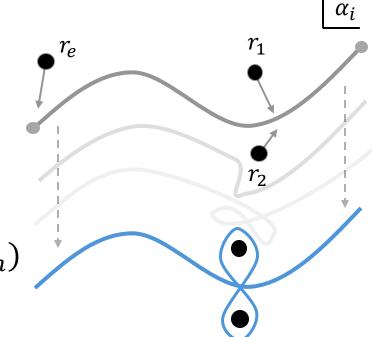
In Feynman parametrisation (FP) space we have two types of singularities:

- a) Pinch singularity
- b) End-point singularity

$$I_F(p_i, m_i) \propto \int_0^\infty \frac{d \alpha_1 \dots d \alpha_E}{\mathcal{G}^{\frac{D}{2}}}.$$

$$\mathcal{G} = U + F = (\alpha_i - r_1)(\alpha_i - r_2) \dots (\alpha_i - r_n)$$

$$\alpha_i = 0 \text{ or } \frac{\partial \mathcal{G}}{\partial \alpha_i} = 0 \text{ for } i = 1, \dots, E$$



in momentum space:

$$(\alpha_i (q_i^2 - m_i^2) = 0,$$

$$\sum_{i \in a} \pm \alpha_i q_i^{\mu} = 0,$$

Landau equations

Landau (1959)

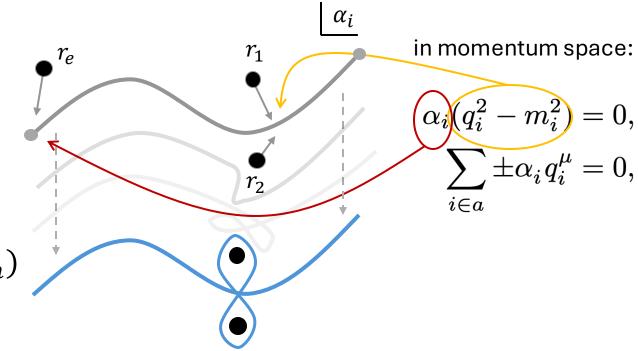
In Feynman parametrisation (FP) space we have two types of singularities:

- a) Pinch singularity
- b) End-point singularity

$$I_F(p_i, m_i) \propto \int_0^\infty \frac{d \alpha_1 \dots d \alpha_E}{\mathcal{G}^{\frac{D}{2}}}.$$

$$\mathcal{G} = U + F = (\alpha_i - r_1)(\alpha_i - r_2) \dots (\alpha_i - r_n)$$

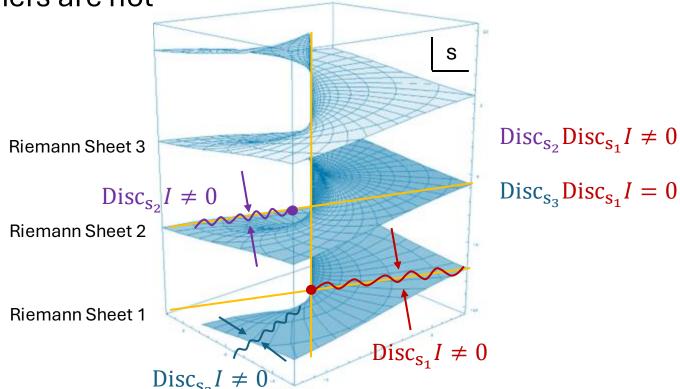
$$\alpha_i = 0 \text{ or } \frac{\partial \mathcal{G}}{\partial \alpha_i} = 0 \text{ for } i = 1, \dots, E$$



Discontinuities

- If we know the solutions to Landau equations for each letter λ_i , we know its cut
- we compute discontinuities in a sequence and constraining the kinematic variety increasingly

• Some sequences are allowed, others are not

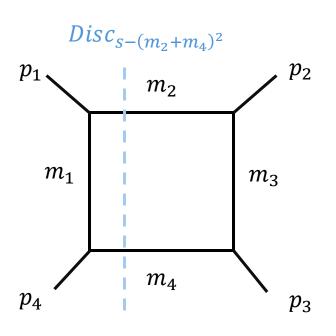


Discontinuities rules: Hierarchical constraints

Once we impose on-shell constraints for a letter $\lambda=0$, we cannot take them offshell again

Discontinuities rules: Hierarchical constraints

Once we impose on-shell constraints for a letter $\lambda=0$, we cannot take them offshell again



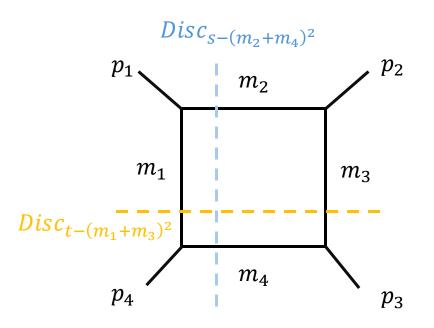
Cutkosky's rules:

Cutkosky (1960)

$$\operatorname{Disc}_{s-(m_2+m_4)^2} I(p_i) \propto \int_0^\infty \frac{\mathrm{d}^D k}{(p_1^2 - m_1^2)(p_3^2 - m_3^2)} \frac{\mathrm{d}^D k}{(p_1^2 - m_1^2)(p_3^2 - m_3^2)}$$

Discontinuities rules: Hierarchical constraints

Once we impose on-shell constraints for a letter $\lambda=0$, we cannot take them offshell again



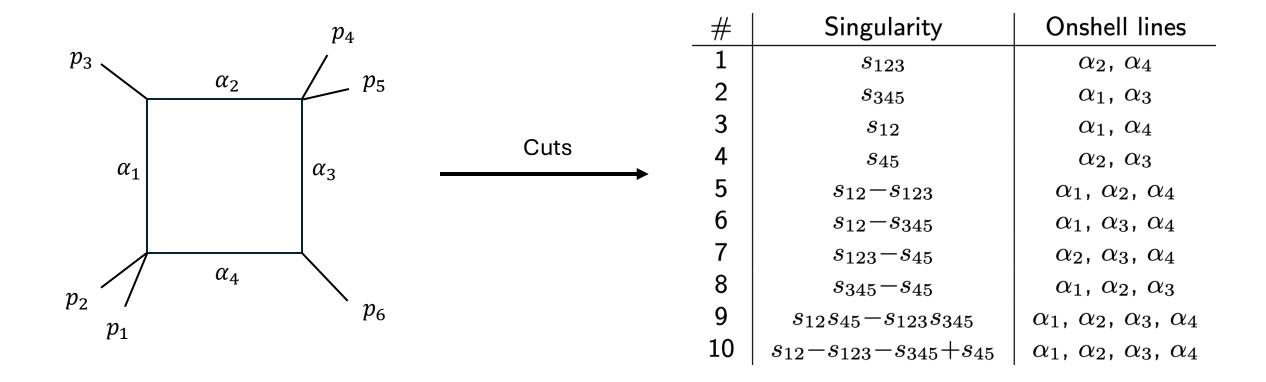
Cutkosky's rules:

Cutkosky (1960)

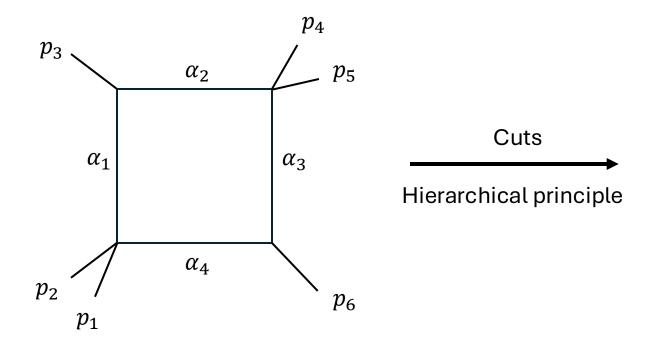
$$\operatorname{Disc}_{s-(m_2+m_4)^2} I(p_i) \propto \int_0^\infty \frac{\mathrm{d}^D k}{(p_1^2 - m_1^2)(p_3^2 - m_3^2)} \frac{\delta(p_2^2 - m_2^2)\delta(p_4^2 - m_4^2)}{(p_1^2 - m_1^2)(p_3^2 - m_3^2)}$$

$$\operatorname{Disc}_{t-(m_1+m_3)^2} \operatorname{Disc}_{s-(m_2+m_4)^2} I(p_i) = 0$$

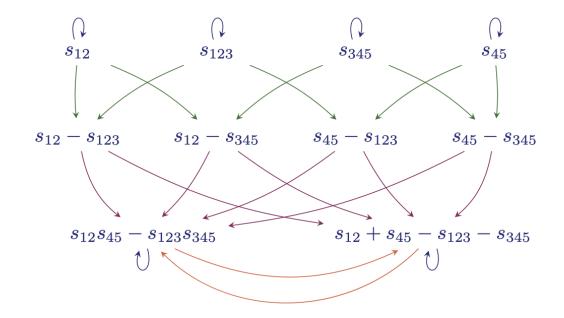
Hierarchical principle: 2-mass easy box



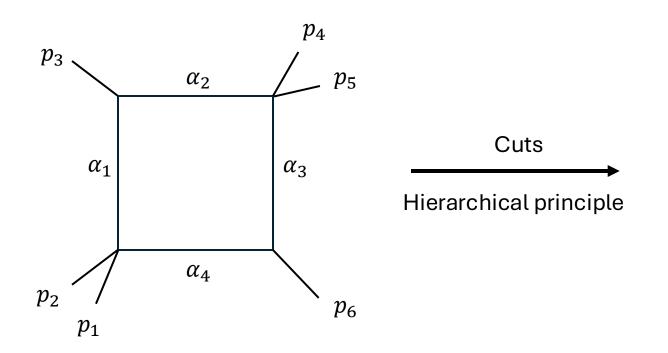
Hierarchical principle: 2-mass easy box



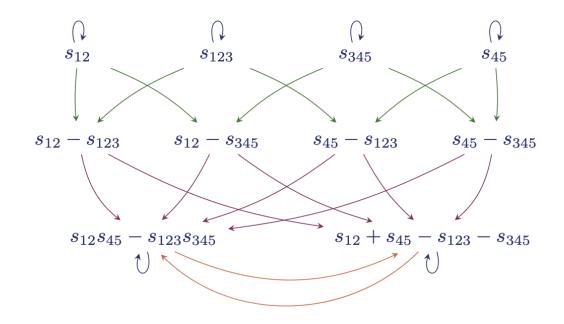
Allowed discontinuities by genealogical constraints



Hierarchical principle: 2-mass easy box



Allowed discontinuities by genealogical constraints



All 64 hierarchical constraints of the type: $\ldots \operatorname{Disc}_{\lambda'} \ldots \operatorname{Disc}_{\lambda} \ldots I(p_i) = 0$

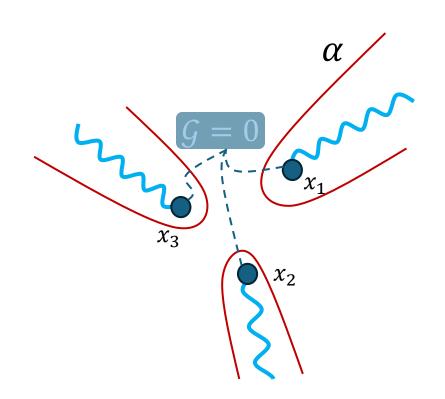
Goal

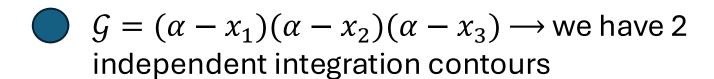
- We need to find solutions to Landau equations for each letter -> find its cut
- Impose hierarchical principle so that we are sensitive to which integration contours are disallowed

Ruth's talk on Monday

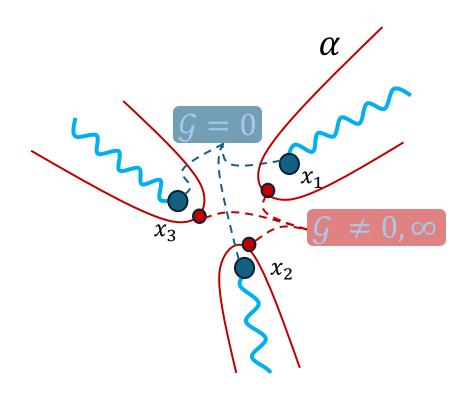
From the Picard-Lefschetz theory: the G polynomial is characterized by the number of master integrals = number of independent integration contours (in α)

From the Picard-Lefschetz theory: the G polynomial is characterized by the number of master integrals = number of independent integration contours (in α)





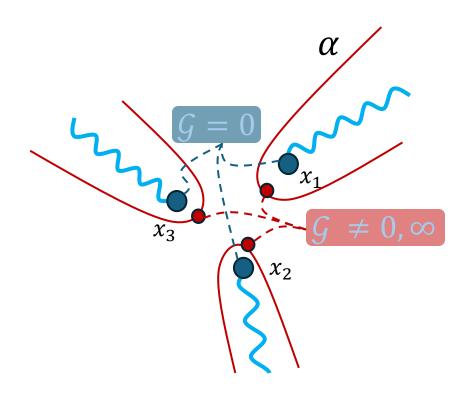
From the Picard-Lefschetz theory: the G polynomial is characterized by the number of master integrals = number of independent integration contours (in α)



The integration contours can be chosen such that they cross critical points → Lefschetz thimble

Critical points can be found when satisfying: $\partial_{\alpha}\mathcal{G}=0 \text{ with } \mathcal{G}\neq 0, \infty$

By counting the critical points, we can track how many integration contours vanished when imposing $\operatorname{Disc}_{\lambda} I$

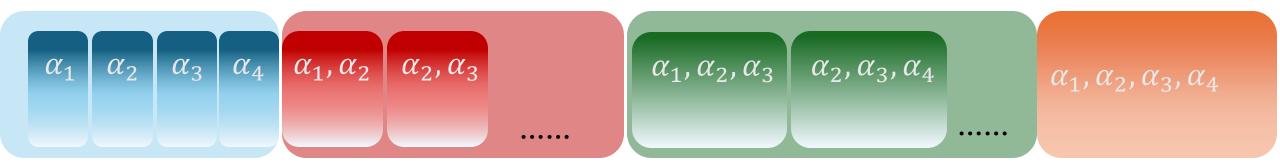


- When $\lambda = 0$, some of the $\alpha = x_i$ and the integration contour now go through G = 0 point,
- Corresponding critical point vanishes and the overall number drops.
- This way we can detect whether the kinematic variety responds to $\lambda_i=0$ and changes its topology
- In practice we count the number of critical points as number of irreducible monomials – and for this we use Gröbner basis (which turns out to be fast in this case!)

- We must solve the Landau equations though and decide on which lines are on shell/which α 's =0
- This becomes a problem very quickly with a more involved examples
- we use a sector-by-sector approach from Lee, Pomeransky (2013)

Sectors

- Sectors are sets of non-zero α_i 's
- Some sectors do not contain any critical points in $\mathcal G$ those which do are master integrals essentially.



Sectors

- Sectors are sets of non-zero α_i 's
- Some sectors do not contain any critical points in \mathcal{G} those which do are master integrals essentially.
- As we constrain \mathcal{G} more with $\lambda_i=0$, more critical points drop in these selected sectors

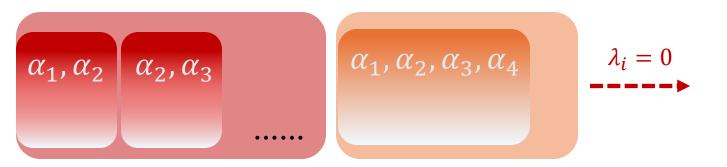


Cuts from the sectors

• The sector which responds to the condition $\lambda_i=0$ is a cut for that letter

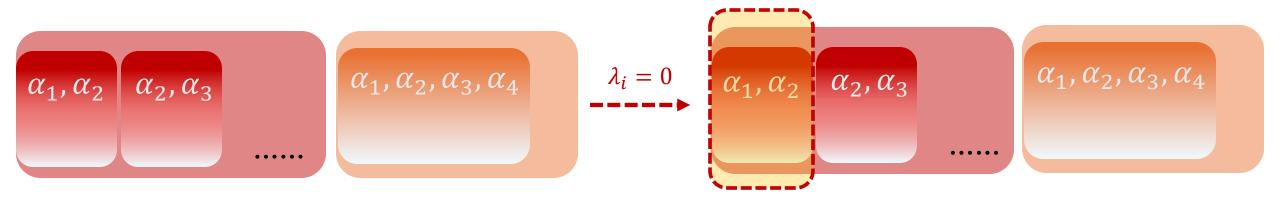
Cuts from the sectors

• The sector which responds to the condition $\lambda_i=0$ is a cut for that letter



Cuts from the sectors

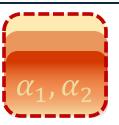
• The sector which responds to the condition $\lambda_i=0$ is a cut for that letter



Since there's a drop in number of critical points in α_1 , α_2 sector, this is the cut for $\lambda_i=0$

• Find a cut for $\lambda_i = 0$ α_1, α_2

• Find a cut for $\lambda_i=0$



• Take sectors corresponding to the cut and its supersets

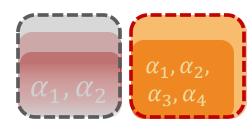


• Find a cut for $\lambda_i = 0$

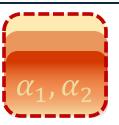
Take sectors corresponding to the cut and its supersets



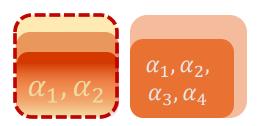
• Probe another $\lambda_j = 0$



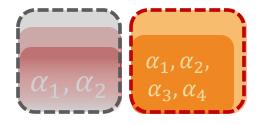
• Find a cut for $\lambda_i = 0$



Take sectors corresponding to the cut and its supersets



• Probe another $\lambda_j = 0$ α_1, α_2 $\alpha_2, \alpha_3, \alpha_4$



- If the number of critical points drops in the selected sectors, the letter λ_i can be followed by λ_i
- If there's no drop, the letter λ_i cannot be followed by λ_i

...
$$\operatorname{Disc}_{\lambda_{\mathbf{j}}} ... \operatorname{Disc}_{\lambda_{i}} ... I = 0$$

Some examples

5pt 1-mass hexa-box families Abreu, Ita, Page, Tschernow 2021

5pt 2-mass penta-box families Abreu, Chicherin, Sotnikov, Zoia 2024

Family of Diagrams	Family	${f Alphabet}^2$	Predicted Disallowed Pairs	Completeness	Timing (s)
	ZZZ	$33^2 = 1089$	322	100%	200
	mzz	$26^2 = 676$	215	100%	190
	zmz	$29^2 = 841$	188	100%	165
	ZZZ	$34^2 = 1156$	376	100%	195
	zzm	$32^2 = 1024$	343	100%	236
	zmz	$35^2 = 1225$	391	100%	166
	mzz	$36^2 = 1296$	544	100%	148
	mzm	$33^2 = 1089$	498	100%	127
	mmz	$31^2 = 961$	254	100%	127

Advantages and caveats

- With this method we can find precisely which lines are on-shell for a given letter
- We can detect the non-repeating letters, i.e. ... Disc_{λ} ... Disc_{λ} ... I=0
- Sometimes instead of finding critical point, we find a critical line
 - This is a rare case, and we have an empirical intuition on what predictions can be done
 - We should find critical points of the critical line as suggested in Lee,
 Pomeransky 2013

Algebraic letters

- Finding predictions for rational letters is straightforward
- For algebraic letters of the form $\lambda_A = \frac{a+\sqrt{b}}{a-\sqrt{b}}$:
 - a) Find all rational letters which set the numerator or denominator of the algebraic letter to 0, i.e. $\frac{a+\sqrt{b}}{a-\sqrt{b}}\Big|_{S_{4,2}}=0,\infty$
 - b) Find all $b|_{\lambda_R} = 0$
- Then any λ_R can be followed by λ_A only if λ_R can be followed by b and all rational letters found in a)

What's next

- Genealogical constraints work also on non-polylogarithmic functions (without any changes)
- For instance, elliptic functions: one needs to identify branch points of elliptic functions appearing in the symbol and then run the genealogical constraints code on them
- Same for cosmological correlators

The goal after imposing the genealogical constraints is to find full adjacency constraints