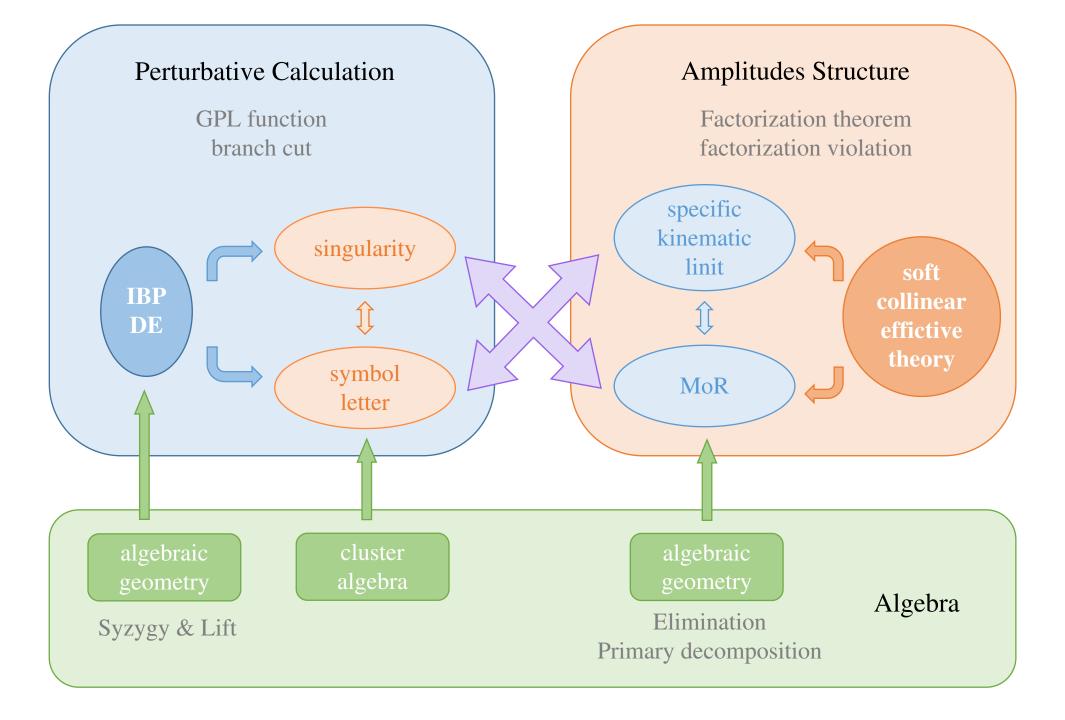
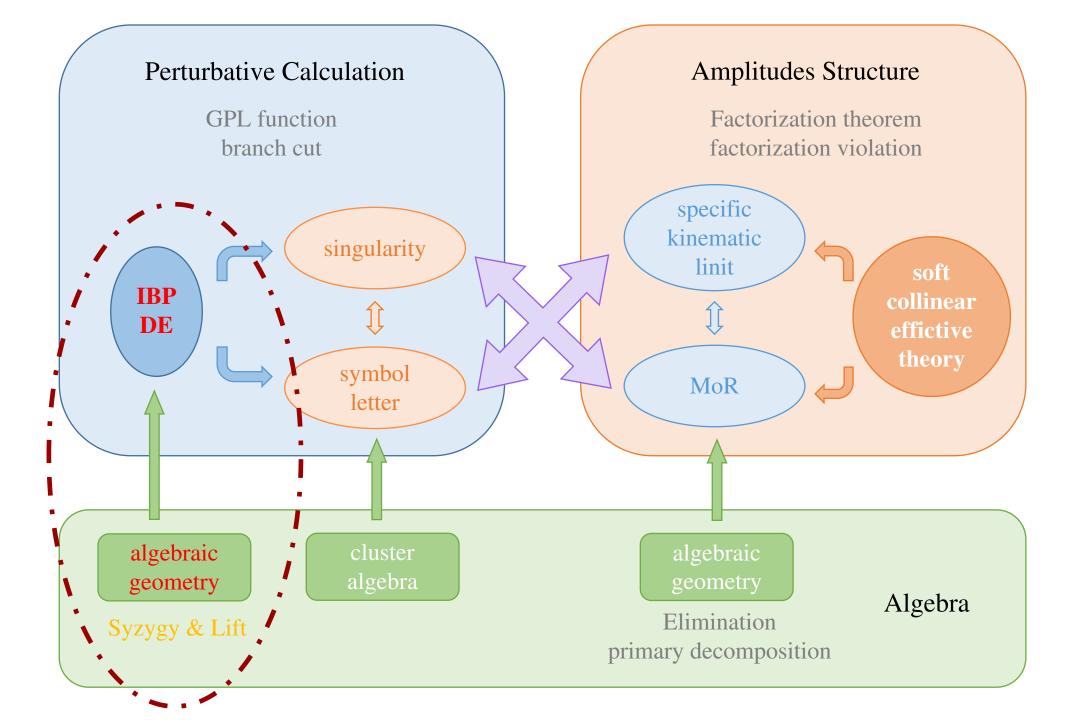
Computational Algebraic Geometry for Feynman Integral Calculation

Rourou Ma

University of Science and Technology of China Max-Planck institute for Physics

MathemAmplitudes 25/09/2025





Algebraic Geometry & IBP

NeotlBP: a package generating small-size integration-by-parts relations for Feynman integrals

Comput.Phys.Commun. 316 (2025) 109798 Comput.Phys.Commun. 295 (2024) 108999

collaborate with Zihao Wu, Janko Boehm, Johann Usovitsch, Yingxuan Xu, Yang Zhang

Differential Equations for Energy Correlators in Any Angle

arXiv: 2506.02061

collaborate with Jianyu Gong, Jingwen Lin, Kai Yan and Yang Zhang

Singularity-Free Feynman Integral Bases

arXiv: 2508.04394

collaborate with Stefano De Angelis, David A. Kosower, Zihao Wu and Yang Zhang

Traditional IBP

$$0 = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{\partial}{\partial l_k^\mu} rac{v^\mu}{D_1^{lpha_1} \cdots D_n^{lpha_n}} \ = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{rac{\partial v^\mu}{\partial l_k^\mu} - v^\mu \sum_{i=1}^n rac{\partial D_i}{\partial l_k^\mu} rac{lpha_k}{D_i}}{D_1^{lpha_1} \cdots D_n^{lpha_n}} \ .$$

target integrals

redundant integrals G[1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0], G[1, 1, 2, 1, 1, 1, 1, 1, 1, 0, -1, 0] ...

master integrals

redundant IBPs Time consuming! Memory consuming!

NeatIBP in Baikov representation

$$I[lpha_1,\cdots,lpha_n]=\intrac{\mathrm{d}^D l_1}{i\pi^{D/2}}\cdotsrac{\mathrm{d}^D l_L}{i\pi^{D/2}}rac{1}{D_1^{lpha_1}\cdots D_n^{lpha_n}}$$
 Baikov representation $I[lpha_1,\cdots,lpha_n]=C\int\mathrm{d} z_1\cdots\mathrm{d} z_n P(z)^lpharac{1}{z_1^{lpha_1}\cdots z_n^{lpha_n}}$

IBP operator
$$O_{IBP} = \sum_{i=1}^{n} \frac{\partial}{\partial z_i} (a_i \cdot)$$
 $a_i \in Q(\vec{s}_{ij})[z_1, \cdots, z_n]$

IBP relation
$$\left(O_{IBP} = \sum_{i=1}^{n} \frac{\partial}{\partial z_i} (a_i \cdot)\right) I[\alpha_1, \cdots, \alpha_n] = 0$$

Syzygy IBP in Baikov represetation

$$0 = \int \mathrm{d} z_1 \cdots \mathrm{d} z_n \sum_{i=1}^n rac{\partial}{\partial z_i} igg(a_i(z) P^lpha rac{1}{z_1^{lpha_1} \cdots z_n^{lpha_n}} igg) \qquad igg[lpha = rac{D-L-E-1}{2} igg]$$

$$=\int \mathrm{d}z_1\cdots \mathrm{d}z_n \left(\sum_{i=1}^n \frac{\partial a_i}{\partial z_i} P^\alpha + \sum_{i=1}^n \alpha a_i \frac{\partial P}{\partial z_i} P^{\alpha-1} - P^\alpha \sum_{i=1}^n \alpha_i \frac{a_i}{z_i}\right) \frac{1}{z_1^{\alpha_1}\cdots z_n^{\alpha_n}}$$

$$\left(\sum_{i=1}^n a_i(z) \frac{\partial P}{\partial z_i}\right) + b(z)P = 0 \qquad a_i(z) = b_i(z)z_i \quad \text{for } i \in \{j | \alpha_j > 0\}$$
Relate integrals in the same dimention — Avoid incearsing the degree of propagators
$$0 = \int \mathrm{d}z_1 \cdots \mathrm{d}z_n \left(\sum_{i=1}^n \left(\frac{\partial a_i}{\partial z_i} - \alpha_i b_i\right) + \alpha b\right) P^\alpha \frac{1}{z_1^{\alpha_1}\cdots z_n^{\alpha_n}}$$

$$\left(\sum_{i=1}^n a_i(z) rac{\partial P}{\partial z_i}
ight) + b(z)P = 0 \hspace{0.5cm} a_i(z) = b_i(z)z_i \hspace{0.5cm} ext{for } i \in \{j | lpha_j > 0\}$$

$$0 = \int \mathrm{d} z_1 \cdots \mathrm{d} z_n \Biggl(\sum_{i=1}^n \Biggl(rac{\partial a_i}{\partial z_i} - lpha_i b_i \Biggr) + lpha b \Biggr) P^lpha rac{1}{z_1^{lpha_1} \cdots z_n^{lpha_n}}$$

Syzygy equation

$$O_{IBP} = \sum_{i=1}^{n} \frac{\partial}{\partial z_i} (a_i \cdot) \qquad a_i \in Q(\vec{s}_{ij})[z_1, \cdots, z_n]$$

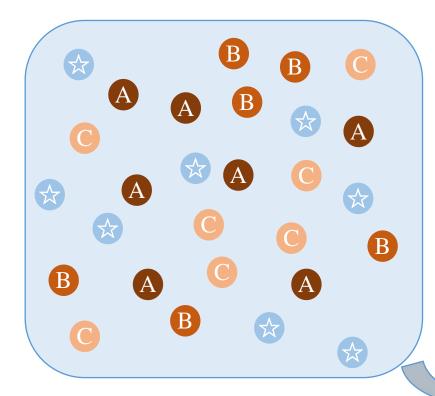
$$egin{aligned} \textcircled{1} & \left(\sum_{i=1}^n a_i(z) rac{\partial P}{\partial z_i}
ight) + b(z)P = 0 \ & M_1 = < f_1, f_2, \cdots > \end{aligned}$$

②
$$a_i(z)=b_i(z)z_i$$
 for $i\in\{j|lpha_j>0\}$ $M_2=< g_1,g_2,\cdots>$

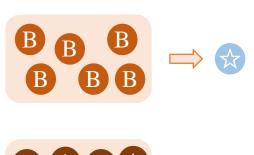
Module Intersection $egin{pmatrix} a_i \ b \end{pmatrix} \in M_1 \cap M_2$ SINGULAR $\langle\!\!\langle$

The Magic of Syzygy

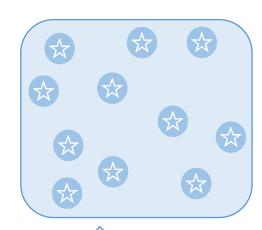
traditional IBP



syzygies make the clever selections



NeatIBP

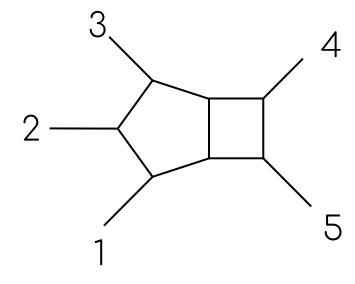


Small size IBP system
Easier for IBP reduction

expansive Gaussian elimination

Performance of NeatIBP

2L5P Example



Target integrals: Max numerator degree: 5 Max denominator power: 1 Quantity: 2483

of IBP (FIRE6): 11207942

of IBP (NeatIBP): 14120

Time used: 27m at

Studies that used NeatIBP	Reference	Date
Three-loop five-point pentagon-box-box Feynman diagram	Phys.Rev.D 112 (2025) 1, 016021	2025.7.23
Two-loop QCD helicity amplitudes for g $g \to g$ t \overline{t} at leading color	JHEP 03 (2025) 070	2025.3.11
Full-color double-virtual amplitudes for $q \ \overline{q} \rightarrow b \ \overline{b} \ H$	JHEP 03 (2025) 066	2025.3.11
Two-loop QCD corrections for p $p \rightarrow t$ \bar{t} j	arXiv: 2411.10856	2024.11.16
Two-loop amplitudes for W γ γ production at LHC	JHEP 12 (2025) 221	2024.12.30
NLO corrections to J/Ψ c \overline{c} photoproduction	Phys.Rev.D 110 (2024) 9, 094047	2024.11.11
Two-loop five-point two-mass planar integrals	JHEP 10 (2024) 167	2024.10.23
Two-loop integrals for t \bar{t} j production at hadron colliders in the leading color approximation	JHEP 07 (2024) 073	2024.7.9

• People have a lot of research at the level of perturbative scattering amplitudes, and have a good understanding about their structures. However, the observables or cross section attract less attention.

• An interesting and simple class of observables are Energy Correlators.

Algebraic Geometry & IBP

NeotlBP: a package generating small-size integration-by-parts relations for Feynman integrals

Comput.Phys.Commun. 316 (2025) 109798 Comput.Phys.Commun. 295 (2024) 108999

collaborate with Zihao Wu, Janko Boehm, Johann Usovitsch, Yingxuan Xu, Yang Zhang

Differential Equations for Energy Correlators in Any Angle

arXiv: 2506.02061

collaborate with Jianyu Gong, Jingwen Lin, Kai Yan and Yang Zhang

Singularity-Free Feynman Integral Bases

arXiv: 2508.04394

collaborate with Stefano De Angelis, David A. Kosower, Zihao Wu and Yang Zhang

Motivation

• From the phenomenological point of view, energy correlators can be used as jet observables for verify the standard model or find new physics.

• From the computability, energy correlators is perhaps the simplest infared safe observable to calculate analytically.

$$Q(q) \rightarrow P_1(p_1) + P_2(p_2) + P_3(p_3) + P_4(p_4)$$

Z boson, off-shell photon or Higgs

q qbar g g q qbar q qbar g g g g

n-point energy correlator

$$E^{n}C(\theta_{ij}) = \int \prod_{i=1}^{n} d\Omega_{\vec{n}_{i}} \prod_{i \neq j} \delta(\vec{n}_{i} \cdot \vec{n}_{j} - \cos(\theta_{ij})) \frac{\int d^{4}x e^{iqx} \langle 0|\mathcal{O}^{+}(x)\mathcal{E}(\vec{n}_{1}) \cdots \mathcal{E}(\vec{n}_{n})\mathcal{O}(0)|0\rangle}{(q^{0})^{n} \int d^{4}x e^{iqx} \langle 0|\mathcal{O}^{+}(x)\mathcal{O}(0)|0\rangle}$$

$$\downarrow \int d^{4}x e^{iqx} \langle X|\mathcal{O}(x)|0\rangle \equiv (2\pi)^{4} \delta^{4}(q - q_{X}) F_{X} \qquad \text{create the final state } X$$

 $\sim \sum_{(n_1, \dots, n_n) \in X} \int d\Pi_X \left(\prod_{i=1}^n \delta^2(\vec{n}_i - \hat{p}_{n_i}) \frac{E_i}{q^0} \right) \left| F_X \right|^2$ form factor, depends on p_i

1X>=1P,,P2,P3,P4,P5>

100

where $d\Pi_X$ is onshell phase-space of the finial state.

$$\frac{2\left(2q^{4}\left(p_{1}+p_{2}+p_{4}+p_{5}\right)\cdot\left(p_{2}+p_{3}+p_{4}+p_{5}\right)+\cdots-q^{4}\left(p_{2}+p_{3}+p_{4}+p_{5}\right)\cdot\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right)+q^{6}\right)}{\left(p_{3}+p_{4}\right)^{2}\left(p_{1}+p_{5}\right)^{2}\left(p_{1}+p_{4}+p_{5}\right)^{2}\left(p_{1}+p_{2}+p_{4}+p_{5}\right)^{2}\left(p_{3}+p_{4}+p_{5}\right)^{2}\left(p_{2}+p_{3}+p_{4}+p_{5}\right)^{2}}$$

Kai Yan and Xiaoyuan Zhang. Three-Point Energy Correlator in N=4 Supersymmetric Yang-Mills Theory. Phys. Rev. Lett., 129(2):021602, 2022.

Setup

energy parameters:
$$x_i = \frac{2 q \cdot p_i}{q^2}$$
, $i = 1, \dots, n$
angle parameters: $\zeta_{ij} = \frac{q^2 p_i \cdot p_j}{2 q \cdot p_i q \cdot p_j}$, $i, j = 1, \dots, n$

$$\begin{split} \mathbf{E}^{\mathbf{n}}\mathbf{C}(\vec{\zeta_{ij}})\big|_{\mathbf{LO}} \sim & \int d^4p_{n+1}\delta^4(q-p_1-\cdots-p_{n+1})\,\delta_+(p_{n+1}^2) \\ & \times \int_0^1 dx_1\cdots dx_n\,(x_1\cdots x_n)^2 \big[|F_{n+1}^{(0)}|^2(p_1,\cdots,p_{n+1}) + \mathrm{perm.}(1,\cdots,n+1)\big] \\ & \qquad \qquad \\ & \text{integrate out } p_{n+1} \end{split}$$

$$E^{n}C(\vec{\zeta}_{ij})\big|_{LO} \sim \int_{0}^{1} dx_{1} \cdots dx_{n} (x_{1} \cdots x_{n})^{2} \delta(1 - Q_{n}) |F_{n+1}^{(0)}|^{2}_{sym.}$$
where $Q_{n} = \sum_{i} x_{i} - \sum_{(ij)} x_{i}x_{j}\zeta_{ij}$.

Lift Differential Equations: workflow

 $E^3 C/S_3$

(permutation symmetry)

 $\sqrt{}$

Partial Fraction Decomposition

Classify simple finite integral families

Syzygy Equations

Finite master integrals

IBP and iterative boundary IBP

Lift Equations

Finite differential equations

Cubically nilpotent

Canonical differetial equations

E³C Divergent Region

• Propagators
$$\mathcal{D}_1 = \frac{s_{134}}{q^2} = -1 + x_2, \ \mathcal{D}_2 = \frac{s_{124}}{q^2} = -1 + x_3, \ \mathcal{D}_3 = \frac{s_{123}}{q^2} = -1 + x_1 + x_2 + x_3, \ \mathcal{D}_4 = \frac{s_{34}}{q^2 x_3} = -1 + x_1 \zeta_{13} + x_2 \zeta_{23}, \ \mathcal{D}_5 = \frac{s_{24}}{q^2 x_2} = -1 + x_1 \zeta_{12} + x_3 \zeta_{23}.$$

Consider delta function measure

$$\delta(1-x_1-x_2-x_3+\zeta_{12}x_1x_2+\zeta_{23}x_2x_3+\zeta_{13}x_1x_3)$$

region 1
$$\{x_1 \to 1 + (\zeta_{12} + \zeta_{13} - 2)cx_1, x_2 \to cx_2, x_3 \to cx_3\}|_{c \to 0},$$

region 2 $\{x_1 \to cx_1, x_2 \to 1 + (\zeta_{12} + \zeta_{23} - 2)cx_2, x_3 \to cx_3\}|_{c \to 0},$
region 3 $\{x_1 \to cx_1, x_2 \to cx_2, x_3 \to 1 + (\zeta_{13} + \zeta_{23} - 2)cx_3\}|_{c \to 0}.$

Potentially Divergent Region

• Power counting

$$\{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_5\} \xrightarrow[\text{counting}]{\text{power}} \begin{cases} \text{region 1} & \{0, 0, 1, 0, 0\} \\ \text{region 2} & \{1, 0, 1, 0, 0\}. \end{cases} \xrightarrow[\text{region 3}]{\text{d}x_1 dx_2 dx_3 \delta(\mathcal{D}_{\delta})} \xrightarrow[\text{counting}]{\text{power}} 2$$

Power Counting

$$D_1 = -1 + x_3, D_2 = -1 + x_1\zeta_{13} + x_2\zeta_{23}, D_3 = -1 + x_1\zeta_{12} + x_3\zeta_{23},$$

$$D_{\delta} = 1 - x_1 - x_2 - x_3 + x_1x_2\zeta_{12} + x_2x_3\zeta_{23} + x_1x_3\zeta_{13}$$

$$Int[1,1,-1,1] = \int dx_1 dx_2 dx_3 \frac{D_3 \,\delta(D_\delta)}{D_1 D_2}$$
 Finite integral power counting of c is positive

region:
$$\{x_1 \to 0, x_2 \to 0, x_3 \to 1\}$$

 $dx_1 dx_2 dx_3 \delta(D_{\delta}) \xrightarrow{\text{power} \atop \text{counting}} 2$
 $\{D_1, D_2, D_3\} \xrightarrow{\text{power} \atop \text{counting}} \{1, 0, 0\}$

Finite integral

```
\{Int[-2, 0, 0, 1], Int[-2, 0, 1, 1], Int[-2, 1, -1, 1], Int[-2, 1, 0, 1],
Int[-2, 1, 1, 1], Int[-2, 1, 2, 1], Int[-2, 2, -1, 1], Int[-2, 2, 0, 1],
Int[-2, 2, 1, 1], Int[-1, -1, 0, 1], Int[-1, 0, -1, 1], Int[-1, 0, 0, 1],
Int[-1, 1, -2, 1], Int[-1, 1, -1, 1], Int[-1, 1, 2, 1], Int[-1, 2, -2, 1]
Int[-1, 2, -1, 1], Int[-1, 2, 0, 1], Int[-1, 2, 1, 1], Int[0, -1, -1, 1],
Int[0, -1, 0, 1], Int[0, 0, -2, 1], Int[0, 0, -1, 1], Int[0, 1, -3, 1],
Int[0, 1, -2, 1], Int[0, 1, 2, 1], Int[0, 2, -3, 1], Int[0, 2, -2, 1],
Int[0, 2, -1, 1], Int[0, 2, 0, 1], Int[0, 2, 1, 1], Int[1, -2, -1, 1],
Int[1, -1, -2, 1], Int[1, -1, -1, 1], Int[1, 0, -3, 1], Int[1, 0, -2, 1],
Int[1, 1, -3, 1], Int[1, 1, -2, 1], Int[1, 2, -4, 1], Int[1, 2, -3, 1],
Int[1, 2, -2, 1], Int[1, 2, -1, 1], Int[1, 2, 0, 1], Int[-1, 0, 1, 1],
Int[-1, 1, 0, 1], Int[0, 0, 0, 1], Int[0, 0, 1, 1], Int[0, 1, -1, 1],
Int[0, 1, 0, 1], Int[1, -1, 0, 1], Int[1, 0, -1, 1], Int[-1, 1, 1, 1],
Int[0, 1, 1, 1], Int[1, 0, 0, 1], Int[1, 1, -1, 1], Int[1, 1, 0, 1]}
```


Syzygy for finite IBP

$$\operatorname{Int}[n_1, n_2, n_3, 1] = \int dx_1 dx_2 dx_3 \frac{\delta(D_{\delta})}{D_1^{n_1} D_2^{n_2} D_3^{n_3}} = \int dx_1 dx_2 dx_3 \frac{1}{D_1^{n_1} D_2^{n_2} D_3^{n_3} D_{\delta}} \Big|_{\operatorname{cut}(D_{\delta})}$$

$$\mathcal{O}_{\mathrm{IBP}} = \sum_{i=1}^{3} \frac{\partial}{\partial x_i} \left(a_i \cdot \right)$$

$$\sum_{i=1}^{3} a_i \frac{\partial}{\partial x_i} D_j - b_j D_j = 0, \qquad \text{for divergent propagators and D}_{\delta}$$

$$a_i, b_j \in Q(\zeta_{12}, \zeta_{23}, \zeta_{13})[x_1, x_2, x_3]$$

Not increase the power of divergent propagators!

Lift for finite differential equation

Derivative of a certain parameter ———— Lift Differential Equations

$$\mathcal{O}_{\partial \zeta_{**}} = \frac{\partial}{\partial \zeta_{**}} + \mathcal{O}_{IBP} \equiv \boxed{\frac{\partial}{\partial \zeta_{**}}} + \sum_{i=1}^{3} \frac{\partial}{\partial x_{i}} a_{i} \qquad \boxed{\frac{\partial}{\partial \zeta_{**}}} D_{j} + \sum_{i=1}^{3} a_{i} \frac{\partial}{\partial x_{i}} D_{j} - b_{j} D_{j} = 0,$$

$$a_{i}, b_{i} \in O(\zeta_{12}, \zeta_{22}, \zeta_{12})[x_{1}, x_{2}, x_{2}]$$

Find the differential equations of a certain kinematic

May bring higher power of divergent propagators

$$\frac{\partial}{\partial \zeta_{**}} D_j + \sum_{i=1}^3 a_i \frac{\partial}{\partial x_i} D_j - b_j D_j = 0$$

$$a_i, b_j \in Q(\zeta_{12}, \zeta_{23}, \zeta_{13})[x_1, x_2, x_3]$$

When the Lift equation is satisfied, the integral will be finite!

Boundary IBP

$$D_1 = -1 + x_3, D_2 = -1 + x_1\zeta_{13} + x_2\zeta_{23}, D_3 = -1 + x_1\zeta_{12} + x_3\zeta_{23},$$

$$D_{\delta} = 1 - x_1 - x_2 - x_3 + x_1x_2\zeta_{12} + x_2x_3\zeta_{23} + x_1x_3\zeta_{13}$$

$$\mathcal{O}_{\text{IBP}} \operatorname{Int}[n_1, n_2, n_3, 1] = \sum_{i=1}^{3} (\operatorname{BT}_{x_i=1} - \operatorname{BT}_{x_i=0}).$$

subfamily 1
$$D_1 = -1 + x_1\zeta_{12}, D_2 = -1 + x_1\zeta_{13} + x_2\zeta_{23}, D_{\delta} = 1 - x_1 - x_2 + x_1x_2\zeta_{12};$$

subfamily 2 $D_1 = -1 + x_3\zeta_{13}, D_2 = -1 + x_1\zeta_{13}, D_{\delta} = 1 - x_1 - x_3 + x_1x_3\zeta_{13};$
subfamily 3 $D_1 = -1 + x_3\zeta_{23}, D_2 = -1 + x_2\zeta_{23}, D_{\delta} = 1 - x_2 - x_3 + x_2x_3\zeta_{23}.$

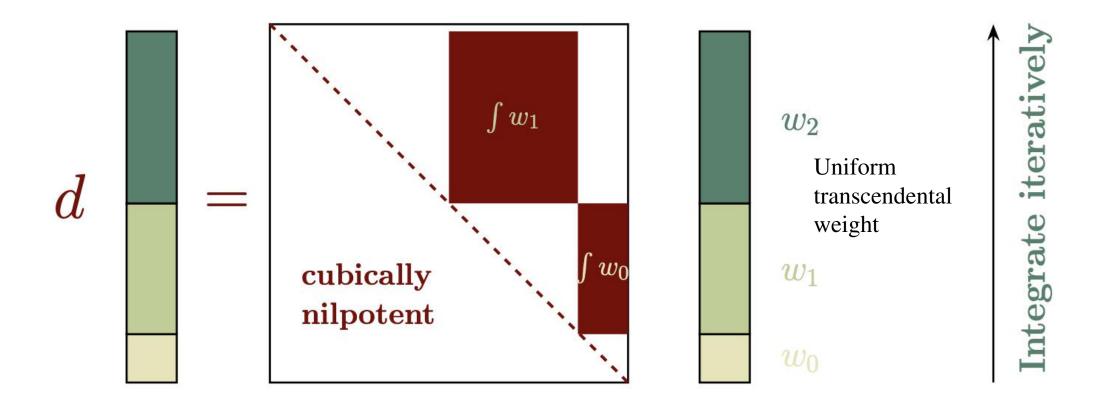
Master Integrals

$$\{ Int[1, 1, -1, 1], Int[-1, 1, 1, 1], Int[1, 1, 0, 1], Int[0, 1, 1, 1], Int[1, 0, 0, 1], Int_{2}[1, \{0, 0, 1\}], Int_{2}[2, \{0, 1, 1\}], Int_{2}[2, \{0, 0, 1\}], Int_{2}[3, \{0, 0, 1\}], 1 \}$$

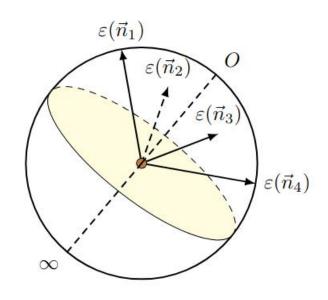
Canonical Differential Equations

Differential Equations include boundary integrals

$$\frac{\partial}{\partial \zeta_{**}} \operatorname{Int}[n_1, n_2, n_3, 1] - \mathcal{O}_{\partial \zeta_{**}} \operatorname{Int}[n_1, n_2, n_3, 1] = \sum_{i=1}^{3} (\operatorname{BT}_{x_i = 0}).$$



Four Point Energy Correlator



one term in form factor

$$\frac{2\left(2q^{4}\left(p_{1}+p_{2}+p_{4}+p_{5}\right)\cdot\left(p_{2}+p_{3}+p_{4}+p_{5}\right)+\cdots-q^{4}\left(p_{2}+p_{3}+p_{4}+p_{5}\right)\cdot\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right)+q^{6}\right)}{\left(p_{3}+p_{4}\right)^{2}\left(p_{1}+p_{5}\right)^{2}\left(p_{1}+p_{4}+p_{5}\right)^{2}\left(p_{1}+p_{2}+p_{4}+p_{5}\right)^{2}\left(p_{3}+p_{4}+p_{5}\right)^{2}\left(p_{2}+p_{3}+p_{4}+p_{5}\right)^{2}}$$

$$\frac{5x_1x_2x_3x_4\left(2\zeta_{12}x_2x_1+2\zeta_{13}x_3x_1+2\zeta_{14}x_4x_1+2\zeta_{23}x_2x_3+2\zeta_{34}x_3x_4-2x_1-x_2-2x_3-x_4+1\right)}{\left(\zeta_{12}x_2+\zeta_{13}x_3+\zeta_{14}x_4-1\right)\left(\zeta_{14}x_1+\zeta_{24}x_2+\zeta_{34}x_3-1\right)\left(\zeta_{13}x_1x_3+\zeta_{23}x_2x_3+\zeta_{34}x_4x_3+\zeta_{14}x_1x_4+\zeta_{24}x_2x_4-x_3-x_4\right)\cdots}$$

Dmitry Chicherin, Ian Moult, Emery Sokatchev, Kai Yan, and Yunyue Zhu. The Collinear Limit of the Four-Point Energy Correlator in $\mathcal{N}=4$ Super Yang-Mills Theory. 1 2024.

Propagators in E⁴C

$$\delta(1 - x_1 - x_2 - x_3 - x_4 + x_1x_2\zeta_{12} + x_1x_3\zeta_{13} + x_1x_4\zeta_{14} + x_2x_3\zeta_{23} + x_2x_4\zeta_{24} + x_3x_4\zeta_{34}).$$

$$\frac{s_{45}}{x_4} = 1 - x_1\zeta_{14} - x_2\zeta_{24} - x_3\zeta_{34}, \quad \frac{s_{15}}{x_1} = 1 - x_2\zeta_{12} - x_3\zeta_{13} - x_4\zeta_{14},$$

$$s_{2345} = 1 - x_1, \quad s_{1345} = 1 - x_2, \quad s_{1235} = 1 - x_4, \quad s_{1234} = 1 - x_1 - x_2 - x_3 - x_4,$$

$$s_{345} = 1 - x_1 - x_2 + x_1x_2\zeta_{12}, \quad s_{145} = 1 - x_2 - x_3 + x_2x_3\zeta_{23}, \quad s_{125} = 1 - x_3 - x_4 + x_3x_4\zeta_{34},$$

$$s_{123} = x_1x_2\zeta_{12} + x_1x_3\zeta_{13} + x_2x_3\zeta_{23}, \quad s_{234} = x_2x_3\zeta_{23} + x_2x_4\zeta_{24} + x_3x_4\zeta_{34}.$$

Highly algebraic dependent

partial fraction decomposition

An integral countains three propagators at most

Partial Fraction Decomposition

$$\langle D_1, D_2, \cdots, D_n \rangle = \langle 1 \rangle$$

coprime polynomials

$$1 = a_1 D_1 + a_2 D_2 + \dots + a_n D_n$$

$$\frac{1}{D_1 D_2 \cdots D_n} = \frac{a_1 D_1 + a_2 D_2 + a_n D_n}{D_1 D_2 \cdots D_n} = \sum_{i=1}^n \frac{a_i}{D_1 D_2 \cdots \hat{D_i} \cdots \hat{D_i}}$$

Reduction at integrand level

Lift Differential Equations: Overview

4-point energy correlator

 $E^3 C/S^3$

Partial Fraction Decomposition

Classify simple finite integral families

Syzygy Equations

IBP and iterative boundary IBP

Lift Equations

Finite differential equations

Cubically nilpotent

Canonical differetial equations

Combine Divergent Integrals into Finite Integrals

polynomial reduction integrand reduction

Difficulties of Higher Points

- Increasing number of integral variables
- Polynomial Propagators
- Complex delta function

Four-Point Energy Correlators

$$\delta(1 - x_1 - x_2 - x_3 - x_4 + x_1x_2\zeta_{12} + x_1x_3\zeta_{13} + x_1x_4\zeta_{14} + x_2x_3\zeta_{23} + x_2x_4\zeta_{24} + x_3x_4\zeta_{34}).$$

$$D_1 = -1 + x_1\zeta_{14} + x_2\zeta_{24} + x_3\zeta_{34}, \quad D_2 = -1 + x_2\zeta_{12} + x_3\zeta_{13} + x_4\zeta_{14},$$

$$D_3 = -1 + x_1, \quad D_4 = -1 + x_2, \quad D_5 = -1 + x_4, \quad D_6 = -1 + x_1 + x_2 + x_3 + x_4,$$

$$D_7 = -1 + x_1 + x_2 - x_1x_2\zeta_{12}, \quad D_8 = -1 + x_2 + x_3 - x_2x_3\zeta_{23}, \quad D_9 = -1 + x_3 + x_4 - x_3x_4\zeta_{34},$$

$$D_{10} = x_1x_2\zeta_{12} + x_1x_3\zeta_{13} + x_2x_3\zeta_{23}, \quad D_{11} = x_2x_3\zeta_{23} + x_2x_4\zeta_{24} + x_3x_4\zeta_{34}.$$

 $\{D_{10}, D_{11}\}$

elliptic

hyperelliptic g=2

• We are very happy to see the integrals in energy correlators are finit in dimension 4

• Amplitudes may divergent for d=4, this ask for the dimensional regulator $\varepsilon = d-4$

• it is important to handle ε singularity in an appropriate way.

Algebraic Geometry & IBP

NeotlBP: a package generating small-size integration-by-parts relations for Feynman integrals

Comput.Phys.Commun. 316 (2025) 109798 Comput.Phys.Commun. 295 (2024) 108999

collaborate with Zihao Wu, Janko Boehm, Johann Usovitsch, Yingxuan Xu, Yang Zhang

Differential Equations for Energy Correlators in Any Angle

arXiv: 2506.02061

collaborate with Jianyu Gong, Jingwen Lin, Kai Yan and Yang Zhang

Singularity-Free Feynman Integral Bases

arXiv: 2508.04394

collaborate with Stefano De Angelis, David A. Kosower, Zihao Wu and Yang Zhang

Singularity-Free Bases

- no explicit singularities in € appear in the coefficients of IBP reduction result
- no explicit singularities in ϵ are present in the definition of any basis integral

local ring $R \equiv \mathbb{F}[x]_{\mathbf{m}}$ is a polynomial ring $\mathbb{F}[x]$ localized on a maximal ideal \mathbf{m}

$$R = \left\{ \frac{f(x)}{g(x)}, \quad f(x), g(x) \in \mathbb{F}[x], g(x) \not\in \mathbf{m} \right\}.$$

• We are working in the local ring $\mathbb{Q}[\epsilon]_{\langle \epsilon \rangle}$

p = 1, IBP matrix C(m, n), relevant sorted integrals I

$$C = C^{[p]}, I = I^{[p]}$$

Divide each row by its greatest common divisor

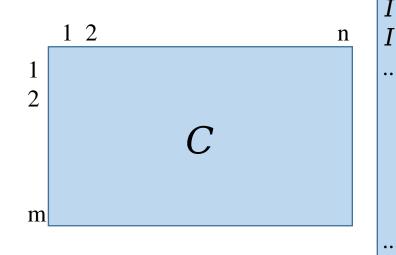
- (a) $C_{uv}^{[p]}|_{\varepsilon \to 0} \neq 0$
- (b) for $I_{\nu}^{[p]}$, v is the smallest
- (c) the uth row is the sparsest

Find a candidate pivot

Pivot

Normalize & Reduce

if $p \le m$, p = p + 1



p = 1, IBP matrix C(m, n), relevant sorted integrals I

$$C = C^{[p]}, I = I^{[p]}$$

Divide each row by its greatest common divisor

- (a) $C_{uv}^{[p]}|_{\varepsilon \to 0} \neq 0$
- (b) for $I_{\nu}^{[p]}$, v is the smallest
- (c) the uth row is the sparsest

Find a candidate pivot

Pivot

Normalize & Reduce

if $p \le m$, p = p + 1

 $egin{array}{c} / ext{gcd}_1 \\ / ext{gcd}_2 \\ \hline \end{array}$

p = 1, IBP matrix C(m, n), relevant sorted integrals I

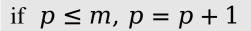
$$C = C^{[p]}, I = I^{[p]}$$

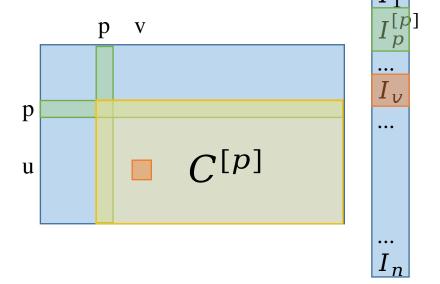
Divide each row by its greatest common divisor

- (a) $C_{uv}^{[p]}|_{\varepsilon \to 0} \neq 0$
- (b) for $I_{\nu}^{[p]}$, v is the smallest
- (c) the uth row is the sparsest

Find a candidate pivot

Normalize & Reduce





p = 1, IBP matrix C(m, n), relevant sorted integrals I

$$C = C^{[p]}, I = I^{[p]}$$

Divide each row by its greatest common divisor

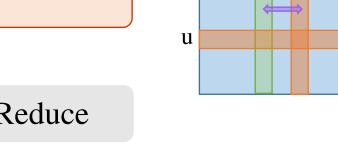
- (a) $C_{uv}^{[p]}|_{\varepsilon \to 0} \neq 0$
- (b) for $I_{\nu}^{[p]}$, v is the smallest
- (c) the uth row is the sparsest

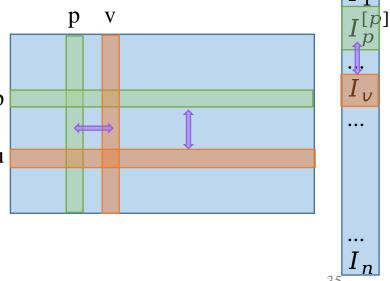
if $p \le m$, p = p + 1

Find a candidate pivot

Pivot

Normalize & Reduce





p = 1, IBP matrix C(m, n), relevant sorted integrals I

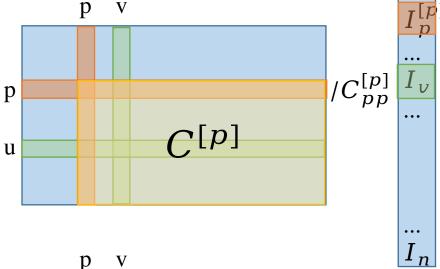
$$C = C^{[p]}, I = I^{[p]}$$

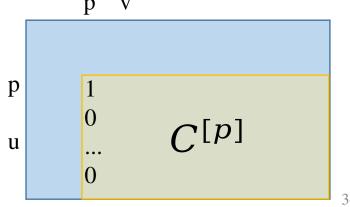
Divide each row by its greatest common divisor

- (a) $C_{uv}^{[p]}|_{\varepsilon \to 0} \neq 0$
- (b) for $I_{\nu}^{[p]}$, v is the smallest
- (c) the uth row is the sparsest

Find a candidate pivot

Normalize & Reduce





if $p \le m$

p = 1, IBP matrix C(m, n), relevant sorted integrals I

$$C = C^{[p]}, I = I^{[p]}$$

Divide each row by its greatest common divisor

- (a) $C_{uv}^{[p]}|_{\varepsilon \to 0} \neq 0$
- (b) for $I_{\nu}^{[p]}$, v is the smallest
- (c) the uth row is the sparsest

Find a candidate pivot

Pivot

Normalize & Reduce

if $p \le m$, p = p + 1

Summary

NeotlBP: syzygies make IBP neat and quick

Energy Correlators: Phase space integrals with polynomial propagators Elliptic and hyperelliptic integrals even at tree level

Singularity-Free Feynman Integral Bases

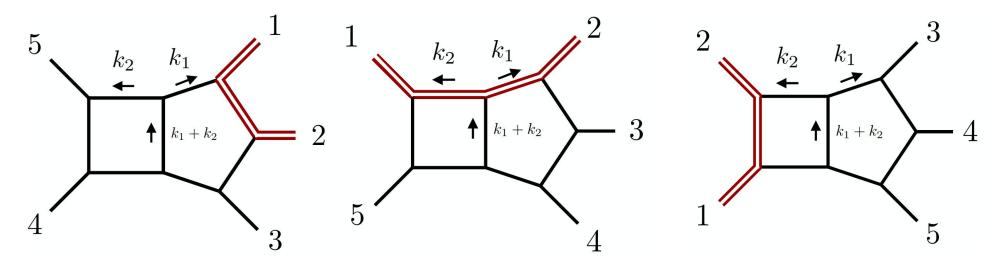
Gaussian Elimination in a Local Ring

Thanks

Application of NeatIBP:

Two-loop-five-point amplitudes for $p \ p o t \ \overline{t} \ j$ at leading color

Simon Badger, Matteo Becchetti, Nicolò Giraudo, Simone Zoia, JHEP 07 (2024) 073



(diagrams from JHEP 07 (2024) 073)

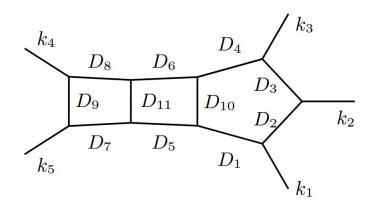
"The latter package (NeatIBP), in particular, allows us to obtain optimized systems of IBP relations through the solution of syzygy equations, this way making their solution substantially simpler

Application of NeatIBP: Three-loop-five-point diagrams

Yuanche Liu, Antonela Matijašić, Julian Miczajka, Yingxuan Xu, Yongqun Xu, Yang Zhang, arXiv:2411.18697

Analytic evaluation of the master integrals for the Pentagon-box-box diagram via differential equations

Target integrals: integrals needed for DE of master integrals

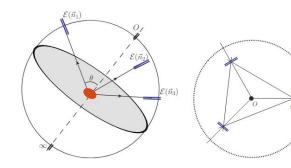


(diagram from arXiv:2411.18697)

"On a laptop, NeatIBP finds about 85,000 IBP identities in full kinematics dependence within several hours These relations are sufficient to derive the differential equation. As a comparison, standard IBP tools would generate three orders of magnitude more IBP relations, which make the reduction computation impossible."

Analytic result

letters



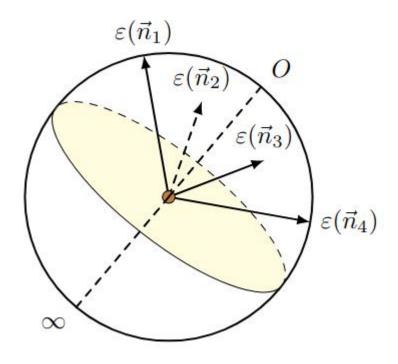
$$\zeta_{ij} = \frac{|z_i - z_j|^2}{(1 + |z_i|^2)(1 + |z_j|^2)}, \quad z_1 = 0, \, \bar{z}_2 = z_2$$

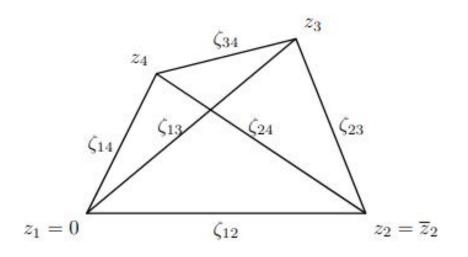
$$\begin{aligned} z_2^2 + 1, \ z_2 z_3 + 1, \ z_2 \bar{z}_3 + 1, \ z_3 \bar{z}_3 + 1, \\ \text{UT}_2 &= 2 \text{Li}_2 \left(\frac{z_2 \left(z_3 \bar{z}_3 + 1 \right)}{z_2 - \bar{z}_3} \right) - 2 \text{Li}_2 \left(\frac{z_3 \left(z_2 \bar{z}_3 + 1 \right)}{z_3 - \bar{z}_3} \right) + 2 \text{Li}_2 \left(-\frac{\left(z_2^2 + 1 \right) z_3}{z_2 - z_3} \right) \\ &- 2 \text{Li}_2 \left(\frac{z_2}{z_2 - \bar{z}_3} \right) + 2 \text{Li}_2 \left(\frac{z_3}{z_3 - \bar{z}_3} \right) - 2 \text{Li}_2 \left(-\frac{z_3}{z_2 - z_3} \right) \\ &- 2 \log \left(\frac{\left(z_2 z_3 + 1 \right) \bar{z}_3}{\bar{z}_3 - z_3} \right) \log \left(z_2 \bar{z}_3 + 1 \right) + 2 \log \left(\frac{\left(z_2 z_3 + 1 \right) \bar{z}_3}{\bar{z}_3 - z_2} \right) \log \left(z_3 \bar{z}_3 + 1 \right) \\ &+ 2 \log \left(z_2^2 + 1 \right) \log \left(\frac{z_2 \left(z_2 z_3 + 1 \right)}{z_3 - z_2} \right) - \log^2 \left(z_2 z_3 + 1 \right) \end{aligned}$$

 $z_2, z_2-z_3, z_3, z_3-z_2, \bar{z}_3, \bar{z}_3-z_2, \bar{z}_3-z_3, \bar{z}$

Four point energy correlator

$$E^{4}C(\vec{\zeta}_{ij})|_{LO} = \int_{0}^{1} dx_{1} \cdots dx_{4}(x_{1} \cdots x_{4})^{2} \delta(1 - Q_{4}) |F_{5}^{(0)}|_{sym}^{2}$$





$$\zeta_{ij} = \frac{|z_i - z_j|^2}{(1 + |z_i|^2)(1 + |z_j|^2)}, \quad z_1 = 0, \ \bar{z}_2 = z_2$$