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Motivation

* Theoretical predictions for
observables at %-level accuracy

e search of new physics

e test SM symmetry breaking mech.

* Crucial understanding of amplitudes and loop integrals

* high-multiplicity and massive states increasingly important

* Exploiting physical and mathematical structures

 many connections with fields of mathematics and computing



Scattering amplitudes

* At the core of theoretical predictions in QFT

@
-

= ' More ingredients:
{i - PDFs and factorization
- IR subtraction

I

- resummation
- modelling of other non-pert. effects
- Monte-Carlos and event generators |

b
> - etc...

 Can be computed in perturbation theory

o =a"(dy+ad,+a*d,+ )

* fixed order. Feynman diagrams and Feynman rules



Trees and loops

* Tree-level diagrams
« rational functions of kinematic variables (e.g. spinors)
e contribute (if present) to leading-order (LO) predictions

« large uncertainty and unreliable estimation of it

 Loop amplitudes and loop integrals

* loops < integrals over unresolved momenta of virtual particles

e contribute at NLO (sometimes LO) and beyond



Why loops?

* High-precision predictions in high-energy physics
 aim at %-level accuracy (compare with LHC data, new physics searches,...)
* leading-order (LO) predictions have high uncertainty

e usually next-to-next-to-leading order (NNLO) or better is needed

* Loops in QFT and more
e essential for both phenomenology and theoretical studies in QFT

e connections with many fields of mathematics
(special functions, algebraic geometry, intersection theory),
computing (number theory, computer algebra, linear algebra, integration)
and physics (classical observables, gravity)



Loop calculations



Loop amplitudes

* At the core of theoretical predictions

* Exhibit rich and interesting mathematical structures

At the loop level, a combination of

Inverse propagators

2
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Computing loop amplitudes 1/3

 Write amplitudes as a linear combination of loop integrals
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e Standard form is usually
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INTEGRAL FAMILY |
: e » common set of
D, = inverse propagators + auxiliaries | denominators |

* Modern methods: tensor decomposition, integrand reduction



Computing loop amplitudes 2/3

Chetyrkin, Tkachov (1981), Laporta (2000)

* Loop integrals obey linear relations, e.g. IBPs

i 0 1
(1) 55 g =0 v < otk

* Very large and sparse linear system => often a huge bottleneck

e Solution = reduction into a basis of linearly independent
master integrals (Mis) {G,} C {/;}




Computing loop amplitudes 3/3

 Computing the master integrals (Mis)

 Most efficient method is differential equations
Kotikov (1991), Gehrmann, Remiddi (2000)

 MIs obey systems of differential equations w.r.t. invariants x
0,G;= ) Ay G,
k

 take derivates of MlIs and reduce them to Mls

* both analytic and numerical methods
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Analytic vs Algebraic complexity

- Analytic complexity
e understanding space of special functions for amplitudes

e appears in computation of Mls

- Algebraic complexity
* huge intermediate expressions

e appears in most steps if we have “many” loops, legs or scales

There’s an interplay between the two!
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Two recent cutting-edge examples

- Planar loop integrals for massless six-particle scattering
[J. Henn, A. Matijasic, J. Miczajka, T. P, Y. Xu, Y. Zhang (2022-25)
S. Abreu, P. F. Monni, B. Page, J. Usovitsch (2024)]
* huge algebraic complexity (6 legs, 8 independent invariants)

e functional form: iterated integrals of dlog-forms
(“in principle” well known)

- Planar loop integrals for top-pair production plus a W boson
[M. Becchetti, D. Canko, V. Chestnoy, T. P.,, M. Pozzoli, S. Zoia (2025)]

e algebraic complexity (5 legs, 7 invariants, internal masses)

e analytic complexity (“elliptic” integrals)

12



Finite fields and rational
reconstruction



Finite fields and rational reconstruction

* A successful idea for dealing with algebraic complexity
[Kant (2014), von Manteuffel, Schabinger (2014), T.P. (2016)]

 Reconstruct analytic results from numerical evaluations

* intermediate steps are numbers instead of complicated expressions

 Evaluations over finite fields zp (computing modulo a prime p)

Zp ={0,1,....,p—1}

e Use machine-size integers p < D064 (fast and exact)

* Collect numerical evaluations and infer analytic result form them
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Finite fields and rational reconstruction

* Applicable to any rational algorithm

e direct reconstruction of DEs or rational coefficients of amplitudes
e Sidesteps appearance of large intermediate expressions

* Massively parallelizable
 numerical evaluations are independent of each other

e algorithm-independent parallelization strategy

* Yielded some of the most impressive multi-loop results to date

 Examples of known codes using it:
FinRed, FiniteFlow, FireFly+Kira, Fire, Caravel

e Useful for both numerical and analytic calculations
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FiniteFlow

T.P. (2019)
* Builds numerical algorithms via a high-level interface

 Combines core algorithms into a computational graph

e graph evaluation implemented in C++ input
node

 Usable as a Mathematica package”

evaluate
a;

* build efficient implementations of
custom algorithms

* reconstruct analytic results

 Produced many cutting-edge
multi-loop results

* Also via a C API or as a Python module (WIP)
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FiniteFlow In the wild

» A flexible framework to implement new algorithms

 Examples of programs using it
 FFUtils, Symbols, LitelBP [T.P] (the latter uses FiniteFlow+LiteRed [R.Lee])
 AMFlow [Xiao Liu, Yan-Qing Ma]: numerical evaluation of integrals
* Blade [Guan,Liu,Ma,Wul: efficient systems for IBP reduction
 [nitial [Dlapa,Henn,Yan,Wagner]: finding canonical bases of master integrals

 SOFIA [Correia, Giroux, Mizera] via Effortless [A. Matijasi¢, J. Miczajka]:
singularities of loop integrals

« CALICO [Bertolini, Fontana, T.P]: parametric annihilators and syzygies

* several private codes for loop integrals, amplitudes and gravity calculations

 Upcoming new version
* new features, performance and usability improvements (now in exp branch)

 new IBP reduction code: FFIntRed [to appear]
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Applications to
DEs for loop integrals



Differential equations (DES)

 MIls obey systems of differential equations w.r.t. invariants x

0x§= ZA(X)(G, X) - G
k

 The most well understood case: ¢-form [J.Henn (2013)] with
dG = ¢ Z dA(x) : 5: dA = Z 6jdlog Wi(x)
k l

- w; = algebraic letters, {w;} = alphabet, 6]- = matrix of rational numbers

* requires a good choice of Mls (canonical basis)

* Integrate order-by-order in € in terms of iterated integrals

Jdlog W e Jdlog w;i
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Reconstructing canonical DEs

 Best case scenario
dG =e¢) dA(x)- G, dA=) ¢dlogw(x)
k l

. forabasis G and alphabet {w;} known a priori

 Reconstruction of DEs can be drastically simplified
* take derivatives of Mls

e reduce them to MIs numerically (over finite fields)

« numerically “fit” the matrices (f‘j (just a few numerical evaluations!)

* Feasible even for very complex processes
(e.g. six-particles scattering at two loops)
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Finding canonical bases

In a nutshell

* A priori: integrals with constant leading singularity

* Leading singularity analysis [J.Henn (2013)], by hand or via
DL ogBasis [P.Wasser]

 dlog form in a parametric representation (e.g. Baikov) ind = 4

I = Z ¢ .. |dloga; - |dloga;, ¢z € Q

J1s++5Jn

e=0 . .
]1,...,]n

* A posteriori: via a change of basis
e requires prior analytic reconstruction of DEs (more expensive)

 Magnus expansion [Mastrolia, Argeri et al.], Fuchsian form etc.
[Henn, Lee, Meyer, Meyer et al.]



Finding the alphabet

In a nutshell

 Rational (“even”) letters
* singularity analysis (BaikovLetters, PLD.jl, SOFIA, etc...)

 denominators of DEs (requires prior reconstruction)

 Irrational (“charged”) letters

e sguare roots appear in singularity analysis

p+aq\r

e |etters of the form™ w = (see e.g. Effortless)

p—q\r

* Understanding singularity structure of loop integrals is
Important

* Products of roots also generally appear



Canonical DEs, more pragmatically

* Mix of different strategies

* Simpler sectors

e reuse knowledge from simpler processes + changes of bases easier

 More complex sectors

e analyze on maximal cuts first & then correct by lower sectors

 check e-form of DEs by reconstructing only € dependence

* Realistically and pragmatically
e analytic reconstruction of some matrix elements

e use information to deduce the other ones up to constants
+ numerical fit via a few numerical evaluations
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From DEs to integral evaluation

 Integration in terms of independent functions

cast in terms of iterated integrals

they can be built systematically from DEs
[Gehrmann, Henn, Lo Presti (2018), Chicherin, Sotnikov (2018),
Chicherin, Sotnikov, Zoia (2022), etc...]

can be cast as one-fold integration of logs and Li», up to weight 4
special functions also satisfy DEs

“full” analytic control and efficient numerical evaluation

« Amplitudes in terms of independent objects

simplifies analytic reconstruction (no “hidden” zeroes)

analytic reconstruction still required
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A recent cutting-edge application

J. Henn, A. Matijasic, J. Miczajka, T. P, Y. Xu, Y. Zhang (2022-25),
see also S. Abreu, P. F. Monni, B. Page, J. Usovitsch (2024)

* Planar two-loop six-particle integrals

 very high algebraic complexity (8 invariants, 6 legs)

e DEs and numerical evaluation

* study of its analytic structure made the calculation feasible

1
P3 P4 P3

P1 Pe ps

(f)
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Increasing the complexity:
it + W two-loop integrals

M. Becchetti, D. Canko, V. Chestnov, T. P, M. Pozzoli, S. Zoia (2025)



Two-loop planar integrals for 11 + W

» Families contributing to # + W production at leading colour

D1

D5

p5 ko kLv
P
T k1 + ko

D4

(b) Family F5

T k1 + ko

(a) Family Fy

D1
D2

D2

D1
D3

P2

p3

D4

D3

T k1 4+ ko j

P5

(c) Family Fj
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General strategy for 11 + W

 Challenge: huge algebraic complexity paired with higher analytic
complexity

 Use “canonical” Mls (e-form) when possible
* except when it would introduce nested square roots (see later)

 Some sectors are related to elliptic geometries

« ¢-form would introduce elliptic periods in DEs
* only done, so far, in algebraically much simpler cases

* public tools for numerical evaluations not supported

= aim for DEs with a simple polynomial form in €
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Nested square roots

* A minor issue arising from leading singularity analysis

Constant leading singularity would require a normalization with
nested roots

 Already observed e.g. in some integrals for tf + H
[Cordero, Figueiredo, Kraus, Page, Reina (2024)]

 Not an issue, in principle, but public tools for numerical
iIntegration don’t support them

* pragmatic solution:
rotate them away at the price of having DEs linear in €

Not a issue in practice: the main complexity is elsewhere!
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Elliptic sectors

P2

N

Known from tf + j

[Badger,Becchetti,
Giraudo,Zoia (2024)]
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The most complex sector

see also V.Chestnov’s talk

* Five-point elliptic sector - P

* |Leading singularity analysis
on maximal cut for Py
corner integral yields
-

" dZ " p1 ps
[~ dlog a(z,7)

J A/P(2) .

* P(z) has degree 4 and describes an elliptic curve y2 = P(2)

* the discriminant of P(z) has degree 14 and ~2500 terms

e appears as denominator of DEs (also cross-checked with SOF/A)
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Final form of DEs
e Qur final result for DEs takes the form d@ = dA . 6with

2
dA = " Z ck]logw (x) + Z dk] @;(X)

=0 j / J i
dlog forms non-dlog forms w,(x) = 2 w,,(x) dx,

a=1

* Non-dlog forms contain most of the algebraic complexity

* irreducible polynomials with up to >550k terms

+ Mls chosen to be O(e") and elliptic Mls only contribute at O(e?)

* they should only contribute to finite part of amplitudes
(modulo algebraic relations we currently don’t control)
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Reconstruction of DEs

* No reasonably viable shortcut: full reconstruction of DEs

e direct reconstruction of DEs with FiniteFlow+FFIntRed from
evaluations over finite fields

 fast numerical evaluations are crucial

* Optimization of IBP reduction: Neat/BP*
[Z. Wu, J. Boehm, R. Ma, H. Xu, Y. Zhang (2023)]

e avoid integrals with higher powers of denominators in identities

* despite high complexity, FiniteFlow reconstructs it on a modern
computing node requiring no additional “tricks”

* a good sign in light of computing amplitudes

* A custom version modified by V. Chestnov that internally uses FiniteFlow’s linear solver
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Numerical evaluation of Mls

» A selection of boundary points computed with AMFlow
* slower but only needed for a few points

 Numerical integration from boundary points to physical phases-
space

* we avoid crossing the boundary of physical region

* various solvers available: DiffExp, Line, AMFlow internal solver

 Outlook
* write DEs in terms of special functions

e applications to scattering amplitudes and phenomenology
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Conclusions & Outlook

 Loop integrals < mathematical and computational fields

e algebraic geometry, differential equations, number theory, special
functions etc.

 Computational issues in phenomenologically motivated
problems are tackled using mathematical knowledge

* Modern cutting-edge calculations use, e.qg.
* finite fields and rational reconstruction
* analytic/numerical integration of differential equations

e concepts from algebraic geometry
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