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• Theoretical predictions for 
observables at %-level accuracy


• search of new physics


• test SM symmetry breaking mech.

Motivation
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• Crucial understanding of amplitudes and loop integrals


• high-multiplicity and massive states increasingly important


• Exploiting physical and mathematical structures 

• many connections with fields of mathematics and computing



• At the core of theoretical predictions in QFT 

• Can be computed in perturbation theory 

• fixed order: Feynman diagrams and Feynman rules

Scattering amplitudes
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More ingredients:

- PDFs and factorization

- IR subtraction

- resummation

- modelling of other non-pert. effects

- Monte-Carlos and event generators

- etc… 

𝒜 = αk (𝒜0 + α𝒜1 + α2𝒜2 + ⋯)
Taylor expansion


in the coupling constants 



• Tree-level diagrams


• rational functions of kinematic variables (e.g. spinors)


• contribute (if present) to leading-order (LO) predictions


• large uncertainty and unreliable estimation of it


• Loop amplitudes and loop integrals


• loops  integrals over unresolved momenta of virtual particles 

• contribute at NLO (sometimes LO) and beyond

⇔

Trees and loops
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• High-precision predictions in high-energy physics


• aim at %-level accuracy (compare with LHC data, new physics searches,…)


• leading-order (LO) predictions have high uncertainty


• usually next-to-next-to-leading order (NNLO) or better is needed


• Loops in QFT and more


• essential for both phenomenology and theoretical studies in QFT


• connections with many fields of mathematics 
(special functions, algebraic geometry, intersection theory), 
computing (number theory, computer algebra, linear algebra, integration) 
and physics (classical observables, gravity)

Why loops?
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Loop calculations



• At the core of theoretical predictions


• Exhibit rich and interesting mathematical structures


• At the loop level, a combination of

Loop amplitudes
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𝒜 = ∫
∞

−∞ (
ℓ

∏
i=1

ddki) 𝒩
D1 D2 D3⋯

Dj = l2
j − m2

j

Inverse propagators



• Write amplitudes as a linear combination of loop integrals 

• Standard form is usually 
 
 
 
 
 

• Modern methods: tensor decomposition, integrand reduction

Computing loop amplitudes 1/3
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𝒜 = ∑
j

aj Ij

Rational 
coefficients

Integrals in a

“nice/standard” form

I = ∫
∞

−∞ (
ℓ

∏
i=1

ddki) 1
Dα1

1 Dα2
2 ⋯Dαn

n
, αj ⋚ 0

inverse propagators + auxiliariesDj =
INTEGRAL FAMILY


common set of 
denominators



• Loop integrals obey linear relations, e.g. IBPs 


• Very large and sparse linear system => often a huge bottleneck


• Solution = reduction into a basis of linearly independent 
master integrals (MIs) {Gj} ⊂ {Ij}

Computing loop amplitudes 2/3
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Chetyrkin, Tkachov (1981), Laporta (2000)

∫ (∏
j

ddkj) ∂
∂kμ

j
vμ 1

Dα1
1 Dα2

2 ⋯
= 0, vμ ∈ {pμ

i , kμ
i }

Ij = ∑ cjkGk
master integrals

rational coefficients



• Computing the master integrals (MIs)


• Most efficient method is differential equations 
Kotikov (1991), Gehrmann, Remiddi (2000) 

• MIs obey systems of differential equations w.r.t. invariants  
 
 

• take derivates of MIs and reduce them to MIs 

• both analytic and numerical methods

x

Computing loop amplitudes 3/3
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∂xGj = ∑
k

Ajk Gk



- Analytic complexity 

• understanding space of special functions for amplitudes


• appears in computation of MIs


- Algebraic complexity 

• huge intermediate expressions


• appears in most steps if we have “many” loops, legs or scales

Analytic vs Algebraic complexity
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There’s an interplay between the two!



- Planar loop integrals for massless six-particle scattering  
[J. Henn, A. Matijašić, J. Miczajka, T. P., Y. Xu, Y. Zhang (2022-25) 
 S. Abreu, P. F. Monni, B. Page, J. Usovitsch (2024)] 

• huge algebraic complexity (6 legs, 8 independent invariants)


• functional form: iterated integrals of dlog-forms 
(“in principle” well known) 
 

- Planar loop integrals for top-pair production plus a W boson 
[M. Becchetti, D. Canko, V. Chestnov, T. P., M. Pozzoli, S. Zoia (2025)] 

• algebraic complexity (5 legs, 7 invariants, internal masses)


• analytic complexity (“elliptic” integrals)

Two recent cutting-edge examples
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Finite fields and rational 
reconstruction



• A successful idea for dealing with algebraic complexity 
[Kant (2014), von Manteuffel, Schabinger (2014), T.P. (2016)]


• Reconstruct analytic results from numerical evaluations 

• intermediate steps are numbers instead of complicated expressions


• Evaluations over finite fields  (computing modulo a prime )


• Use machine-size integers  (fast and exact)


• Collect numerical evaluations and infer analytic result form them

𝒵p p

p < 264

Finite fields and rational reconstruction
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𝒵p = {0,1,…, p − 1}



• Applicable to any rational algorithm 

• direct reconstruction of DEs or rational coefficients of amplitudes


• Sidesteps appearance of large intermediate expressions 


• Massively parallelizable 


• numerical evaluations are independent of each other


• algorithm-independent parallelization strategy 


• Yielded some of the most impressive multi-loop results to date


• Examples of known codes using it: 
FinRed, FiniteFlow, FireFly+Kira, Fire, Caravel 

• Useful for both numerical and analytic calculations

Finite fields and rational reconstruction
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• Builds numerical algorithms via a high-level interface


• Combines core algorithms into a computational graph


• graph evaluation implemented in C++

FiniteFlow
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T.P. (2019)

• Usable as a Mathematica package*


• build efficient implementations of 
custom algorithms


• reconstruct analytic results


• Produced many cutting-edge 
multi-loop results

* Also via a C API or as a Python module (WIP)



• A flexible framework to implement new algorithms


• Examples of programs using it


• FFUtils, Symbols, LiteIBP [T.P.] (the latter uses FiniteFlow+LiteRed [R.Lee])


• AMFlow [Xiao Liu, Yan-Qing Ma]: numerical evaluation of integrals


• Blade [Guan,Liu,Ma,Wu]: efficient systems for IBP reduction


• Initial [Dlapa,Henn,Yan,Wagner]: finding canonical bases of master integrals


• SOFIA [Correia, Giroux, Mizera] via Effortless [A. Matijašić, J. Miczajka]: 
singularities of loop integrals


• CALICO [Bertolini, Fontana, T.P.]: parametric annihilators and syzygies


• several private codes for loop integrals, amplitudes and gravity calculations


• Upcoming new version


• new features, performance and usability improvements (now in exp branch)


• new IBP reduction code: FFIntRed [to appear]

FiniteFlow in the wild

17



Applications to

DEs for loop integrals



• MIs obey systems of differential equations w.r.t. invariants  
 
 

• The most well understood case: -form [J.Henn (2013)] with  
 
 

• algebraic letters, alphabet, matrix of rational numbers


• requires a good choice of MIs (canonical basis) 

• Integrate order-by-order in  in terms of iterated integrals

x

ϵ

wj = {wj} = ̂cj =

ϵ

Differential equations (DEs)
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∂x
⃗G = ∑

k

̂A(x)(ϵ, x) ⋅ ⃗G

d ⃗G = ϵ∑
k

d ̂A(x) ⋅ ⃗G , d ̂A = ∑
l

̂cj d log wj(x)

∫ d log wj1⋯∫ d log wjn



• Best case scenario 
 
 
 

• for a basis  and alphabet  known a priori 

• Reconstruction of DEs can be drastically simplified


• take derivatives of MIs


• reduce them to MIs numerically (over finite fields)


• numerically “fit” the matrices  (just a few numerical evaluations!)


• Feasible even for very complex processes 
(e.g. six-particles scattering at two loops)

⃗G {wj}

̂cj

Reconstructing canonical DEs
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d ⃗G = ϵ∑
k

d ̂A(x) ⋅ ⃗G , d ̂A = ∑
l

̂cj d log wj(x)



Finding canonical bases
in a nutshell
• A priori: integrals with constant leading singularity 

• Leading singularity analysis [J.Henn (2013)], by hand or via 
DLogBasis [P.Wasser] 

•  form in a parametric representation (e.g. Baikov) in 


• A posteriori: via a change of basis


• requires prior analytic reconstruction of DEs (more expensive)


• Magnus expansion [Mastrolia, Argeri et al.], Fuchsian form etc. 
[Henn, Lee, Meyer, Meyer et al.]

d log d = 4

I
ϵ=0

= ∑
j1,…,jn

cj1,…,jn ∫ d log αj1⋯∫ d log αjn, c ⃗j ∈ ℚ



Finding the alphabet
in a nutshell

• Rational (“even”) letters


• singularity analysis (BaikovLetters, PLD.jl, SOFIA, etc…)


• denominators of DEs (requires prior reconstruction)


• Irrational (“charged”) letters


• square roots appear in singularity analysis


• letters of the form*                          (see e.g. Effortless)  

• Understanding singularity structure of loop integrals is 
important

w =
p + q r

p − q r

* Products of roots also generally appear



• Mix of different strategies


• Simpler sectors


• reuse knowledge from simpler processes + changes of bases easier


• More complex sectors


• analyze on maximal cuts first & then correct by lower sectors


• check -form of DEs by reconstructing only  dependence


• Realistically and pragmatically


• analytic reconstruction of some matrix elements


• use information to deduce the other ones up to constants 
+ numerical fit via a few numerical evaluations

ϵ ϵ

Canonical DEs, more pragmatically
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• Integration in terms of independent functions


• cast in terms of iterated integrals


• they can be built systematically from DEs 
[Gehrmann, Henn, Lo Presti (2018), Chicherin, Sotnikov (2018), 
Chicherin, Sotnikov, Zoia (2022), etc…] 

• can be cast as one-fold integration of logs and , up to weight 4


• special functions also satisfy DEs


• “full” analytic control and efficient numerical evaluation


• Amplitudes in terms of independent objects


• simplifies analytic reconstruction (no “hidden” zeroes)


• analytic reconstruction still required

Li2

From DEs to integral evaluation
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• Planar two-loop six-particle integrals


• very high algebraic complexity (8 invariants, 6 legs)


• DEs and numerical evaluation


• study of its analytic structure made the calculation feasible

A recent cutting-edge application
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J. Henn, A. Matijašić, J. Miczajka, T. P., Y. Xu, Y. Zhang (2022-25), 
see also S. Abreu, P. F. Monni, B. Page, J. Usovitsch (2024)



Increasing the complexity: 
 two-loop integralstt̄ + W

M. Becchetti, D. Canko, V. Chestnov, T. P., M. Pozzoli, S. Zoia (2025)



• Families contributing to  production at leading colourtt̄ + W

Two-loop planar integrals for tt̄ + W
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• Challenge: huge algebraic complexity paired with higher analytic 
complexity


• Use “canonical” MIs ( -form) when possible


• except when it would introduce nested square roots (see later)


• Some sectors are related to elliptic geometries


• -form would introduce elliptic periods in DEs


• only done, so far, in algebraically much simpler cases


• public tools for numerical evaluations not supported


➡ aim for DEs with a simple polynomial form in 

ϵ

ϵ

ϵ

General strategy for tt̄ + W
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• A minor issue arising from leading singularity analysis


• Constant leading singularity would require a normalization with 
nested roots


• Already observed e.g. in some integrals for  
[Cordero, Figueiredo, Kraus, Page, Reina (2024)]


• Not an issue, in principle, but public tools for numerical 
integration don’t support them


• pragmatic solution: 
rotate them away at the price of having DEs linear in 


• Not a issue in practice: the main complexity is elsewhere!

tt̄ + H

ϵ

Nested square roots
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I ∼
# + #

# ∫ dDk1dDk2⋯



Elliptic sectors
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Known from  
[Badger,Becchetti, 
Giraudo,Zoia (2024)]

tt̄ + j

NEW NEW



• Five-point elliptic sector


• Leading singularity analysis 
on maximal cut for 
corner integral yields


•  has degree 4 and describes an elliptic curve 


• the discriminant of  has degree 14 and ~2500 terms


• appears as denominator of DEs (also cross-checked with SOFIA)

P(z) y2 = P(z)

P(z)

The most complex sector
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I ∼ ∫
dz
P(z) ∫ d log α(z, z′￼)

see also V.Chestnov’s talk



• Our final result for DEs takes the form  with 
 
 
 
 
 
 

• Non-dlog forms contain most of the algebraic complexity


• irreducible polynomials with up to >550k terms


• MIs chosen to be  and elliptic MIs only contribute at 


• they should only contribute to finite part of amplitudes 
(modulo algebraic relations we currently don’t control)

d ⃗G = d ̂A ⋅ ⃗G

O(ϵ0) O(ϵ4)

Final form of DEs
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dA =
2

∑
k=0

ϵk ∑
j

̂ckj d log wj(x) + ∑
j

̂dkj ωj(x)

non-dlog forms ωj(x) =
7

∑
a=1

ωja(x) dxadlog forms



• No reasonably viable shortcut: full reconstruction of DEs


• direct reconstruction of DEs with FiniteFlow+FFIntRed from 
evaluations over finite fields 

• fast numerical evaluations are crucial 

• Optimization of IBP reduction: NeatIBP* 
[Z. Wu, J. Boehm, R. Ma, H. Xu, Y. Zhang (2023)]


• avoid integrals with higher powers of denominators in identities


• despite high complexity, FiniteFlow reconstructs it on a modern 
computing node requiring no additional “tricks”


• a good sign in light of computing amplitudes

Reconstruction of DEs
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* A custom version modified by V. Chestnov that internally uses FiniteFlow’s linear solver



• A selection of boundary points computed with AMFlow


• slower but only needed for a few points


• Numerical integration from boundary points to physical phases-
space


• we avoid crossing the boundary of physical region


• various solvers available: DiffExp, Line, AMFlow internal solver 

• Outlook 

• write DEs in terms of special functions


• applications to scattering amplitudes and phenomenology

Numerical evaluation of MIs
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• Loop integrals  mathematical and computational fields


• algebraic geometry, differential equations, number theory, special 
functions etc. 

• Computational issues in phenomenologically motivated 
problems are tackled using mathematical knowledge 

• Modern cutting-edge calculations use, e.g.


• finite fields and rational reconstruction


• analytic/numerical integration of differential equations


• concepts from algebraic geometry

⇔

Conclusions & Outlook
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