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Bootstrapping Feynman integrals:

* Compute the symbol since it preserves all analytical properties of
the Feynman integral up to transcendental constants

S(I) — Z Cil,iz,...,in Ail ® ® Ain

* For this we want to know all singularities using algorithms like PLD
— Mizera, Fevola, Telen (2023) or Sofia — Correia, Giroux, Mizera

(2025)

* Then we can use Landau Bootstrap — Hannesdottir, MclLeod,
Schwartz, Vergu (2024) to find the Symbol
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Constraints on the letter's sequences

* Steinmann relations:
Discg Discg I = 0forT € L A LEIANITNL#O
* Generalized Steinmann relations (such as cluster adjacency constraints)
* Alpha positivity
* Hierarchical constraints

.. Discy, ... Discy ... =0
* Genealogical constraints
* From minimal cuts

To place hierarchical constraints, we need to figure out how
letters constrain the Feynman integral space
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Landau equations

In Feynman parametrisation (FP) space
we have two types of singularities:

b) End-point singularity
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Landau (1959)

in momentum space:



Discontinuities

* |If we know the solutions to Landau equations for each letter 4;, we know its cut

* we compute discontinuities in a sequence and constraining the kinematic
variety increasingly
* Some sequences are allowed, others are not

A Dl

Discg,Discs [ # 0

Riemann Sheet 3

Discg,I # 0 \ Discg,Discs [ = 0

Riemann Sheet2 7~ ‘L‘:_\‘“,-‘.»‘T_

Riemann Sheet1 - == j'r, S \
. Discs, I # 0

Discg, I # 0
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Discontinuities rules: Hierarchical constraints

Once we impose on-shell constraints for a letter A = 0, we cannot take them off-
shell again

DiSCs_(m, +m,)?
P1 ms P2 Cutkosky’s rules:
Cutkosky (1960)
. e Dises oo I(p0) o /m dPk 52(19% —Qm%)za(pﬁ - m3)
0 (pf —m7)(p3 — m3)

D4 Da DiSCt—(m1+m3)2DiSCs—(m2+m4)2I(pi) —(



Hierarchical principle: 2-mass easy box

P4

P3

az / __ Ds

Cuts
a1 as

Uy

P2 De
P1

812845—81238345
812 —8123—8345+845

a1, 2, X3, G4
a1, 2, 3, 04

# Singularity Onshell lines
1 S123 a2, G4
2 8345 a1, O3
3 S12 a1, (4
4 S45 G2, (3
5 S$12—S123 a1, (2, 04
6 512 —S345 a1, a3, 04
7 $123—S45 a2, (3, 04
8 5345 —8545 a1, G2, &3
9

10



Hierarchical principle: 2-mass easy box

Allowed discontinuities by
genealogical constraints
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Hierarchical principle: 2-mass easy box

Allowed discontinuities by
genealogical constraints

P4
P3
0(2 p5 O Q
[ — 812 5123 5345 845
Cuts Do NaN
a (04
1 3 > S12 — 8123 $12 — 8345 S45 — 8123 S45 — 8345
Hierarchical principle \\/g\g\//
22 S$12845 — 51235345 S12 + Sa5 — S123 — S345
D2 Pe U r\\j‘““-a\&_”_i_i_ )
P1 S~

All 64 hierarchical constraints of the type: ...Discy/...Discy...I(p;) =0



Goal

* We need to find solutions to Landau equations for each letter -> find
Its cut

* Impose hierarchical principle so that we are sensitive to which

Integration contours are disallowed
Ruth’s talk on Monday
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Imposing hierarchy: Counting critical points

From the Picard-Lefschetz theory: the § polynomialis characterized by the number
of master integrals = number of independent integration contours (in a)

@ 5= (a—x)(a—x)(ax—x3) > wehave 2
independent integration contours

The integration contours can be chosen such that
they cross critical points — Lefschetz thimble

@ Critical points can be found when satisfying:
d,G = 0withG # 0,0



Imposing hierarchy: Counting critical points

By counting the critical points, we can track how many integration contours
vanished when imposing Disc,/

a * When A = 0, some of the &« = x; and the integration
contour now go through G = 0 point,

* Corresponding critical point vanishes and the
LLL""/.‘\__ overall number drops.
}‘__é_ * This way we can detect whether the kinematic
X3 e variety responds to A; = 0 and changes its topology

* |[n practice we count the number of critical points as
number of irreducible monomials — and for this we
use Grobner basis (which turns out to be fast in this
case!)



Imposing hierarchy: Counting critical points

* We must solve the Landau equations though and decide on which
lines are on shell/which a’s =0

* This becomes a problem very quickly with a more involved
examples

* We use a sector-by-sector approach from Lee, Pomeransky (2013)
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Sectors

* Sectors are sets of non-zero a;’s

* Some sectors do not contain any critical points in § —those which
do are master integrals essentially.

* As we constrain G more with A; = 0, more critical points drop in
these selected sectors
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Cuts from the sectors

* The sector which responds to the condition A; = 0 is a cut for that
letter

Since there’s a drop in number of critical points
in a4, a, sector, this is the cut for 4; = 0



The algorithm
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The algorithm

e Findacutford, =0 | :

|
* Take sectors corresponding to the cut and its supersets '-
i

1
1
J

aq, ay,

a31 6{41-

\

------

* Probe another /1]- =

* If the number of critical points drops in the selected sectors, the
letter A; can be followed by 4;

* If there’s no drop, the letter A; cannot be followed by 4;

...Disc,—tj ..Discy, .. =0



Some examples

S5pt 1-mass hexa-box families
Abreu, Ita, Page, Tschernow
2021

S5pt 2-mass penta-box families
Abreu, Chicherin, Sotnikov, Zoia
2024

Family of . | | Predicted Timing
Diagrams amily | Alphabet Dlsalllowed Completeness (s)
Pairs

727 332 = 1089 322 100% 200
mzz 262 = 676 215 100% 190
Zmz 29?2 = 841 188 100% 165
7277 342 = 1156 376 100% 195
zzm | 322 = 1024 343 100% 236
zmz | 35% = 1225 391 100% 166
mzz | 362 = 1296 544 100% 148
mzm | 332 = 1089 498 100% 127
mmz | 312 =961 254 100% 127




Advantages and caveats

* With this method we can find precisely which lines are on-shell for
a given letter

* We can detect the non-repeating letters, i.e. ... Disc, ... Discy ... =0

* Sometimes instead of finding critical point, we find a critical line

* This is a rare case, and we have an empirical intuition on what predictions
can be done

* We should find critical points of the critical line as suggested in



Algebraic letters

* Finding predictions for rational letters is straightforward

a+Vb
a—Vb’
a) Find allrational letters which set the numerator or denominator of the

. . a+V/b
algebraic letterto 0, i.e. - .

* For algebraic letters of the form A, =

= O,OO
b) Findallb|;, =0

* Then any A, can be followed by A, only if A, can be followed by b
and all rational letters found in a)



What’s next

* Genealogical constraints work also on non-polylogarithmic
functions (without any changes)

* For instance, elliptic functions: one needs to identify branch

points of elliptic functions appearing in the symbol and then run
the genealogical constraints code on them

* Same for cosmological correlators

The goal after imposing the genealogical constraints is
to find full adjacency constraints
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