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Bootstrapping Feynman integrals:

• Compute the symbol since it preserves all analytical properties of 
the Feynman integral up to transcendental constants
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• Compute the symbol since it preserves all analytical properties of 
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• For this we want to know all singularities using algorithms like PLD 
– Mizera, Fevola, Telen (2023) or Sofia – Correia, Giroux, Mizera 
(2025)
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Bootstrapping Feynman integrals:

• Compute the symbol since it preserves all analytical properties of 
the Feynman integral up to transcendental constants

• For this we want to know all singularities using algorithms like PLD 
– Mizera, Fevola, Telen (2023) or Sofia – Correia, Giroux, Mizera 
(2025)

•  Then we can use Landau Bootstrap – Hannesdottir, McLeod, 
Schwartz, Vergu (2024) to find the Symbol
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• Steinmann relations: 
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Constraints on the letter's sequences

• Steinmann relations: 

  Discsℐ
Disc𝑠ℒ

𝐼 = 0 for ℐ ⊄ ℒ ∧  ℒ ⊄ ℐ ∧  ℐ ∩ ℒ ≠ 0

• Generalized Steinmann relations (such as cluster adjacency constraints)
• Alpha positivity
• Hierarchical constraints 

             … Disc𝜆2
… Disc𝜆1

… 𝐼 = 0

• Genealogical constraints
• From minimal cuts
• From master integrals basis

To place hierarchical constraints, we need to figure out how 
letters constrain the Feynman integral space
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Discontinuities

Riemann Sheet 1

Riemann Sheet 2

Riemann Sheet 3

Discs1
𝐼 ≠ 0

s

Discs2
Discs1

𝐼 ≠ 0

Discs3
𝐼 ≠ 0

Discs3
Discs1

𝐼 = 0

• If we know the solutions to Landau equations for each letter 𝜆𝑖, we know its cut 
• we compute discontinuities in a sequence and constraining the kinematic 

variety increasingly
• Some sequences are allowed, others are not

Discs2
𝐼 ≠ 0



Discontinuities rules: Hierarchical constraints

Once we impose on-shell constraints for a letter 𝜆 = 0, we cannot take them off-
shell again



Discontinuities rules: Hierarchical constraints

Once we impose on-shell constraints for a letter 𝜆 = 0, we cannot take them off-
shell again

𝑚2

𝑚3

𝑚4

𝑚1

𝑝1 𝑝2

𝑝3𝑝4

𝐷𝑖𝑠𝑐𝑠− 𝑚2+𝑚4
2

Cutkosky (1960)

Cutkosky’s rules:
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Once we impose on-shell constraints for a letter 𝜆 = 0, we cannot take them off-
shell again
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𝑚1

𝑝1 𝑝2

𝑝3𝑝4

𝐷𝑖𝑠𝑐𝑠− 𝑚2+𝑚4
2

𝐷𝑖𝑠𝑐𝑡− 𝑚1+𝑚3
2

Cutkosky (1960)

Cutkosky’s rules:
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Hierarchical principle: 2-mass easy box 
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𝑝1
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𝑝3

𝑝4

𝑝5

𝑝6

𝛼1

𝛼2

𝛼4

Cuts

 Hierarchical principle

Allowed discontinuities by 
genealogical constraints

All 64 hierarchical constraints of the type: 



Goal

• We need to find solutions to Landau equations for each letter -> find 
its cut

• Impose hierarchical principle so that we are sensitive to which 
integration contours are disallowed

Ruth’s talk on Monday 



From the Picard-Lefschetz theory: the 𝒢 polynomial is characterized by the number 
of master integrals = number of independent integration contours (in 𝛼)

Imposing hierarchy: Counting critical points



𝒢 = 0

𝛼
𝒢 = (𝛼 − 𝑥1)(𝛼 − 𝑥2)(𝛼 − 𝑥3) ⟶ we have 2 
independent integration contours

𝑥1

𝑥2

𝑥3

Imposing hierarchy: Counting critical points
From the Picard-Lefschetz theory: the 𝒢 polynomial is characterized by the number 
of master integrals = number of independent integration contours (in 𝛼)



𝒢 ≠ 0, ∞

𝒢 = 0

𝛼
𝒢 = (𝛼 − 𝑥1)(𝛼 − 𝑥2)(𝛼 − 𝑥3) ⟶ we have 2 
independent integration contours

Critical points can be found when satisfying:
  𝜕𝛼𝒢 = 0 with 𝒢 ≠ 0, ∞

𝑥1

𝑥2

𝑥3

The integration contours can be chosen such that 
they cross critical points ⟶ Lefschetz thimble 

Imposing hierarchy: Counting critical points
From the Picard-Lefschetz theory: the 𝒢 polynomial is characterized by the number 
of master integrals = number of independent integration contours (in 𝛼)



Imposing hierarchy: Counting critical points

• When 𝜆 = 0, some of the 𝛼 = 𝑥𝑖  and the integration 
contour now go through 𝒢 = 0 point, 

• Corresponding critical point vanishes and the 
overall number drops. 

• This way we can detect whether the kinematic 
variety responds to 𝜆𝑖 = 0 and changes its topology

• In practice we count the number of critical points as 
number of irreducible monomials – and for this we 
use Gröbner basis (which turns out to be fast in this 
case!)

By counting the critical points, we can track how many integration contours 
vanished when imposing Disc𝜆𝐼 

𝒢 ≠ 0, ∞

𝒢 = 0

𝛼

𝑥1

𝑥2

𝑥3



• We must solve the Landau equations though and decide on which 
lines are on shell/which 𝛼’s =0  

• This becomes a problem very quickly with a more involved 
examples

• we use a sector-by-sector approach from Lee, Pomeransky (2013)

Imposing hierarchy: Counting critical points



Sectors

• Sectors are sets of non-zero 𝛼𝑖’s
• Some sectors do not contain any critical points in 𝒢 – those which 

do are master integrals essentially. 
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Sectors

…………

• Sectors are sets of non-zero 𝛼𝑖’s
• Some sectors do not contain any critical points in 𝒢 – those which 

do are master integrals essentially. 
• As we constrain 𝒢 more with 𝜆𝑖 = 0, more critical points drop in 

these selected sectors

𝛼1 𝛼2 𝛼3 𝛼4 𝛼1, 𝛼2 𝛼2, 𝛼3 𝛼1, 𝛼2, 𝛼3 𝛼2, 𝛼3, 𝛼4 𝛼1, 𝛼2, 𝛼3, 𝛼4



Cuts from the sectors

• The sector which responds to the condition 𝜆𝑖 = 0 is a cut for that 
letter
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……



Cuts from the sectors

• The sector which responds to the condition 𝜆𝑖 = 0 is a cut for that 
letter

𝜆𝑖 = 0𝛼1, 𝛼2 𝛼2, 𝛼3
𝛼1, 𝛼2, 𝛼3, 𝛼4

……



Cuts from the sectors

• The sector which responds to the condition 𝜆𝑖 = 0 is a cut for that 
letter

𝛼2, 𝛼3
𝛼1, 𝛼2, 𝛼3, 𝛼4

……

𝛼1, 𝛼2
𝜆𝑖 = 0

Since there’s a drop in number of critical points 
in 𝛼1, 𝛼2 sector, this is the cut for 𝜆𝑖 = 0 

𝛼1, 𝛼2 𝛼2, 𝛼3
𝛼1, 𝛼2, 𝛼3, 𝛼4

……



The algorithm
• Find a cut for 𝜆𝑖 = 0 
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The algorithm
• Find a cut for 𝜆𝑖 = 0 

• Take sectors corresponding to the cut and its supersets

• Probe another  𝜆𝑗 = 0

𝛼1, 𝛼2

𝛼1, 𝛼2

𝛼1, 𝛼2,
𝛼3, 𝛼4
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𝛼3, 𝛼4
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The algorithm
• Find a cut for 𝜆𝑖 = 0 

• Take sectors corresponding to the cut and its supersets

• Probe another  𝜆𝑗 = 0

• If the number of critical points drops in the selected sectors, the 
letter 𝜆𝑖  can be followed by 𝜆𝑗

• If there’s no drop, the letter 𝜆𝑖  cannot be followed by 𝜆𝑗

𝛼1, 𝛼2

𝛼1, 𝛼2

𝛼1, 𝛼2,
𝛼3, 𝛼4

… Disc𝜆j
… Disc𝜆𝑖

… 𝐼 = 0

𝛼1, 𝛼2,
𝛼3, 𝛼4

𝛼1, 𝛼2



Some examples

5pt 1-mass hexa-box families
Abreu, Ita, Page, Tschernow  
2021 

5pt 2-mass penta-box families 
Abreu, Chicherin, Sotnikov, Zoia 
2024



Advantages and caveats

• With this method we can find precisely which lines are on-shell for 
a given letter

• We can detect the non-repeating letters, i.e. … Disc𝜆 … Disc𝜆 … 𝐼 = 0

• Sometimes instead of finding critical point, we find a critical line
• This is a rare case, and we have an empirical intuition on what predictions 

can be done 
• We should find critical points of the critical line as suggested in Lee, 

Pomeransky 2013 



Algebraic letters

• Finding predictions for rational letters is straightforward

• For algebraic letters of the form 𝜆𝐴 =
𝑎+ 𝑏

𝑎− 𝑏
:

a) Find all rational letters which set the numerator or denominator of the 
algebraic letter to 0, i.e. ฬ

𝑎+ 𝑏

𝑎− 𝑏
𝑠12

= 0, ∞

b) Find all ȁ𝑏 𝜆𝑅
= 0

• Then any 𝜆𝑅  can be followed by 𝜆𝐴 only if 𝜆𝑅  can be followed by 𝑏 
and all rational letters found in a)



What’s next

• Genealogical constraints work also on non-polylogarithmic 
functions (without any changes)

• For instance, elliptic functions: one needs to identify branch 
points of elliptic functions appearing in the symbol and then run 
the genealogical constraints code on them

• Same for cosmological correlators

The goal after imposing the genealogical constraints is 
to find full adjacency constraints


	Slide 1
	Slide 2: Bootstrapping Feynman integrals:
	Slide 3: Bootstrapping Feynman integrals:
	Slide 4: Bootstrapping Feynman integrals:
	Slide 5: Constraints on the letter's sequences
	Slide 6: Constraints on the letter's sequences
	Slide 7: Constraints on the letter's sequences
	Slide 8: Constraints on the letter's sequences
	Slide 9: Landau equations
	Slide 10: Landau equations
	Slide 11: Landau equations
	Slide 12: Landau equations
	Slide 13: Discontinuities
	Slide 14: Discontinuities rules: Hierarchical constraints
	Slide 15: Discontinuities rules: Hierarchical constraints
	Slide 16: Discontinuities rules: Hierarchical constraints
	Slide 17: Hierarchical principle: 2-mass easy box 
	Slide 18: Hierarchical principle: 2-mass easy box 
	Slide 19: Hierarchical principle: 2-mass easy box 
	Slide 20: Goal
	Slide 21: Imposing hierarchy: Counting critical points
	Slide 22: Imposing hierarchy: Counting critical points
	Slide 23: Imposing hierarchy: Counting critical points
	Slide 24: Imposing hierarchy: Counting critical points
	Slide 25
	Slide 26: Sectors
	Slide 27: Sectors
	Slide 28: Cuts from the sectors
	Slide 29: Cuts from the sectors
	Slide 30: Cuts from the sectors
	Slide 31: The algorithm
	Slide 32: The algorithm
	Slide 33: The algorithm
	Slide 34: The algorithm
	Slide 35: Some examples
	Slide 36: Advantages and caveats
	Slide 37: Algebraic letters
	Slide 38: What’s next

