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Canonical form of differential systems
of displaced hyperplane arrangements
from positive geometry




Canonical forms
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One wants to find a span of integrals that is closed under differentiation f = (%, ..., %),
So that we have a differential system

d¥ = A with A some matrix with rational coefficients in parameters cy, ..., C,.

We say the differential system is in e-factorised form if A = ¢/A; + ---¢,A, where

A € M, (Q(cy. ... ¢ ){dcy, ..., dc,))

We say the differential system is canonical form if furthermore the entries of Aj are composed of dlogs

A; € M, (Q(dlogf, f € Qcy, ....c,.)))
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Hyperplane arrangements

A hyperplane arrangement is a collection of hyperplanes H; = 44 ;)

where £; = a;; x| + ... + a;,x, + ¢;

Displacement
parameter

It is generic when the intersection of k hyperplanes has codimension k.

Non generic

/
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Hyperplane arrangements

A hyperplane arrangement is a collection of hyperplanes H; = 44 ;)

where £; = a;; x| + ... + a;,x, + ¢;

Displacement
parameter

It is generic when the intersection of k hyperplanes has codimension k.
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Non generic
o
o0
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Up to moving displacement parameters, we can assume nonempty intersections are always generic.

Bounded regions are bounded connected components of the complement hyperplane arrangement.
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Positive geometry

[Brown Dupont 2025] defines for all hyperplane arrangements

a linear isomorphism called the canonical map Space of
bour?cl;):ccl:ere(g)gfions n n n integrands
(relative homology) can . Hn(lp > ‘Q{) — Qlog(lp \‘Q{)

It sends a point to 1 and is compatible with residue and boundary maps:
can o dy; = Resy o can.

To simplify notations we will denote can(o) by ..

a b
@ o °
(b —a)dx dx dx

— — _
T (x-a)b-x) x-a (x-Db)

Res,w, =1 Res,w, = —1
w, = dlogZ; Adlog?, + dlog £, A dlog Z5
+dlog 5 Adlog £, + dlog £, A dlog 7,
Resy w, = dlog?, — dlog 2,
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Canonical forms of bounded regions

The canonical form of a bounded region decomposes as a sum over its corners.

[Brown Dupont 2025] Define w; = dlog#; and w; = @; A w; A -+ A w; for
I={i; <ip<--<ip}C{l,...,r} Then

W, = Z 0,(0)w;
1

Examples 4
134 3 234
1
245
135
&/ 235
5
W, = Wy + W3 + W3y — Wy Wr = W34 T WDy5 — D135 — W34 — Woys5 T Wr35
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TWISted COhomOIOgy (in broad strokes)

Cohomology is the space of integrands up to integration by part relations:

Jdn=0 so we say w; = w, if ; — w, = dy for some
r

Twisted cohomology is the same but you multiply the integrands by a function

df df

Jd(fgw):J ft (da)+8—/\a)> =J ffd,w=0 where d.[J:=d0+e—A
I’ I f T f

We say w; = o, if w; — w, = d_n for some .

In our case we have several twists
81 [ BN N ] 8r
J' 2 0,
I

dow:=dw+edlogf/; Ao+ ... +¢.dlogl, Ao d (ffl---ffra)> =7 fdw.
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Gauss-Manin connection

Consider an integral of a rational form depending on a parameter f.

One can differentiate with respect to this parameter.
It turns out that differentiation really acts on the cohomology.

6tJ a)t=[ V, o,
T r

This defines a C-linear map V, on the C(#)-vector space H[j,(X,) called the Gauss-Manin connection.

In the twisted setting, the same holds, up to taking care of the twist:

€ £ £ af
atJ fthZJ Ji Vio, Vi=V,—e—
r I f

Instead of a differential system of integrals d.¥ = A%,
we are looking for the Gauss-Manin connection on cohomology.

VeQ = AQ
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Canonical form from canonical forms

Theorem: Let &/ be an arrangement of r hyperplanes in n-dimensional space.
Let By, ..., B, be a basis of the space of bounded regions of <.
Define €2, ..., 2  be the corresponding canonical forms.

N\

PN

N

Then (€, ..., Q) is stable under the Gauss-Manin connection.
The differential system expressed in this basis is in canonical form.

VEQ = Z 8ijQ
=1
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The generic case

Twisted Gauss-Manin connection

l l o l
J=1 —
: W, = W) + Wy + w3y — Oy
E — E E & E
0, W, = 0,0y + 0,3 + 6640)9046014

a wT2,14
;X214
= (0)12 + Wy — 0)14)
Q14

C, € €4

ayy =det| do1 dyp Ay
yy dyp Ay

We get a sum over all pairs of corners and twisted hyperplanes
(w;, H;) of canonical forms of tetrahedron:

dw,= Y Z 0/(0) €;

Bi|I=r j=1

005,]

’(D’Y} ¥
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Prismatoids

Not bounded!
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Prismatoids

A flat of the arrangement is an intersection of hyperplanes.

We are interested in maximal flats parallel to a given twisted hyperplane.

A prismatoid is the bounded region o, obtained from a hyperplane H,
a maximal flat I’ parallel to H and
a bounded region of the restricted hyperplane arrangement on F.
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The non-generic case

We get a sum over all pairs of twisted hyperplanes and
maximal parallel flats (H,, Pj) of canonical forms of prismatoids:

0w, = Z 2 0,(0) €;

13i,|l|=r j=1

0cia1’ 7
@p,,

al,j
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Example — Toblerone
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Example — Toblerone
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Example — Toblerone
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Example — Toblerone
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Example — Toblerone




Example — Toblerone

iy o - o) o D

s



Example — two-site

d[] =

14
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Example — two-site

dD = 81>X<D
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Example — two-site

dD =81>X<D +82>I<D
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Example — two-site




Example — two-site
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Example — two-site

dD — 81>X<D + 82>X<D
dl\ = e [\ 4 &k N\

Vs



Example — two-site
dD == 81>X<D -+ 82>X<D

dh= 81*B +82*B
dfN =

B2



Example — two-site

dD — 81*D + 82*D
d = &% + € %

db — 82*

18
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Example — two-site

dD =81>X<D +82>I<D

d

€1 % + & %

d[ = ax + &% N
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Example — two-site
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Example — two-site

dD — el*D + 82>I<D

dh= 51*B +52>1<B

dD = e\ +ex(N- D)
+81>X<b

b2



Example — two-site

dD =81>X<D +82>X<D

dl\ = ek [\ + ek [N
dDy = ex[\ +ex(N- D)







Non-generic intersection

In physical examples (e.g. three-site), the displacement parameters are not independent.
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Non-generic intersection

In physical examples (e.g. three-site), the displacement parameters are not independent.

Degenerating the hyperplane arrangement amounts to:
- taking a quotient by bounded region(s) in the homology side

- adding relations between the integrands in the cohomology side

We can do both after computing the connection matrix.
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Thank you!




