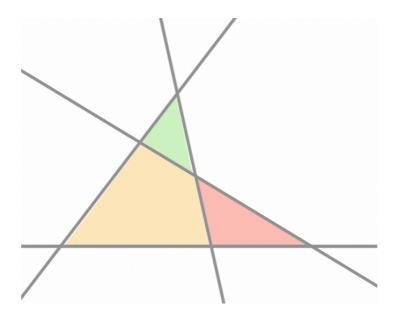
Eric Pichon-Pharabod

Max Planck Institute for Mathematics in the Sciences

Canonical form of differential systems of displaced hyperplane arrangements from positive geometry



Canonical forms

[Henn]

$$\int_{\Gamma} \ell_1^{\varepsilon_1} \cdots \ell_r^{\varepsilon_r} \, \mathrm{d}x_1 \wedge \cdots \wedge \mathrm{d}x_n,$$

One wants to find a span of integrals that is closed under differentiation $\mathcal{F}=(\mathcal{F}_1,...,\mathcal{F}_s)$, So that we have a differential system

 $d\mathcal{I} = A\mathcal{I}$ with A some matrix with rational coefficients in parameters $c_1, ..., c_r$.

We say the differential system is in ε -factorised form if $A=\varepsilon_1A_1+\cdots \varepsilon_rA_r$ where

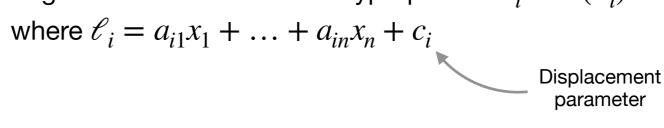
$$A_j \in M_s \left(\mathbb{Q}(c_1, ..., c_r) \langle dc_1, ..., dc_r \rangle \right)$$

We say the differential system is canonical form if furthermore the entries of A_j are composed of $d\log s$

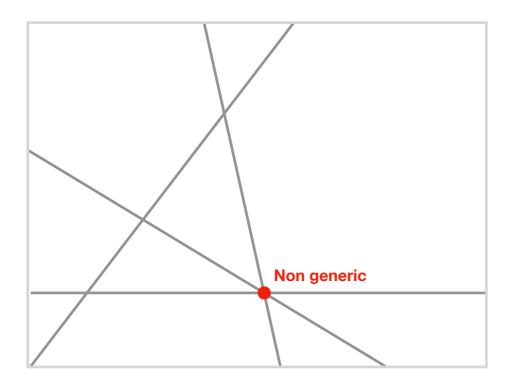
$$A_j \in M_s \left(\mathbb{Q} \langle \operatorname{dlog} f, f \in \mathbb{Q}(c_1, ..., c_r) \rangle \right)$$

Hyperplane arrangements

A hyperplane arrangement is a collection of hyperplanes $H_i = V(\mathcal{C}_i)$

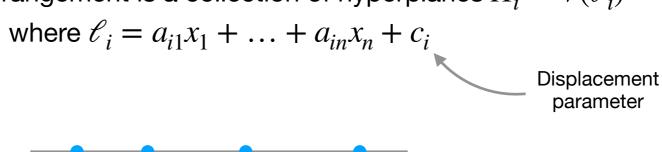


It is **generic** when the intersection of k hyperplanes has codimension k.

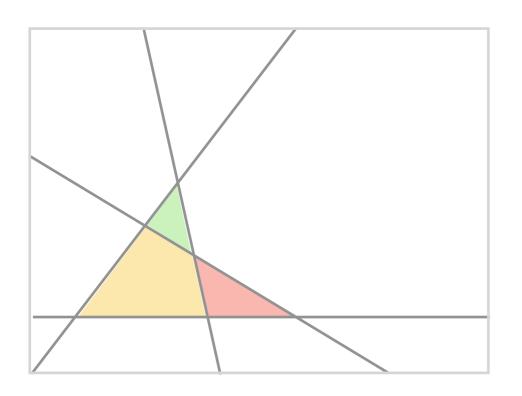


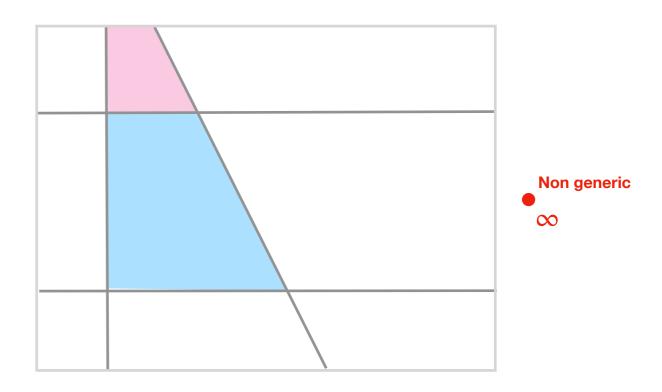
Hyperplane arrangements

A hyperplane arrangement is a collection of hyperplanes $H_i = V(\mathcal{C}_i)$



It is **generic** when the intersection of k hyperplanes has codimension k.





Up to moving displacement parameters, we can assume nonempty intersections are always generic.

Bounded regions are bounded connected components of the complement hyperplane arrangement.

Positive geometry [Arkani-Hamed et al. 2017]

See also

[Brown Dupont 2025] defines for all hyperplane arrangements

a linear isomorphism called the canonical map

Space of bounded regions (relative homology)

$$\operatorname{can}: H_n(\mathbb{P}^n, \mathscr{A}) \to \Omega^n_{\log}(\mathbb{P}^n \backslash \mathscr{A})$$

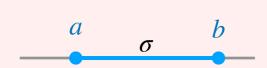
Space of integrands

It sends a point to 1 and is compatible with residue and boundary maps:

$$\operatorname{can} \circ \partial_{H_i} = \operatorname{Res}_{H_i} \circ \operatorname{can}.$$

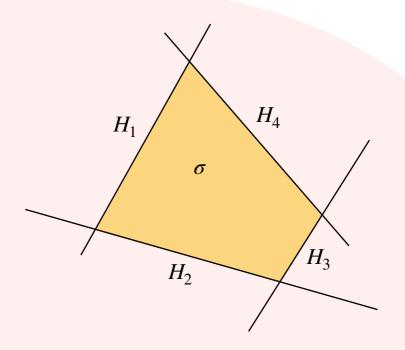
To simplify notations we will denote $can(\sigma)$ by ϖ_{σ} .

Examples



$$\varpi_{\sigma} = \frac{(b-a)\mathrm{d}x}{(x-a)(b-x)} = \frac{\mathrm{d}x}{(x-a)} - \frac{\mathrm{d}x}{(x-b)}$$

$$\operatorname{Res}_a \varpi_{\sigma} = 1$$
 $\operatorname{Res}_b \varpi_{\sigma} = -1$



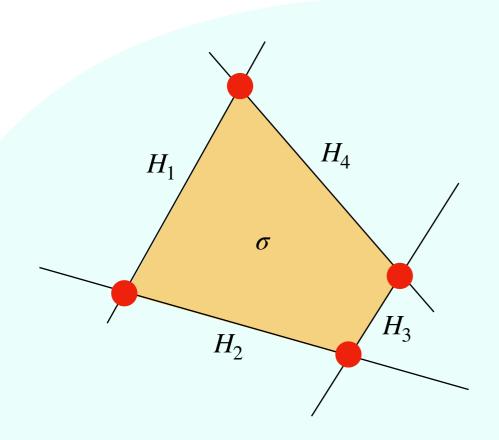
$$\begin{split} \varpi_{\sigma} &= \operatorname{dlog} \ell_{1} \wedge \operatorname{dlog} \ell_{2} + \operatorname{dlog} \ell_{2} \wedge \operatorname{dlog} \ell_{3} \\ &+ \operatorname{dlog} \ell_{3} \wedge \operatorname{dlog} \ell_{4} + \operatorname{dlog} \ell_{4} \wedge \operatorname{dlog} \ell_{1} \\ \operatorname{Res}_{H_{1}} \varpi_{\sigma} &= \operatorname{dlog} \ell_{2} - \operatorname{dlog} \ell_{4} \end{split}$$

Canonical forms of bounded regions

The canonical form of a bounded region decomposes as a sum over its corners.

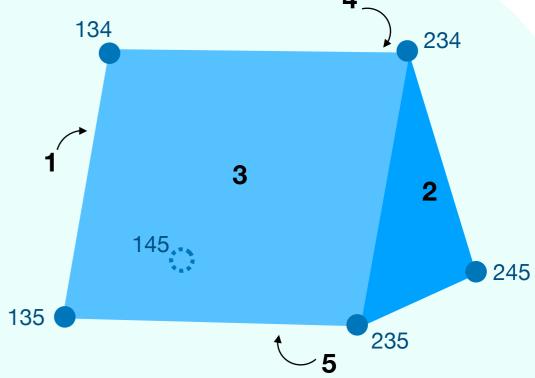
[Brown Dupont 2025] Define $\omega_i = \operatorname{dlog} \mathscr{C}_i$ and $\omega_I = \omega_{i_1} \wedge \omega_{i_2} \wedge \cdots \wedge \omega_{i_{|I|}}$ for $I = \{i_1 < i_2 < \cdots < i_{|I|}\} \subset \{1, \ldots, r\}$. Then

$$\varpi_{\sigma} = \sum_{I} \partial_{I}(\sigma)\omega_{I}$$



$$\varpi_{\sigma} = \omega_{12} + \omega_{23} + \omega_{34} - \omega_{14}$$

Examples



$$\varpi_T = \omega_{134} + \omega_{145} - \omega_{135} - \omega_{234} - \omega_{245} + \omega_{235}$$

Twisted cohomology

(in broad strokes)

Cohomology is the space of integrands up to integration by part relations:

$$\int_{\Gamma} \mathrm{d}\eta = 0 \qquad \text{so we say } \omega_1 \equiv \omega_2 \text{ if } \omega_1 - \omega_2 = \mathrm{d}\eta \text{ for some } \eta$$

Twisted cohomology is the same but you multiply the integrands by a function

$$\int_{\Gamma} \mathrm{d} \left(f^{\varepsilon} \omega \right) = \int_{\Gamma} f^{\varepsilon} \left(\mathrm{d} \omega + \varepsilon \frac{\mathrm{d} f}{f} \wedge \omega \right) = \int_{\Gamma} f^{\varepsilon} \mathrm{d}_{\varepsilon} \omega = 0 \qquad \text{where} \qquad \mathrm{d}_{\varepsilon} \, \square := \mathrm{d} \, \square + \varepsilon \frac{\mathrm{d} f}{f} \wedge \square$$

We say
$$\omega_1 \equiv \omega_2$$
 if $\omega_1 - \omega_2 = d_{\varepsilon} \eta$ for some η .

In our case we have several twists

$$\int_{\Gamma} \ell_1^{\varepsilon_1} \cdots \ell_r^{\varepsilon_r} \omega$$

$$\mathrm{d}_{\varepsilon}\omega := \mathrm{d}\,\omega + \varepsilon_1\,\mathrm{dlog}\,\ell_1 \wedge \omega + \ldots + \varepsilon_r\,\mathrm{dlog}\,\ell_r \wedge \omega \qquad \qquad \mathrm{d}\left(\ell_1^{\varepsilon_1}\cdots\ell_r^{\varepsilon_r}\omega\right) = \ell_1^{\varepsilon_1}\cdots\ell_r^{\varepsilon_r}\mathrm{d}_{\varepsilon}\omega\,.$$

Gauss-Manin connection

Consider an integral of a rational form depending on a parameter t.

One can differentiate with respect to this parameter. It turns out that differentiation really acts on the cohomology.

$$\partial_t \int_{\Gamma} \omega_t = \int_{\Gamma} \nabla_t \omega_t$$

This defines a \mathbb{C} -linear map ∇_t on the $\mathbb{C}(t)$ -vector space $H^n_{\mathrm{DR}}(X_t)$ called the Gauss-Manin connection.

In the twisted setting, the same holds, up to taking care of the twist:

$$\partial_t \int_{\Gamma} f_t^{\varepsilon} \omega_t = \int_{\Gamma} f_t^{\varepsilon} \nabla_t^{\varepsilon} \omega_t \qquad \qquad \nabla_t^{\varepsilon} = \nabla_t - \varepsilon \frac{\partial_t f}{f}$$

Instead of a differential system of integrals $d\mathcal{I} = A\mathcal{I}$, we are looking for the Gauss-Manin connection on cohomology.

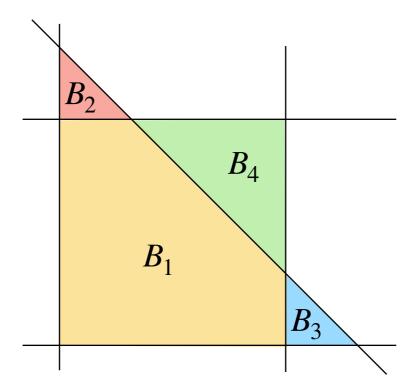
$$\nabla^{\varepsilon}\Omega = A\Omega$$

Canonical form from canonical forms

Theorem: Let \mathscr{A} be an arrangement of r hyperplanes in n-dimensional space.

Let $B_1, ..., B_s$ be a basis of the space of bounded regions of \mathcal{A} .

Define $\Omega_1, ..., \Omega_s$ be the corresponding canonical forms.



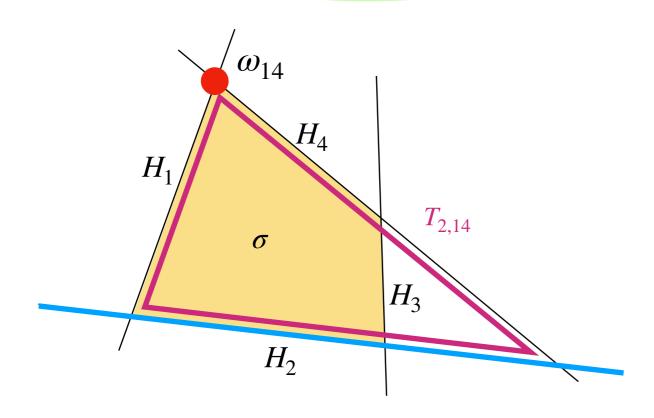
Then $\langle \Omega_1, ..., \Omega_s \rangle$ is stable under the Gauss-Manin connection. The differential system expressed in this basis is in canonical form.

$$\nabla^{\varepsilon} \Omega = \sum_{j=1}^{r} \varepsilon_{j} M_{j} \Omega$$

The generic case

Twisted Gauss-Manin connection

$$\begin{split} \partial_{c_i}^{\varepsilon} \omega_i &= -\frac{\varepsilon_i}{\ell_i} \omega_i + \frac{\mathrm{d} \ell_i}{\ell_i^2} = -\varepsilon_i \frac{1}{\ell_i} \omega_i + \sum_{j=1}^r \frac{\varepsilon_j}{\ell_i} \omega_j + \mathrm{d}_{\varepsilon} \omega_i \\ \partial_{c_i} \omega_j &= 0 \text{ if } i \neq j \end{split}$$



$$\overline{\omega}_{\sigma} = \omega_{12} + \omega_{23} + \omega_{34} - \omega_{14}
\partial_{c_{4}}^{\varepsilon} \overline{\omega}_{\sigma} = \partial_{c_{4}}^{\varepsilon} \omega_{12} + \partial_{c_{4}}^{\varepsilon} \omega_{23} + \partial_{c_{4}}^{\varepsilon} \omega_{34} - \partial_{c_{4}}^{\varepsilon} \omega_{14}
\left(\frac{1}{\ell_{4}} \omega_{12}\right) = \frac{\varepsilon_{1}}{\ell_{4}} \omega_{11} + \frac{\varepsilon_{2}}{\ell_{4}} \omega_{12} + \frac{\varepsilon_{3}}{\ell_{4}} \omega_{13}$$

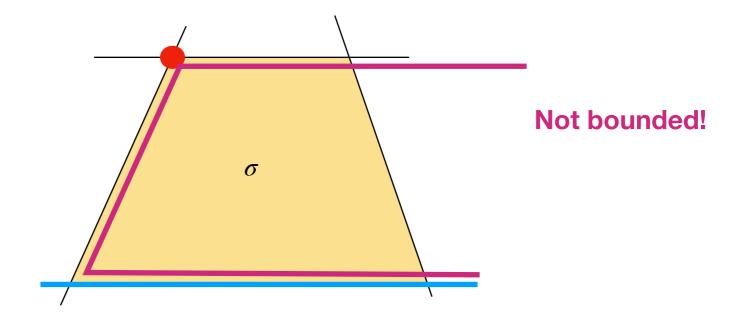
$$\frac{1}{\ell_{4}} \omega_{12} = \frac{\partial_{c_{4}} \alpha_{214}}{\alpha_{214}} \left(\omega_{12} + \omega_{24} - \omega_{14}\right)$$

$$\alpha_{214} = \det \begin{pmatrix} c_{2} & c_{1} & c_{4} \\ a_{21} & a_{11} & a_{41} \\ a_{21} & a_{214} \end{pmatrix}$$

We get a sum over all pairs of corners and twisted hyperplanes (ω_I, H_i) of canonical forms of tetrahedron:

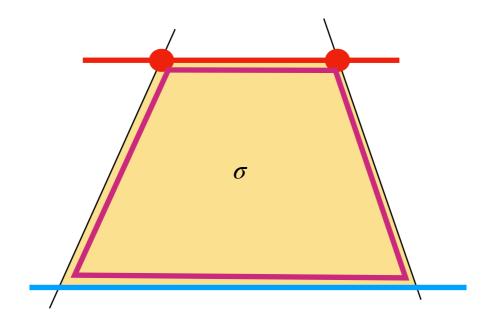
$$\partial_{c_{i}}^{\varepsilon} \varpi_{\sigma} = \sum_{I \ni i, |I| = r} \sum_{j=1}^{r} \partial_{I}(\sigma) \, \varepsilon_{j} \, \frac{\partial_{c_{i}} \alpha_{I,j}}{\alpha_{I,j}} \, \varpi_{T_{j,I}}$$

Prismatoids



Prismatoids

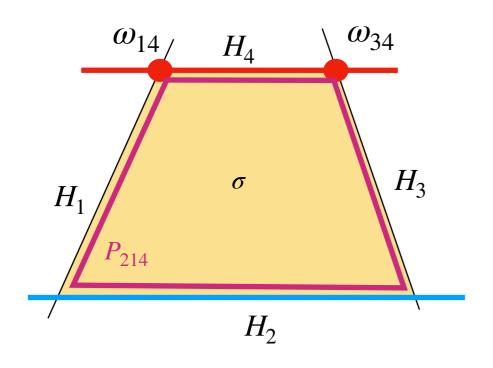
A **flat** of the arrangement is an intersection of hyperplanes.



We are interested in maximal flats parallel to a given twisted hyperplane.

A **prismatoid** is the bounded region σ , obtained from a hyperplane H, a maximal flat F parallel to H and a bounded region of the restricted hyperplane arrangement on F.

The non-generic case



$$\varpi_{\sigma} = \omega_{12} + \omega_{23} + (\omega_{34} - \omega_{14})$$

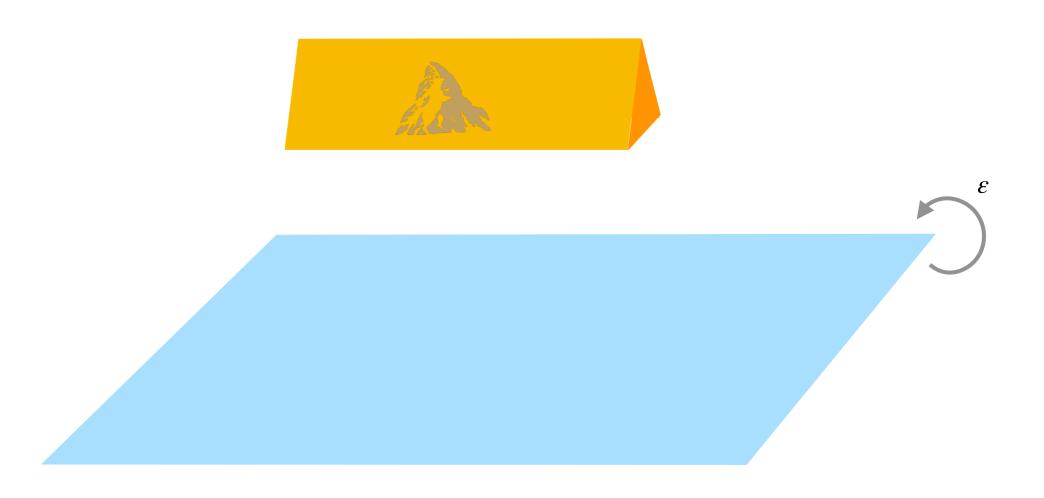
$$\partial_{c_4}^{\varepsilon}(\omega_{14} - \omega_{34}) = \frac{\varepsilon_1}{\ell_4} \omega_{11} + \frac{\varepsilon_2}{\ell_4} \omega_{12} + \frac{\varepsilon_3}{\ell_4} \omega_{13}$$
$$-\frac{\varepsilon_1}{\ell_4} \omega_{13} - \frac{\varepsilon_2}{\ell_4} \omega_{23} - \frac{\varepsilon_3}{\ell_4} \omega_{33}$$

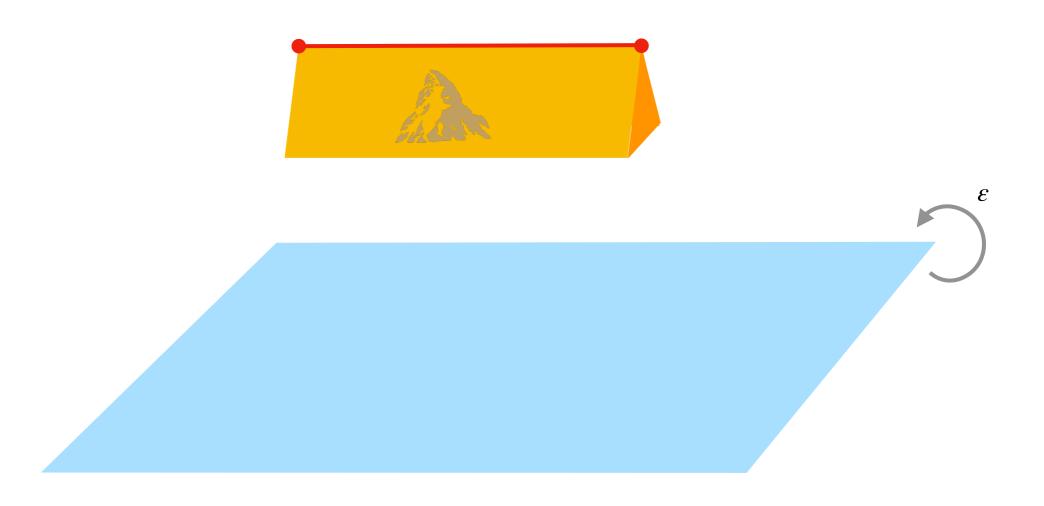
$$\frac{1}{\ell_4}(\omega_{12} - \omega_{23}) = \frac{\partial_{c_4}\alpha_{214}}{\alpha_{214}} \left((\omega_{12} - \omega_{14} + \omega_{34} + \omega_{23}) \right)$$

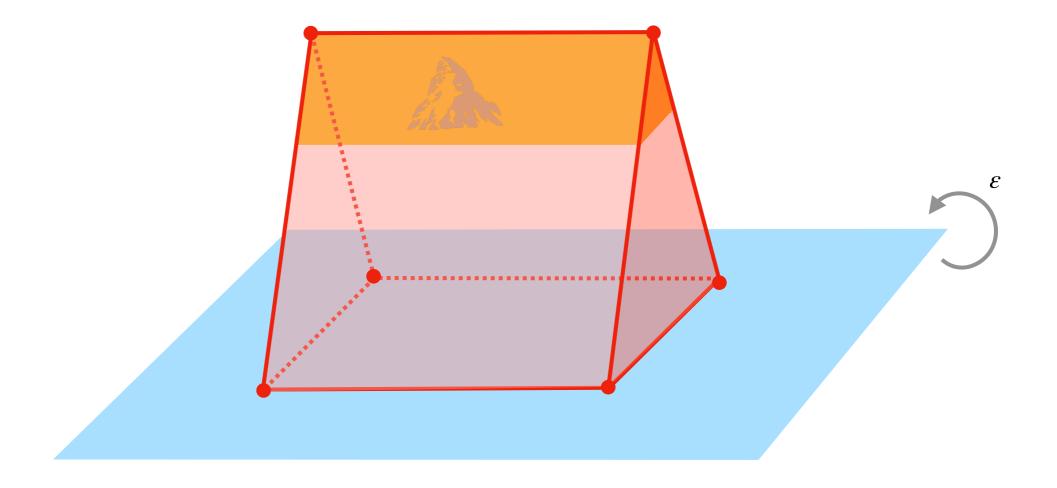
 $\overline{w}_{P_{21}}$

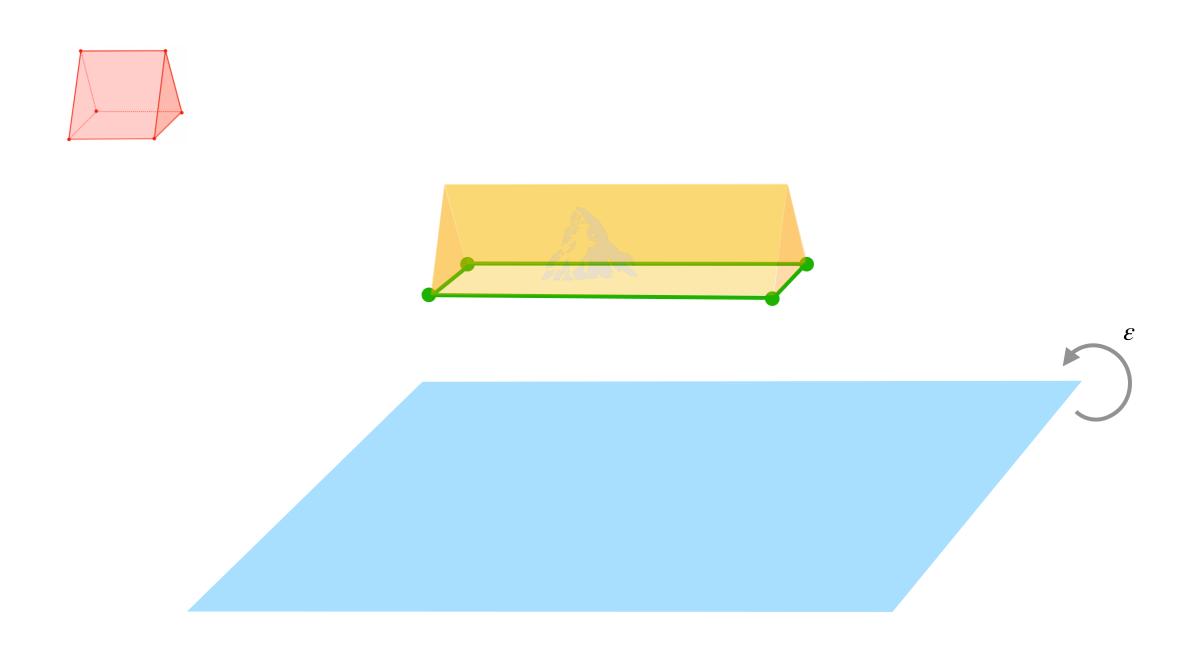
We get a sum over all pairs of twisted hyperplanes and maximal parallel flats (H_i,P_j) of canonical forms of prismatoids:

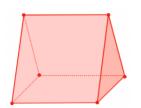
$$\partial_{c_i}^{\varepsilon} \varpi_{\sigma} = \sum_{I \ni i, |I| = r} \sum_{j=1}^{r} \partial_I(\sigma) \, \varepsilon_j \, \frac{\partial_{c_i} \alpha_{I,j}}{\alpha_{I,j}} \, \varpi_{P_{j,I}}$$

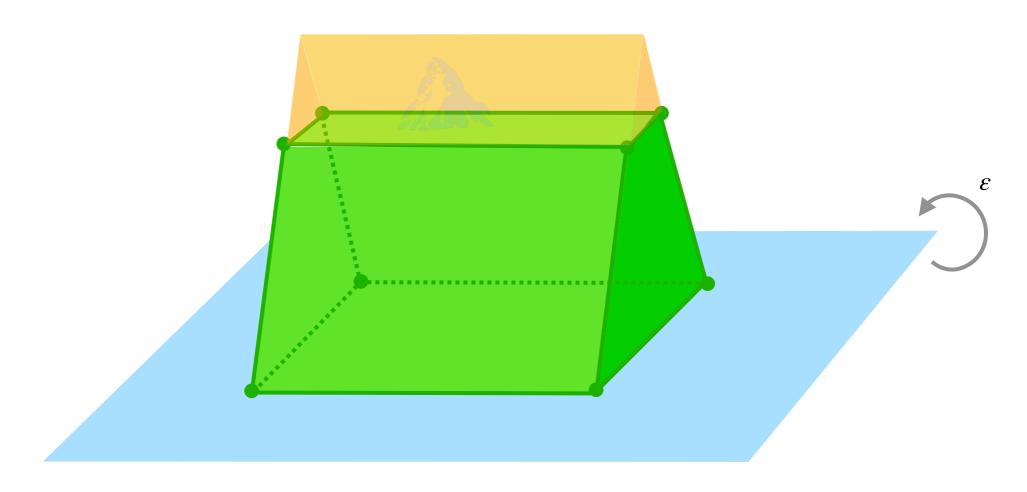


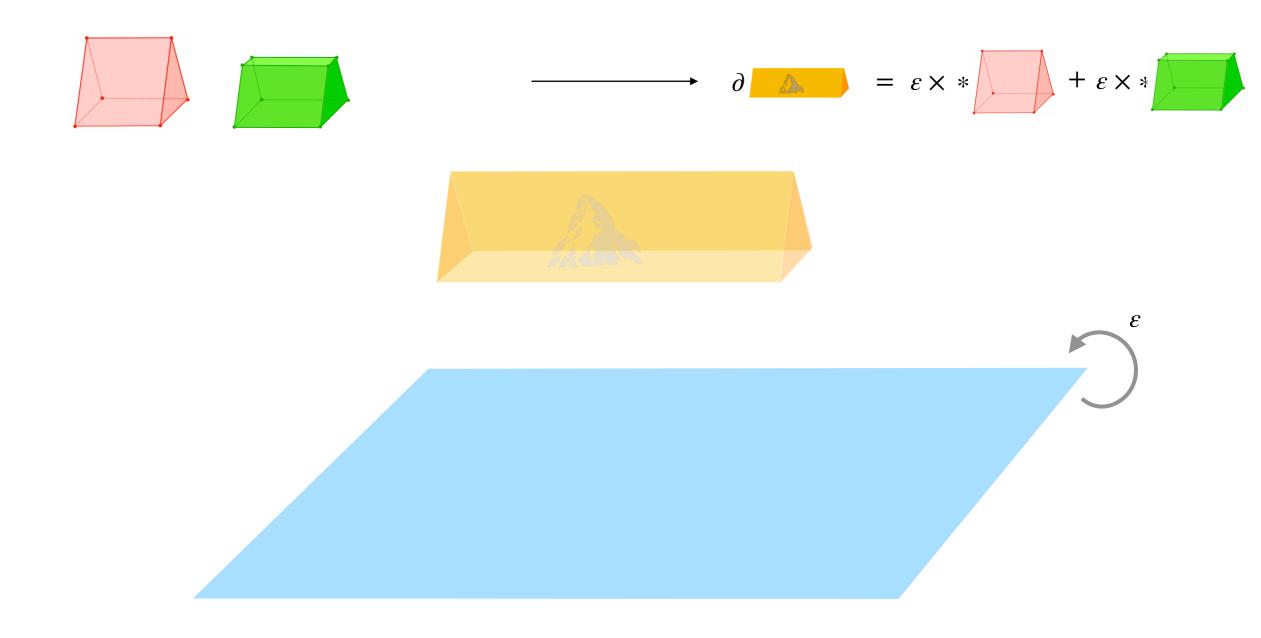


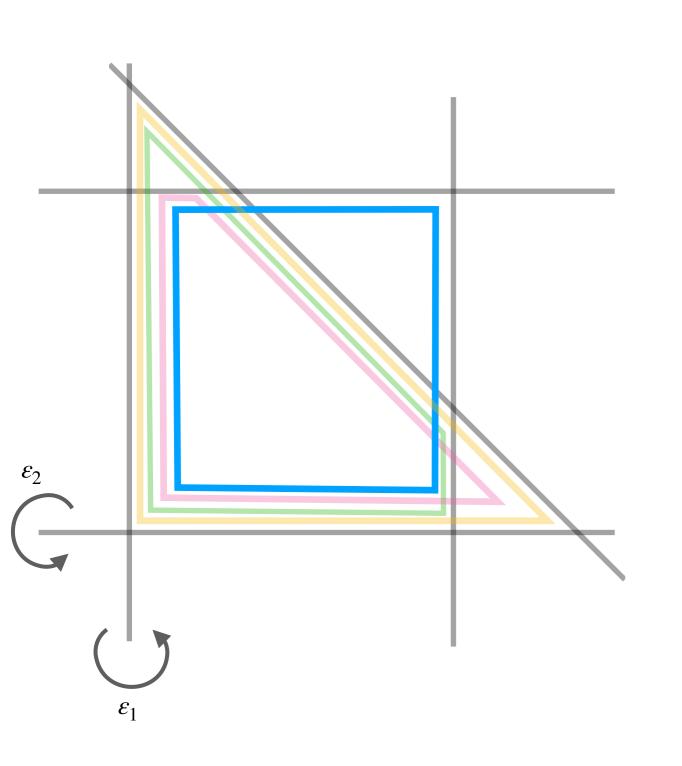


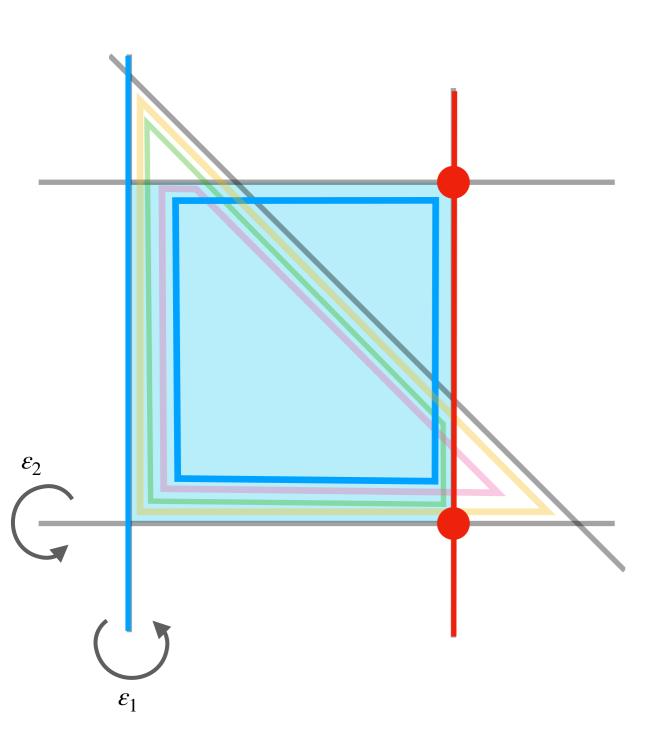


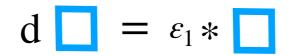


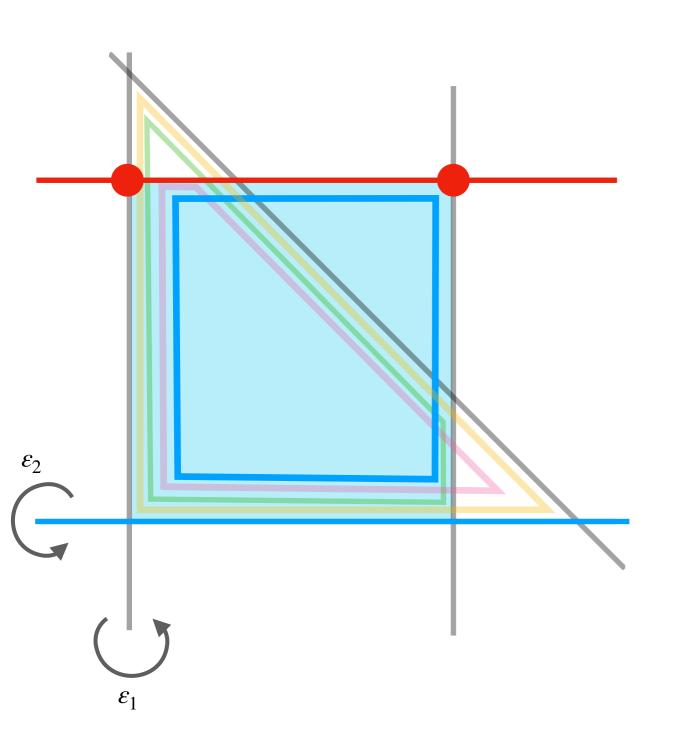


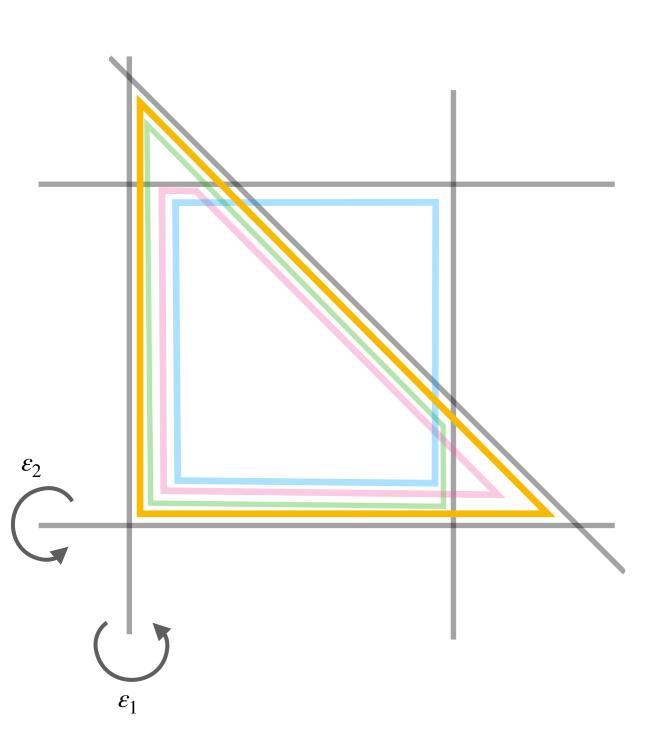






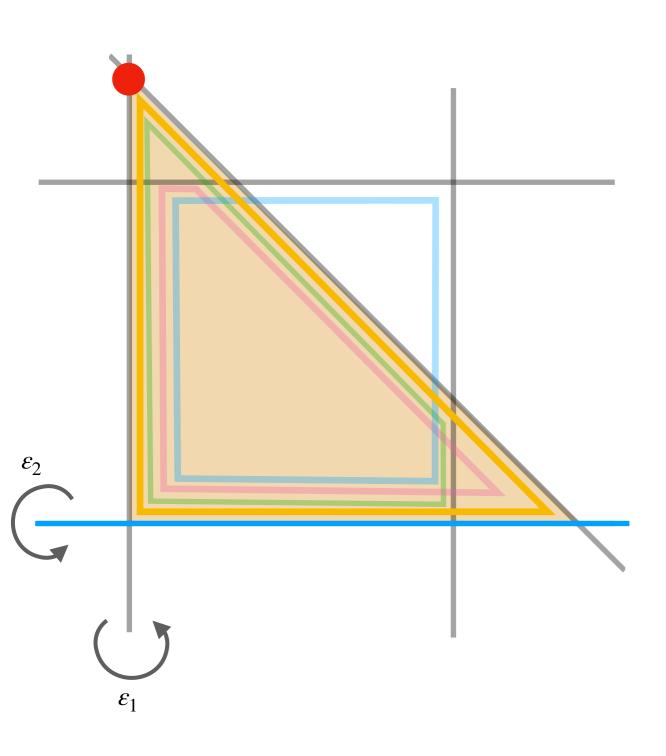






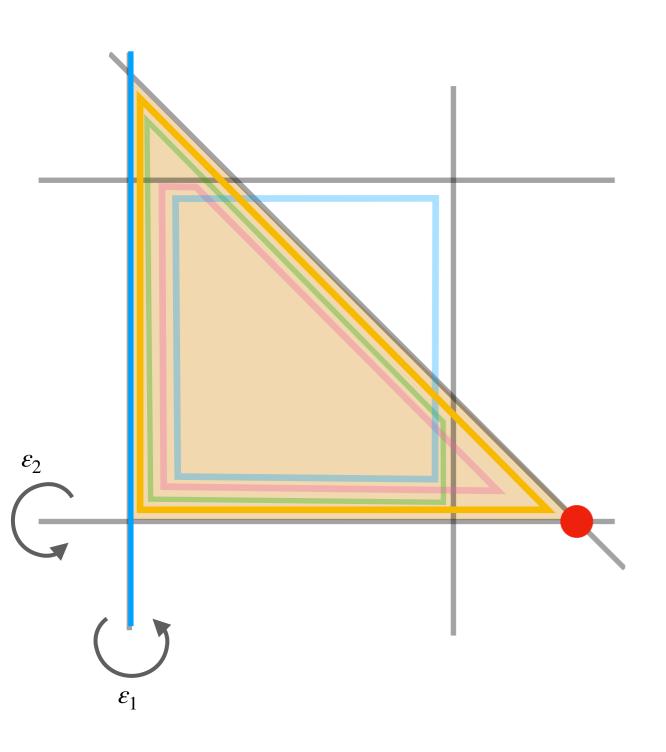
$$d \square = \varepsilon_1 * \square + \varepsilon_2 * \square$$

$$d \square =$$



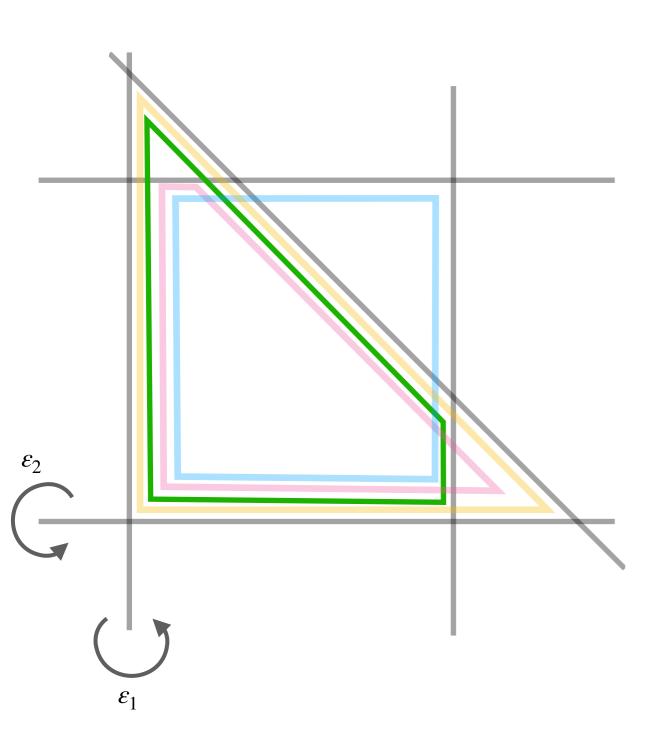
$$d \square = \varepsilon_1 * \square + \varepsilon_2 * \square$$

$$d \square = \varepsilon_1 * \square$$



$$d = \varepsilon_1 * + \varepsilon_2 *$$

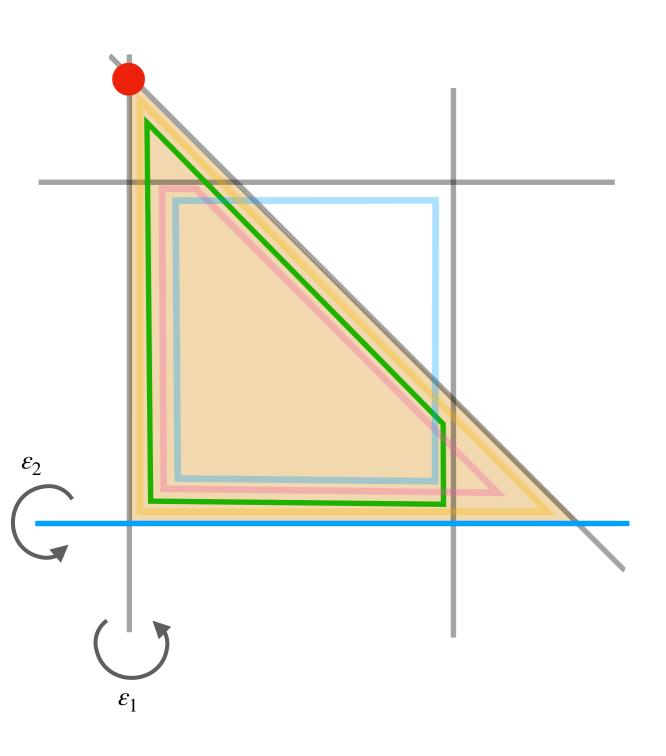
$$d = \varepsilon_1 * + \varepsilon_2 *$$



$$d = \varepsilon_1 * + \varepsilon_2 *$$

$$d = \varepsilon_1 * + \varepsilon_2 *$$

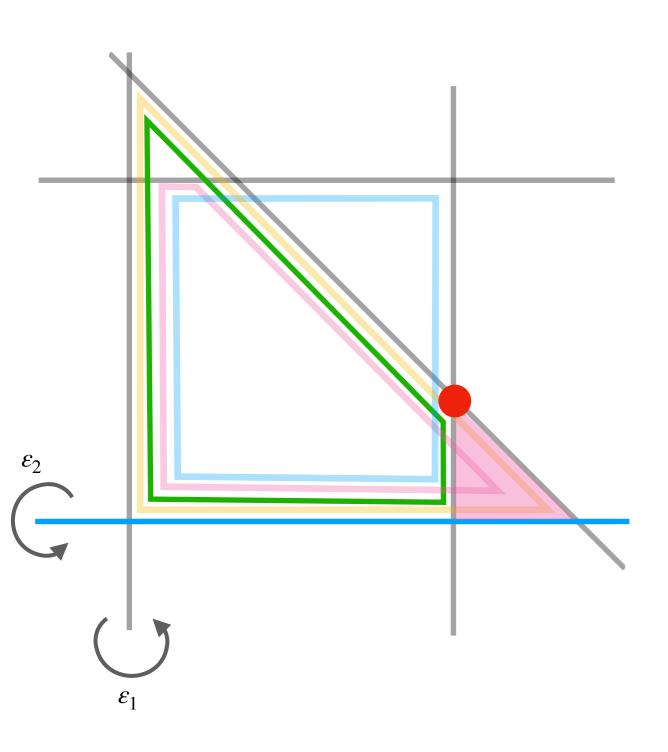
$$d = \varepsilon_1 *$$



$$d = \varepsilon_1 * + \varepsilon_2 *$$

$$d = \varepsilon_1 * + \varepsilon_2 *$$

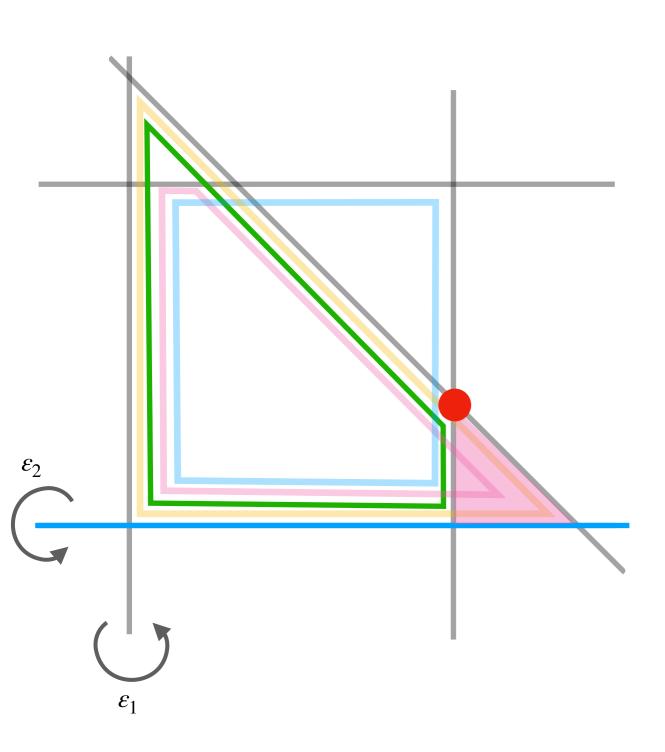
$$d = \varepsilon_2 *$$



$$d = \varepsilon_1 * + \varepsilon_2 *$$

$$d = \varepsilon_1 * + \varepsilon_2 *$$

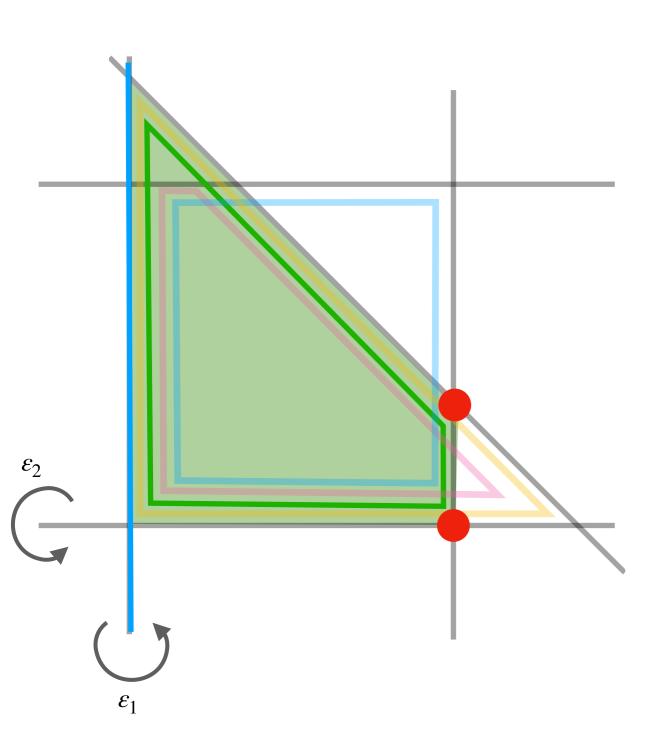
$$d = \varepsilon_2 * + \varepsilon_2 *$$



$$d = \varepsilon_1 * + \varepsilon_2 *$$

$$d = \varepsilon_1 * + \varepsilon_2 *$$

$$d = \varepsilon_2 * + \varepsilon_2 * (-)$$

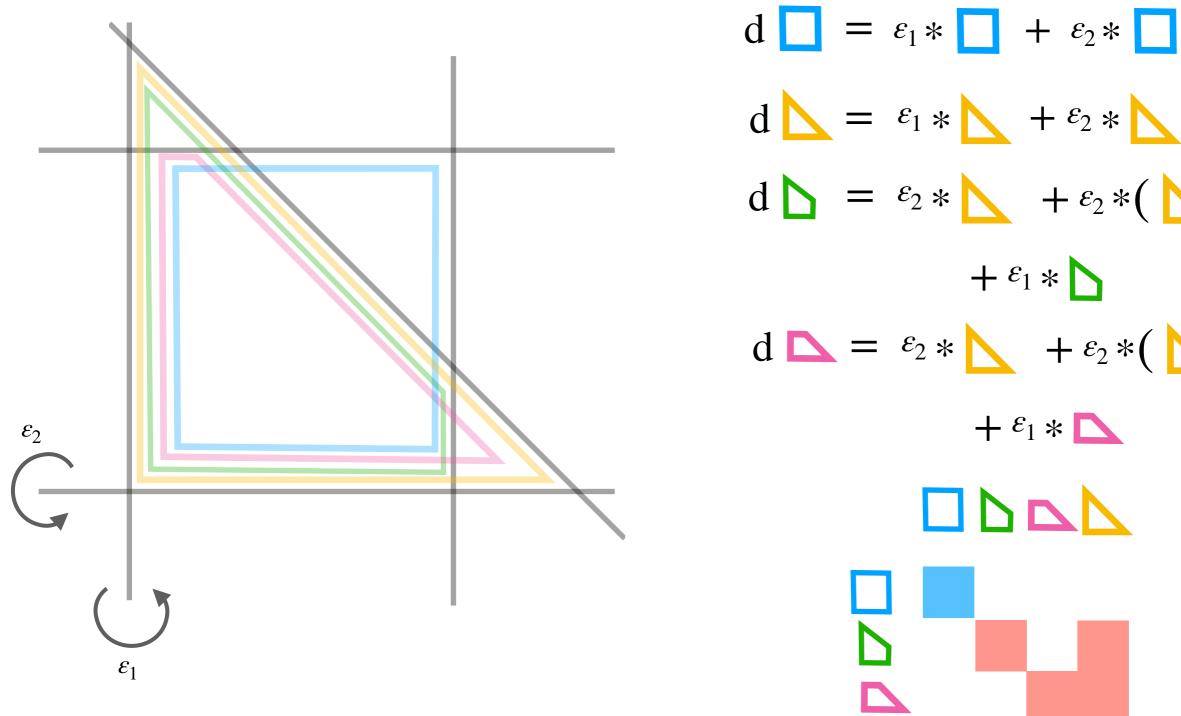


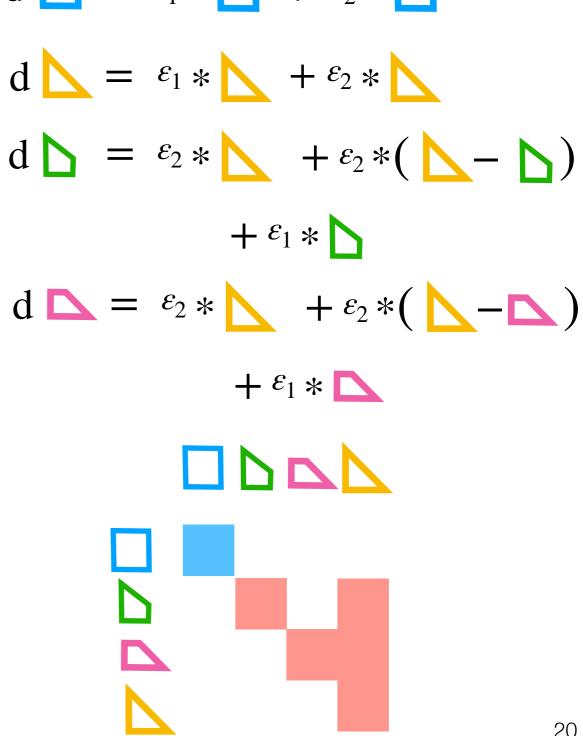
$$d = \varepsilon_1 * + \varepsilon_2 *$$

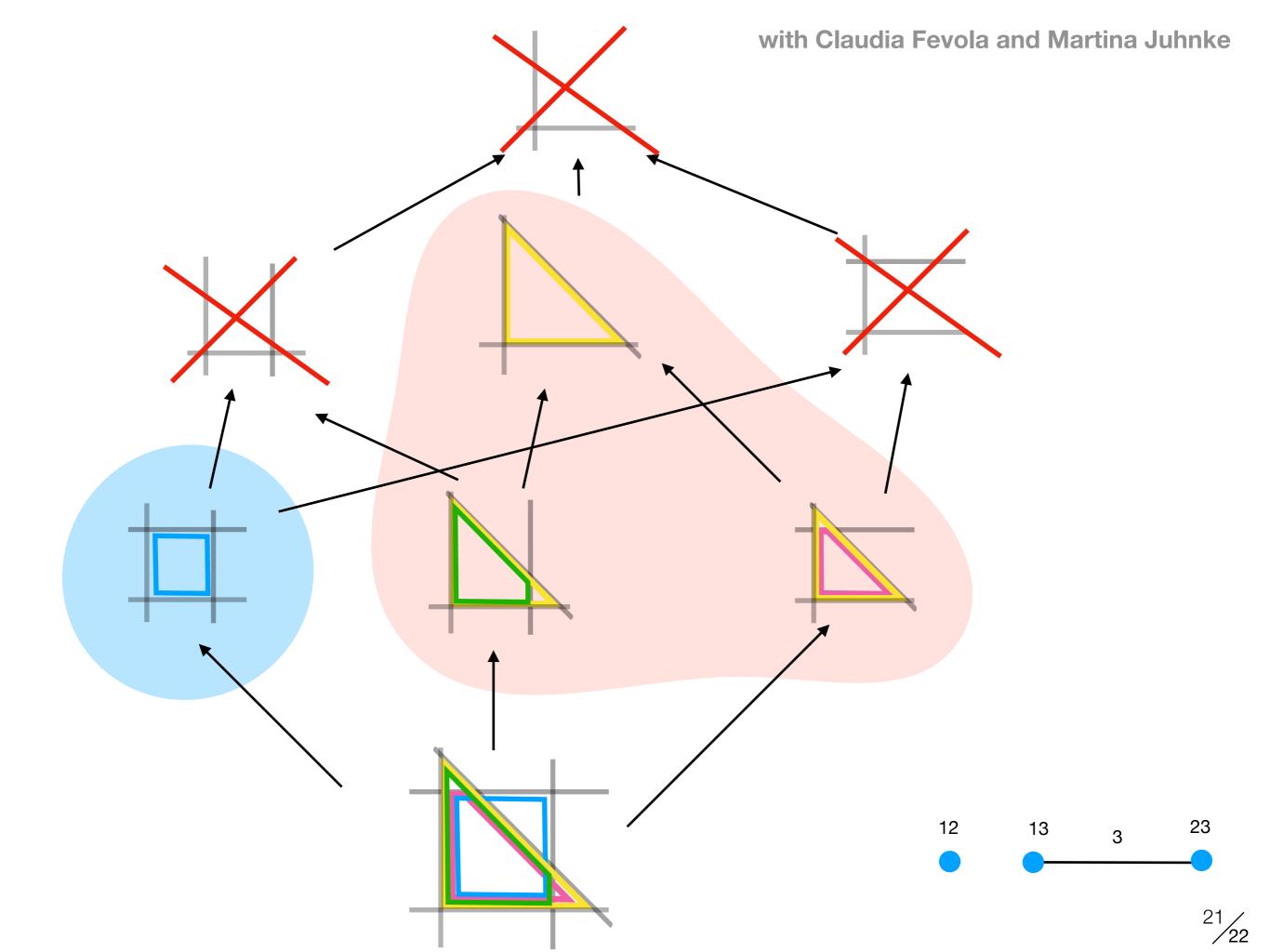
$$d = \varepsilon_1 * + \varepsilon_2 *$$

$$d = \varepsilon_2 * + \varepsilon_2 * -)$$

$$+ \varepsilon_1 *$$

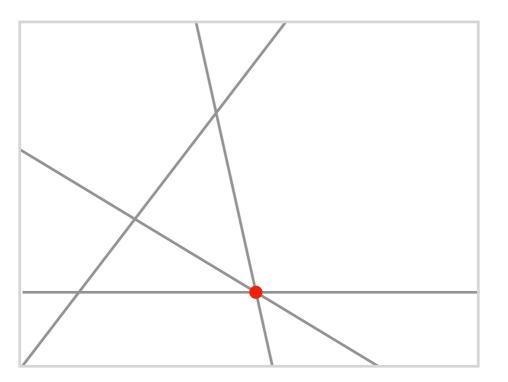






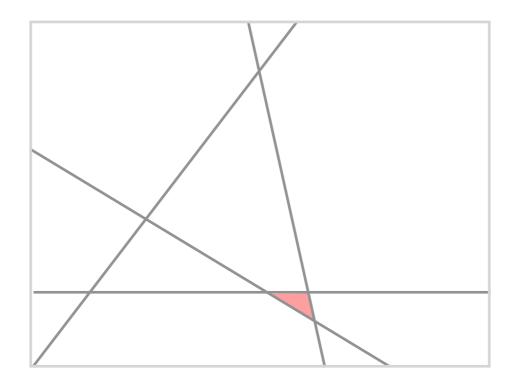
Non-generic intersection

In physical examples (e.g. three-site), the displacement parameters are not independent.



Non-generic intersection

In physical examples (e.g. three-site), the displacement parameters are not independent.



Degenerating the hyperplane arrangement amounts to:

- taking a quotient by bounded region(s) in the homology side
- adding relations between the integrands in the cohomology side

We can do both after computing the connection matrix.

Thank you!

