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Canonical forms
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∫Γ
ℓε1

1 ⋯ ℓεr
r dx1 ∧ ⋯ ∧ dxn,

We say the differential system is in -factorised form if   whereε A = ε1A1 + ⋯εr Ar

One wants to find a span of integrals that is closed under differentiation , 

So that we have a differential system

ℐ = (ℐ1, …, ℐs)

 with  some matrix with rational coefficients in parameters .dℐ = Aℐ A c1, …, cr

Aj ∈ Ms (ℚ(c1, …, cr)⟨dc1, …, dcr⟩)

We say the differential system is canonical form if furthermore the entries of  are composed of sAj dlog

Aj ∈ Ms (ℚ⟨dlog f, f ∈ ℚ(c1, …, cr)⟩)

[Henn]
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Hyperplane arrangements
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Displacement 
parameter

A hyperplane arrangement is a collection of hyperplanes  

where 

Hi = V(ℓi)
ℓi = ai1x1 + … + ainxn + ci

It is generic when the intersection of  hyperplanes has codimension .k k

Non generic
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Hyperplane arrangements

3

Displacement 
parameter

A hyperplane arrangement is a collection of hyperplanes  

where 

Hi = V(ℓi)
ℓi = ai1x1 + … + ainxn + ci

It is generic when the intersection of  hyperplanes has codimension .k k

Up to moving displacement parameters, we can assume nonempty intersections are always generic.

Non generic

∞

Bounded regions are bounded connected components of the complement hyperplane arrangement.
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Positive geometry
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[Brown Dupont 2025] defines for all hyperplane arrangements 

a linear isomorphism called the canonical map 

It sends a point to  and is compatible with residue and boundary maps: 
.

1
can ∘ ∂Hi

= ResHi
∘ can

Examples

a bσ

σ

H1

H2
H3

H4

ϖσ = (b ℙ a)dx
(x ℙ a)(b ℙ x) = dx

(x ℙ a) ℙ dx
(x ℙ b)

ϖσ = dlog ℓ1 ∧ dlog ℓ2 + dlog ℓ2 ∧ dlog ℓ3
+dlog ℓ3 ∧ dlog ℓ4 + dlog ℓ4 ∧ dlog ℓ1

Resa ϖσ = 1 Resb ϖσ = ℙ 1

ResH1
ϖσ = dlog ℓ2 ℙ dlog ℓ4

To simplify notations we will denote  by .can(σ) ϖσ

can : Hn(𝒜n, →) Ω −n
log(𝒜n∖→)

Space of

integrandsSpace of 


bounded regions

(relative homology)

See also 
[Arkani-Hamed et al. 2017]
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Canonical forms of bounded regions
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ϖσ = ω12 + ω23 + ω34 ℙ ω14

The canonical form of a bounded region decomposes as a sum over its corners.

[Brown Dupont 2025]  Define   and  for 
. Then


 

ωi = dlog ℓi ωI = ωi1 ∧ ωi2 ∧ ⋯ ∧ ωi|I|
I = {i1 < i2 < ⋯ < i|I|} ⊂ {1,…, r}

ϖσ = ∑
I

∂I(σ)ωI

σ

H1

H2
H3

H4

1
23

4

5
ϖT = ω134 + ω145 ℙ ω135 ℙ ω234 ℙ ω245 + ω235

134

145

135
235

245

234

Examples
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Twisted cohomology
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Cohomology is the space of integrands up to integration by part relations:

Twisted cohomology is the same but you multiply the integrands by a function

∫Γ
d (f εω) = ∫Γ

f ε (dω + ε
df
f

∧ ω) = ∫Γ
f εdεω = 0 dε □ := d □ + ε

df
f

∧ □

        so we say  if  for some ∫Γ
dη = 0 ω1 ≡ ω2 ω1 ℙ ω2 = dη η

We say  if  for some .ω1 ≡ ω2 ω1 ℙ ω2 = dεη η

In our case we have several twists

∫Γ
ℓε1

1 ⋯ ℓεr
r ω

dεω := d ω + ε1 dlog ℓ1 ∧ ω + … + εr dlog ℓr ∧ ω d (ℓε1
1 ⋯ℓεr

r ω) = ℓε1
1 ⋯ℓεr

r dεω .

(in broad strokes)

where
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Gauss-Manin connection
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Consider an integral of a rational form depending on a parameter .t

∂t ∫Γ
ωt = ∫Γ

∇tωt

∂t ∫Γ
f ε
t ωt = ∫Γ

f ε
t ∇ε

t ωt ∇ε
t = ∇t ℙ ε

∂t f
f

This defines a -linear map  on the -vector space  called the Gauss-Manin connection.ℂ ∇t ℂ(t) Hn
DR(Xt)

One can differentiate with respect to this parameter.

It turns out that differentiation really acts on the cohomology.

In the twisted setting, the same holds, up to taking care of the twist:

Instead of a differential system of integrals , 

we are looking for the Gauss-Manin connection on cohomology.

dℐ = Aℐ

∇ε− = A−
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Canonical form from canonical forms
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Theorem: Let  be an arrangement of  hyperplanes in -dimensional space. 

Let  be a basis of the space of bounded regions of .


Define  be the corresponding canonical forms.

→ r n
B1, …, Bs →

−1, …, −s

∇ε− =
r

∑
j=1

εjMj −

Then  is stable under the Gauss-Manin connection.

The differential system expressed in this basis is in canonical form.

⟨−1, …, −s⟩

B1

B4

B3

B2
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The generic case
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∂ε
ci
ωi = ℙ εi

ℓi
ωi + dℓi

ℓ2
i

= ℙ εi
1
ℓi

ωi +
r

∑
j=1

εj

ℓi
ωj + dεωi

∂ε
c4

ϖσ = ∂ε
c4

ω12 + ∂ε
c4

ω23 + ∂ε
c4

ω34 ℙ ∂ε
c4

ω14

ϖσ = ω12 + ω23 + ω34 ℙ ω14

∂ε
c4

ω14 = ε1
ℓ4

ω11 + ε2
ℓ4

ω12 + ε3
ℓ4

ω13

1
ℓ4

ω12 =
∂c4

α214

α214
(ω12 + ω24 ℙ ω14)σ

H1

H2

H3

H4

ω14

α214 = det (
c2 c1 c4
a21 a11 a41
a22 a12 a42)

 if ∂ci
ωj = 0 i ≠ j

We get a sum over all pairs of corners and twisted hyperplanes 

 of canonical forms of tetrahedron:(ωI, Hi)

∂ε
ci
ϖσ = ∑

I∋i,|I|=r

r

∑
j=1

∂I(σ) εj
∂ci

αI, j

αI, j
ϖTj,I

Twisted Gauss-Manin connection

T2,14
ϖT2,14
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Prismatoids
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σ

Not bounded!
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Prismatoids
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A flat of the arrangement is an intersection of hyperplanes.

σ

We are interested in maximal flats parallel to a given twisted hyperplane.

A prismatoid is the bounded region , obtained from a hyperplane , 

a maximal flat  parallel to  and 


a bounded region of the restricted hyperplane arrangement on .

σ H
F H

F
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The non-generic case
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We get a sum over all pairs of twisted hyperplanes and 

maximal parallel flats  of canonical forms of prismatoids:(Hi, Pj)

∂ε
ci
ϖσ = ∑

I∋i,|I|=r

r

∑
j=1

∂I(σ) εj
∂ci

αI, j

αI, j
ϖPj,I

σ

ϖσ = ω12 + ω23 + ω34 ℙ ω14

H1

H2

H3

H4
ω14 ω34

∂ε
c4

(ω14 ℙ ω34) = ε1
ℓ4

ω11 + ε2
ℓ4

ω12 + ε3
ℓ4

ω13

ℙ ε1
ℓ4

ω13 ℙ ε2
ℓ4

ω23 ℙ ε3
ℓ4

ω33

1
ℓ4

(ω12 ℙ ω23) =
∂c4

α214

α214
(ω12 ℙ ω14 + ω34 + ω23)

P214

ϖP214
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Example — Toblerone
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ε
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Example — Toblerone
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ε
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Example — Toblerone

12

ε
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Example — Toblerone

13

ε
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Example — Toblerone

13

ε
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Example — Toblerone

13

∂ = * + *ε × ε ×

ε
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Example — two-site
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ε2

d =

ε1
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Example — two-site

14

ε2

d =

ε1

*ε1



22

Example — two-site
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ε2

d =

ε1

*ε1 *ε2+
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Example — two-site
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ε2

d =

ε1

*ε1 *ε2+

d =
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Example — two-site

16

ε2

d =

ε1

*ε1 *ε2+

d = *ε1
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Example — two-site
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ε2

d =

ε1

*ε1 *ε2+

d = *ε1 *ε2+
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Example — two-site
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ε2

d =

ε1

*ε1 *ε2+

d = *ε1 *ε2+

d =
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Example — two-site

18

ε2

d =

ε1

*ε1 *ε2+

d = *ε1 *ε2+

d = *ε2



22

Example — two-site
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ε2

d =

ε1

*ε1 *ε2+

d = *ε1 *ε2+

d = *ε2 *+ ε2
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Example — two-site
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ε2

d =

ε1

*ε1 *ε2+

d = *ε1 *ε2+

d = *ε2 *+ ε2 ℙ( )
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Example — two-site
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ε2

d =

ε1

*ε1 *ε2+

d = *ε1 *ε2+

d = *ε2 *+ ε2 ℙ( )
*ε1+
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Example — two-site
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ε2

d =

ε1

*ε1 *ε2+

d = *ε1 *ε2+

d = *ε2 *+ ε2 ℙ( )
*ε1+

d = *ε2 *+ ε2 ℙ( )
*ε1+
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with Claudia Fevola and Martina Juhnke
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Non-generic intersection
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In physical examples (e.g. three-site), the displacement parameters are not independent.
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Non-generic intersection
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In physical examples (e.g. three-site), the displacement parameters are not independent.

Degenerating the hyperplane arrangement amounts to:

- taking a quotient by bounded region(s) in the homology side


- adding relations between the integrands in the cohomology side

We can do both after computing the connection matrix.



Thank you!

σ

H1

H2

H3

H4

ω14

T2,14


