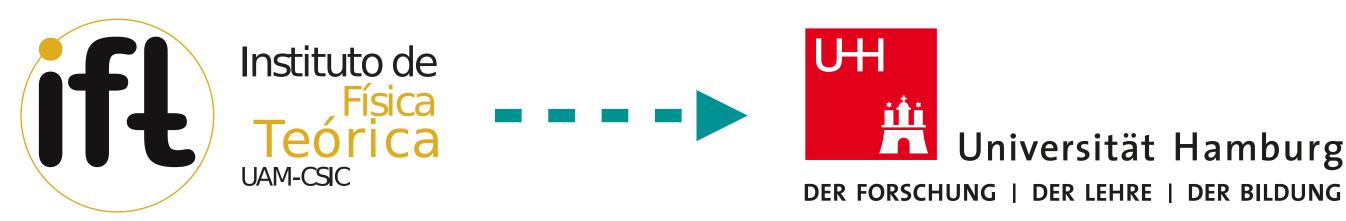
Thimble decomposition and Wall Crossing Structure for Physical Integrals

Roberta Angius



Based on

[hep-th: 2506.03252] with S.L. Cacciatori and A. Massidda

Mainz, September 23, 2025

Motivations

Analysis of complex integrals describing generic physical systems

$$I = \int_{\Gamma} F(x_1, x_2, \dots; \mu_1, \mu_2, \dots) dx_1^2 dx_2^2 \dots$$

Direct computation

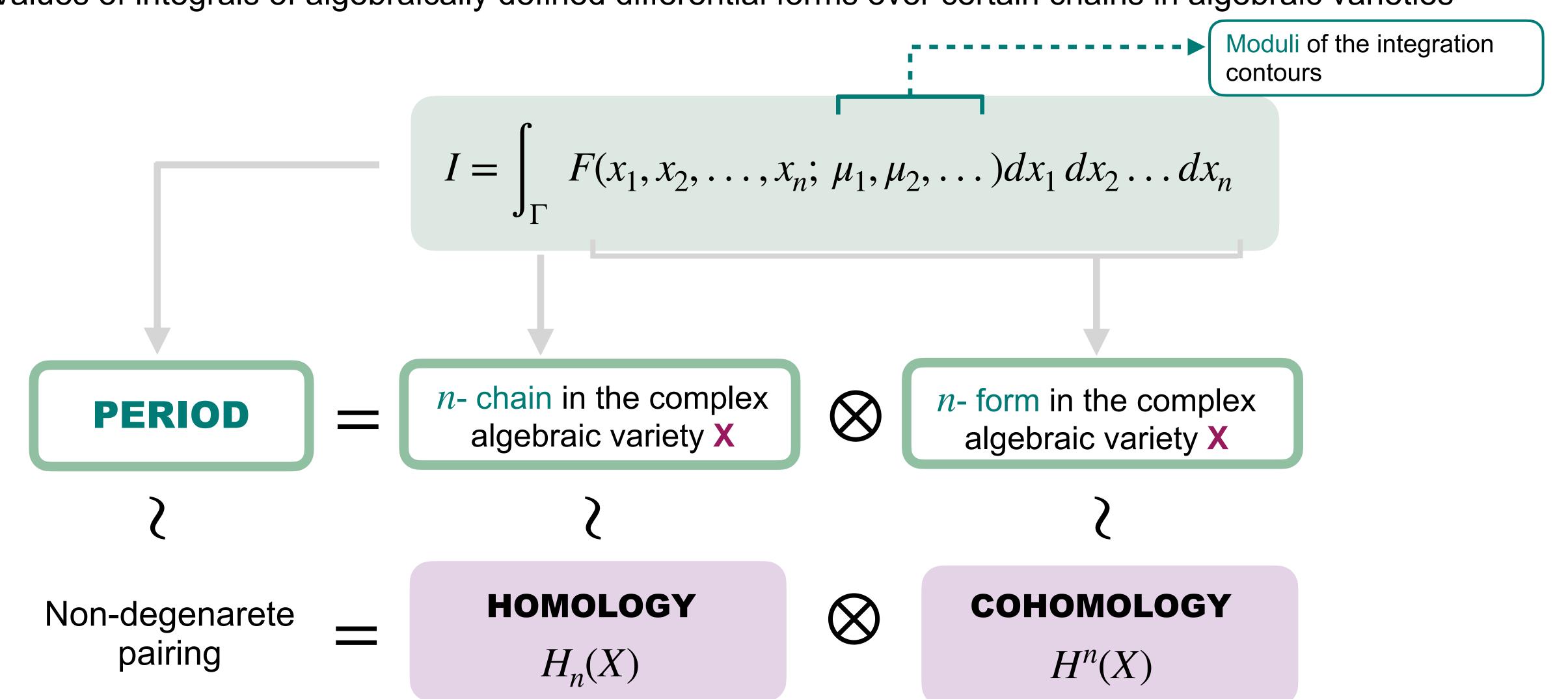
Resolution of systems of differential equations

Geometric interpretation in order to simplify the integral.

Periods

[Kontsevich, Zagier 2001]

Values of integrals of algebraically defined differential forms over certain chains in algebraic varieties



The advantages

- The homology and cohomology rings are finitely generated
- There is a non-degenerate internal product in homology given by topological intersection among cycles and its dual in cohomology

$$I = \int_{\Gamma} \omega(\overline{x}; \overline{\mu})$$
 = Element of a finite dimensional vector space

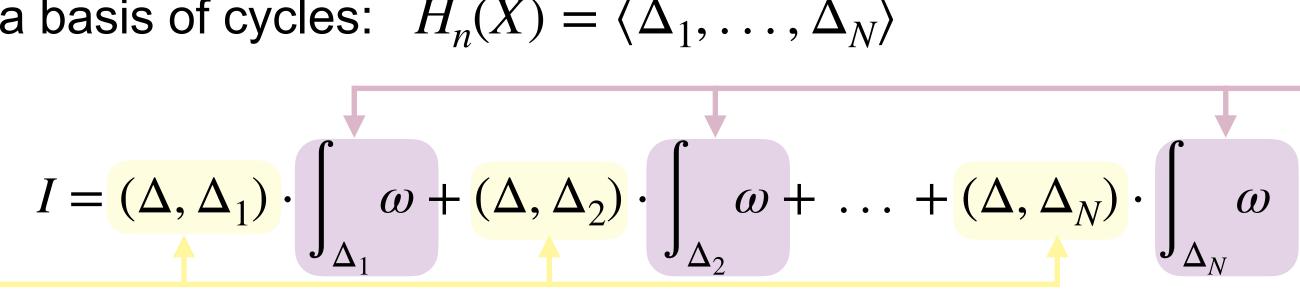
[Mastrolia, Mizera - '18]

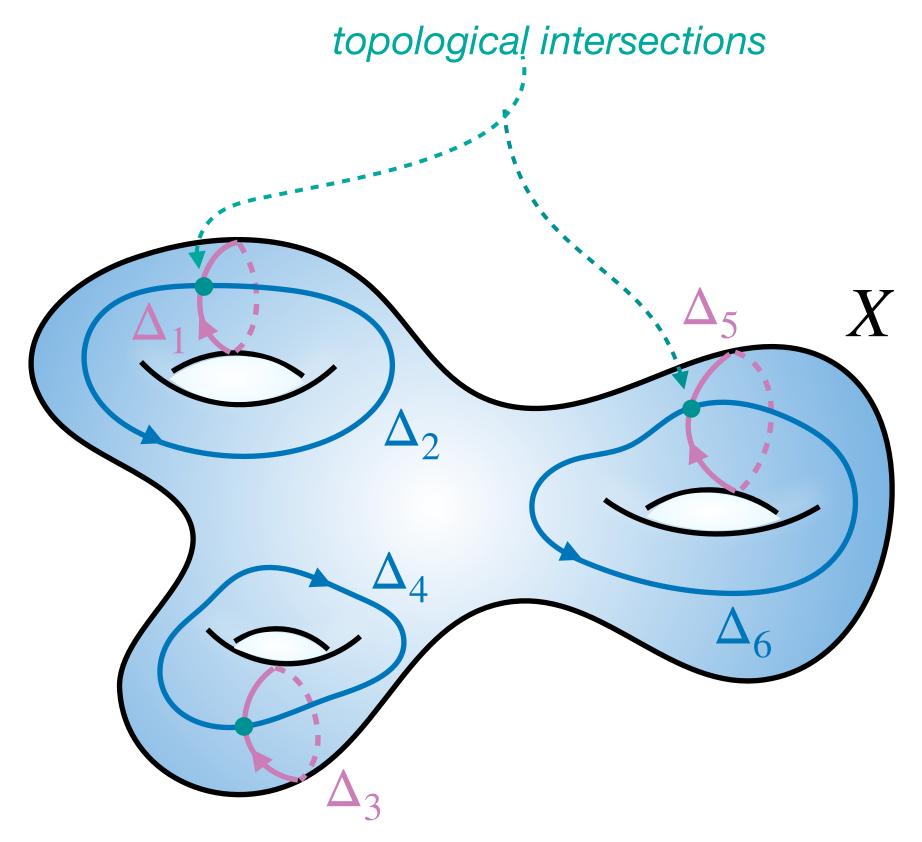
with double projection:

Intersection numbers

in homology

with respect to a basis of cycles: $H_n(X) = \langle \Delta_1, \dots, \Delta_N \rangle$





Master Integrals

The advantages

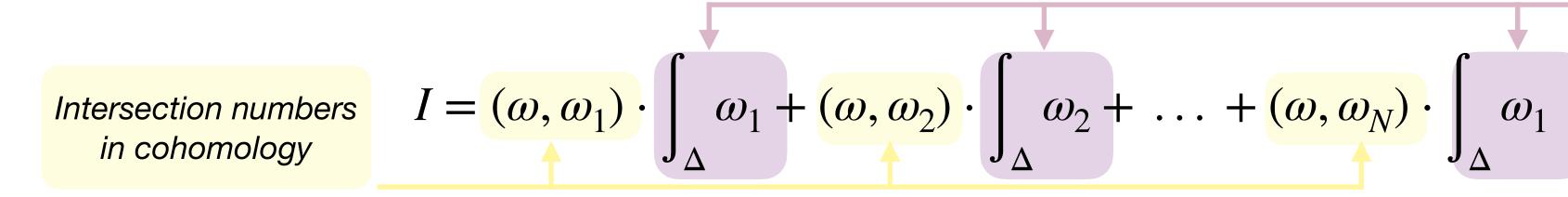
- The homology and cohomology rings are finitely generated
- There is a non-degenerate internal product in homology given by topological intersection among cycles and its dual in cohomology

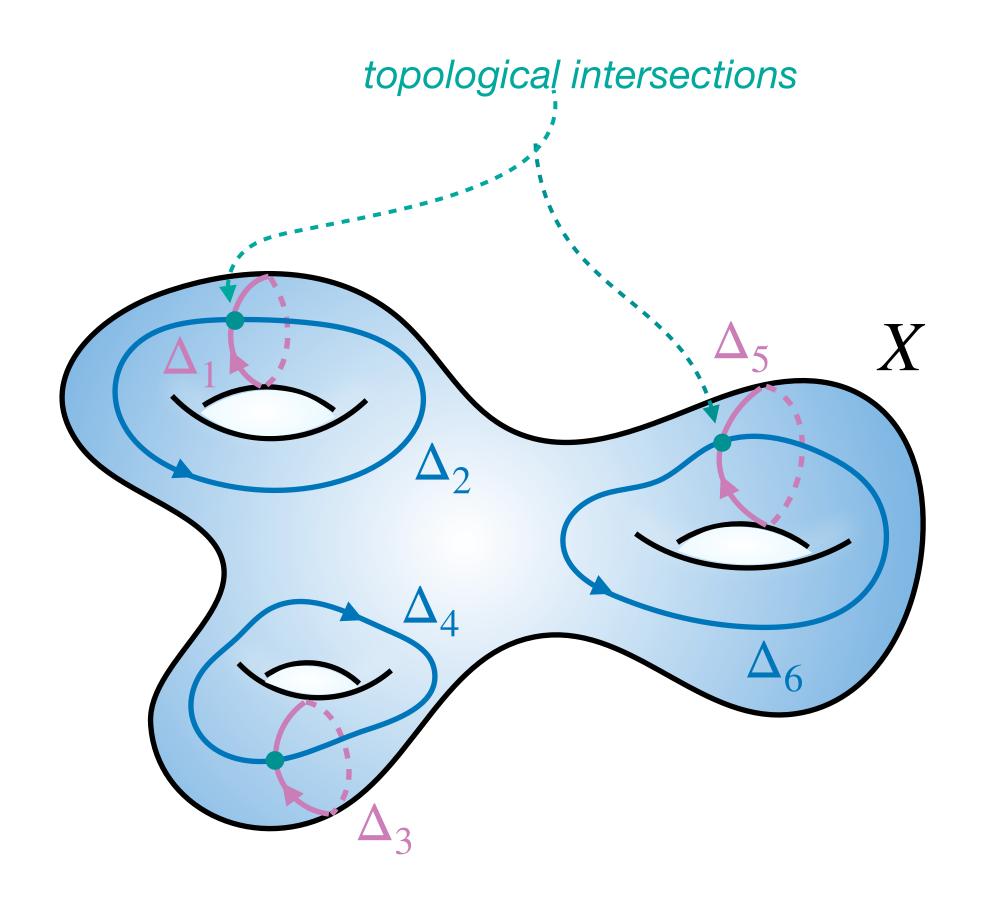
$$I = \int_{\Delta} \omega(\overline{x}; \overline{\mu})$$
 = Element of a finite dimensional vector space

[Mastrolia, Mizera - '18]

with double projection:

• with respect to a basis of forms: $H^n(X) = \langle \omega_1, \omega_2, \dots, \omega_N \rangle$





Master Integrals

The problems

Feynman integral in Baikov representation $I = \int_{\Gamma} \mathscr{B}(x_i,\mu_j)^{-\gamma} \omega \qquad \text{Rational form}$

- Multivalued integral with a potentially complicate monodromy
- Special values of the parameters at which the manifold X becomes singular
- **...**

Main Task

To indentify the right homology/cohomology to define the pairing

The exponential period map

[Kontsevich, Soibelman - 2024]

- N-dim complex algebraic variety
- $f: X \mapsto \mathbb{C}$ Complex valued function
- \bullet μ Holomorphic volume form over X
- Open integration chain on $X \setminus D_0$

$$\int_{\Gamma} e^{-f} \mu : H^{Betti, global}_{\bullet} \left((X, D_0), f \right) \otimes H^{\bullet}_{dR, global} \left((X, D_0), f \right) \longmapsto \mathbb{C}$$

Feynman integrals

Path integral in QFTs

CFT correlators

Non-perturbative computations in String Theory

Generalized Exponential Integral

Rescaling the function:
$$f\mapsto \gamma f$$
 with $\gamma\in\mathbb{C}^*=\mathbb{C}\backslash\{0\}$

Generalized exponential integral:

$$\int_{\Gamma} e^{-\gamma f} \mu : H^{Betti, global}_{\bullet} \left((X, D_0), \gamma f \right) \otimes H^{\bullet}_{dR, global} \left((X, D_0), \gamma f \right) \longmapsto \mathbb{C}$$

Wall Crossing Structure:

To study how the structure of the resulting integral depends on γ .

By varying the parameter γ , the homology and the cohomology groups involved in the pairing can change, and for special values of γ they can even reduce their dimensionality leading to a reduced number of Mls.

De Rham Cohomology

$$(X, D_0, f)$$

The integrand n-form μ is represented by a class [μ] in the degree n Twisted de Rham group

$$[\mu] \in H_{dR}^n \left(X, D_0, f \right)$$

Global Twisted de Rham

$$H_{dR}^{\bullet}(X, D_0, f) \cong \mathbb{H}^{\bullet}(X, \Omega_{X,D_0}^{\bullet}, \nabla_f)$$

Graded abelian group of equivalence classes of closed forms on $X\setminus D_0$ with respect to the differential

$$\nabla_f = d + df \wedge$$

where

$$(\Omega_{X,D_0}^{\bullet}, \nabla_f): \Omega_{X,D_0}^0 \stackrel{\nabla_f}{\to} \Omega_{X,D_0}^1 \stackrel{\nabla_f}{\to} \dots \stackrel{\nabla_f}{\to} \Omega_{X,D_0}^n$$

De Rham Cohomology

$$(X, D_0, f)$$

The integrand n-form μ is represented by a class [μ] in the degree n Twisted de Rham group

$$[\mu] \in H_{dR}^n \left(X, D_0, f \right)$$

Global Twisted de Rham

$$H_{dR}^{\bullet}(X, D_0, f) \cong \mathbb{H}^{\bullet}(X, \Omega_{X,D_0}^{\bullet}, \nabla_f)$$

Graded abelian group of equivalence classes of closed forms on $X\setminus D_0$ with respect to the differential

$$\nabla_f = d + df \wedge$$

where

$$(\Omega_{X,D_0}^{\bullet}, \nabla_f): \Omega_{X,D_0}^0 \stackrel{\nabla_f}{\to} \Omega_{X,D_0}^1 \stackrel{\nabla_f}{\to} \dots \stackrel{\nabla_f}{\to} \Omega_{X,D_0}^n$$

Generalized version:

$$H_{dR,\gamma}^{\bullet}(X,D_0,f) \cong \mathbb{H}^{\bullet}(X,\Omega_{X,D_0}^{\bullet},\nabla_{\gamma f})$$

with respect to the differential

$$\nabla_f = d + \gamma df \wedge$$

Global Betti Homology

Graded abelian group which captures the topology of chains on $X \setminus D_0$ relative to the level sets of f at infinity:

$$H^{Betti,global}_{\bullet}\left((X,D_0),f,\mathbb{Z}\right)\equiv H_{\bullet}\left((X,D_0),f^{-1}(\infty),\mathbb{Z}\right)$$

• Let us fix $D_0 = \emptyset$ for simplicity.

The integration cycle Γ is a **non-compact** n-dim cycle in the complex variety X with boundaries on the subset $\{\mathbf{z} \in X | f(\mathbf{z}) = \infty\} \subset X$. The cycle Γ is represented by the class $[\Gamma] \in H_n^{Betti,global}(X,f,\mathbb{Z})$

Global Betti Homology

Graded abelian group which captures the topology of chains on $X \setminus D_0$ relative to the level sets of f at infinity:

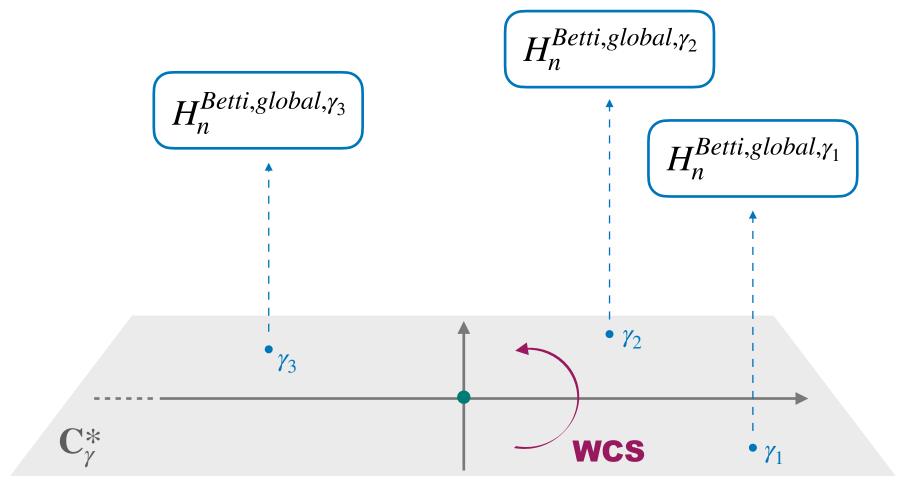
$$H^{Betti,global}_{\bullet}\left((X,D_0),f,\mathbb{Z}\right)\equiv H_{\bullet}\left((X,D_0),f^{-1}(\infty),\mathbb{Z}\right)$$

• Let us fix $D_0 = \emptyset$ for simplicity.

The integration cycle Γ is a **non-compact** n-dim cycle in the complex variety X with boundaries on the subset $\{\mathbf{z} \in X | f(\mathbf{z}) = \infty\} \subset X$. The cycle Γ is represented by the class $[\Gamma] \in H_n^{Betti,global}(X,f,\mathbb{Z})$

Generalized version:

$$H^{Betti,global,\gamma}_{\bullet}\left((X,D_0),f,\mathbb{Z}\right) \equiv H_{\bullet}\left((X,D_0),(\gamma f)^{-1}(\infty),\mathbb{Z}\right)$$



Master Integrals decomposition

Given the exponential integral, with fixed integrand and fixed $\gamma \in \mathbb{C}^*$

$$I = \int_{\Gamma} e^{-\gamma f} \mu$$

- Define a **basis** of integration contours $\{\Gamma_i\}_{i=1}^{N=dimH_n}$ for the Betti Homology group $H_n^{Betti,global,\gamma}(X,f,\mathbb{Z})$
- Define a non-degenerate internal product on the group $H_n^{Betti,global,\gamma}(X,f,\mathbb{Z})$:

$$\left(\Gamma_i, \Gamma_j\right) = c_{ij}$$

such that the integration contour Γ can be written in terms of the following **linear** combination:

$$\Gamma = (\Gamma, \Gamma_1) \Gamma_1 + (\Gamma, \Gamma_2) \Gamma_2 + \ldots + (\Gamma, \Gamma_N) \Gamma_N$$

leading to the following MIs decomposition for I

$$I = \left(\Gamma, \Gamma_1\right) \int_{\Gamma_1} e^{-\gamma f} \mu + \left(\Gamma, \Gamma_2\right) \int_{\Gamma_2} e^{-\gamma f} \mu + \dots + \left(\Gamma, \Gamma_N\right) \int_{\Gamma_N} e^{-\gamma f} \mu$$

Master Integrals decomposition

Given the exponential integral, with fixed integrand and fixed $\gamma \in \mathbb{C}^*$

$$I = \int_{\Gamma} e^{-\gamma f} \mu$$

- Define a **basis** of integration contours $\{\Gamma_i\}_{i=1}^{N=dimH_n}$ for the Betti Homology group $H_n^{Betti,global,\gamma}(X,f,\mathbb{Z})$
- Define a non-degenerate internal product on the group $H_n^{Betti,global,\gamma}(X,f,\mathbb{Z})$:

$$\left(\Gamma_i, \Gamma_j\right) = c_{ij}$$
 Intersection numbers

such that the integration contour Γ can be written in terms of the following **linear** combination:

$$\Gamma = (\Gamma, \Gamma_1) \Gamma_1 + (\Gamma, \Gamma_2) \Gamma_2 + \ldots + (\Gamma, \Gamma_N) \Gamma_N$$

leading to the following MIs decomposition for I

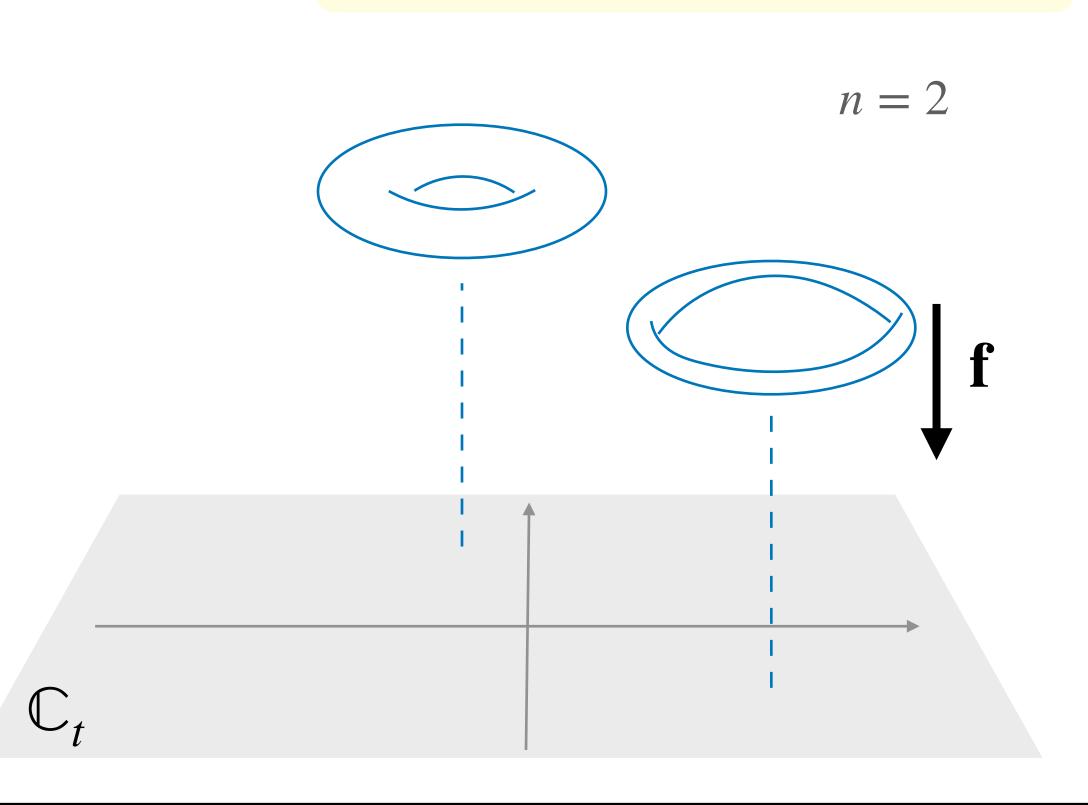
$$I = \left(\Gamma, \Gamma_1\right) \int_{\Gamma_1} e^{-\gamma f} \mu + \left(\Gamma, \Gamma_2\right) \int_{\Gamma_2} e^{-\gamma f} \mu + \dots + \left(\Gamma, \Gamma_N\right) \int_{\Gamma_N} e^{-\gamma f} \mu$$

Local Betti Homology

- We can reconstruct the global Betti Homology group using local data.
 - Consider the level sets associated with the function $f\colon \gamma f(\mathbf{z})=t\in\mathbb{C}_t$

Geometric point of view:

As t varies we have an entire family of algebraic varieties with **different sizes** for some of their internal (n-1) -dimensional cycles.



For each value of t this equation defines

a (n-1)-dim complex algebraic variety.

Local Betti Homology

Define the set of critical loci of $f: \Sigma = \left\{\sigma_i \in X \mid df(\sigma_i) = 0\right\}$ and the corresponding set of critical values $S = \left\{f(\sigma_1) = t_1, f(\sigma_2) = t_2, \dots, f(\sigma_N) = t_N\right\}$ (we are assuming non-degenaracy)

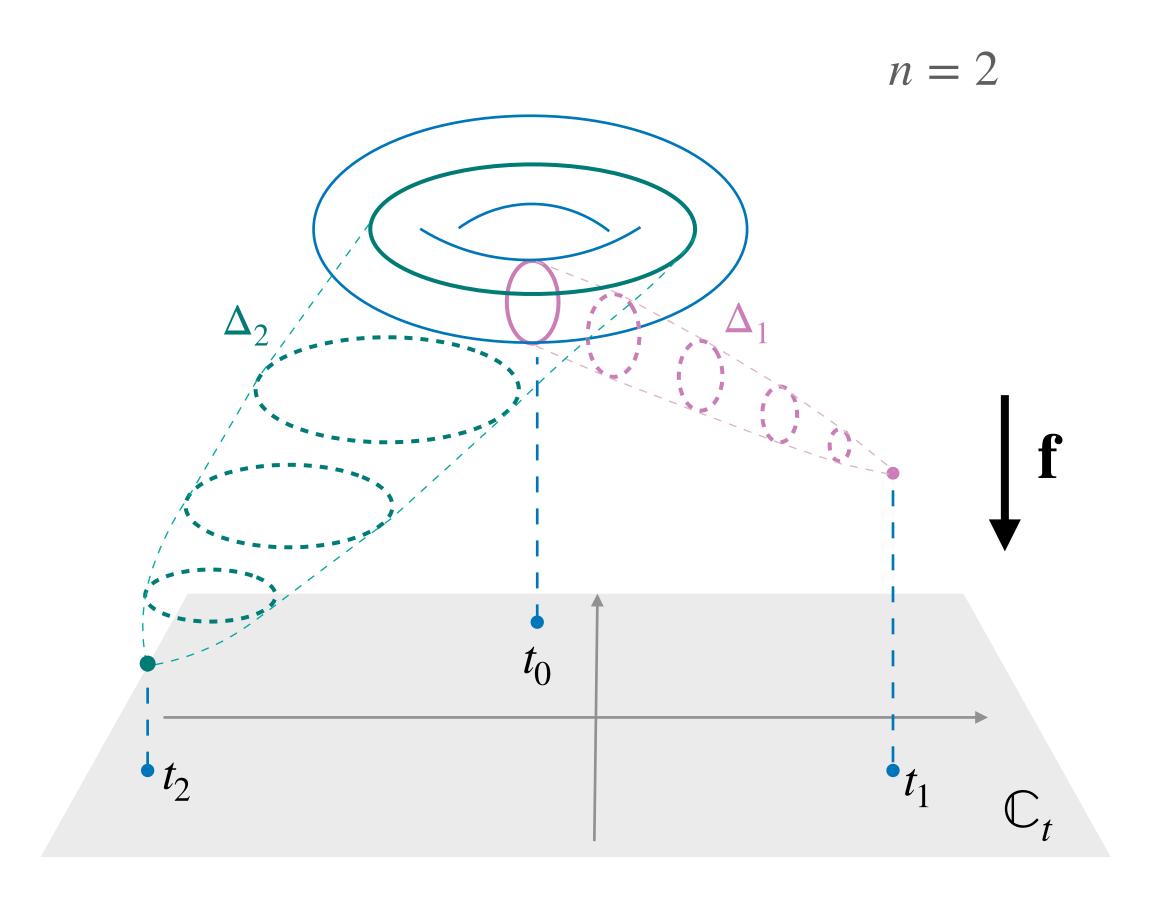
Geometric point of view:

In correspondence of these critical values the algebraic variety on the fiber is singular.

Some of the internal (n-1)-cycles shrink to zero size.



Vanishing cycles Δ_i



Local Betti Homology

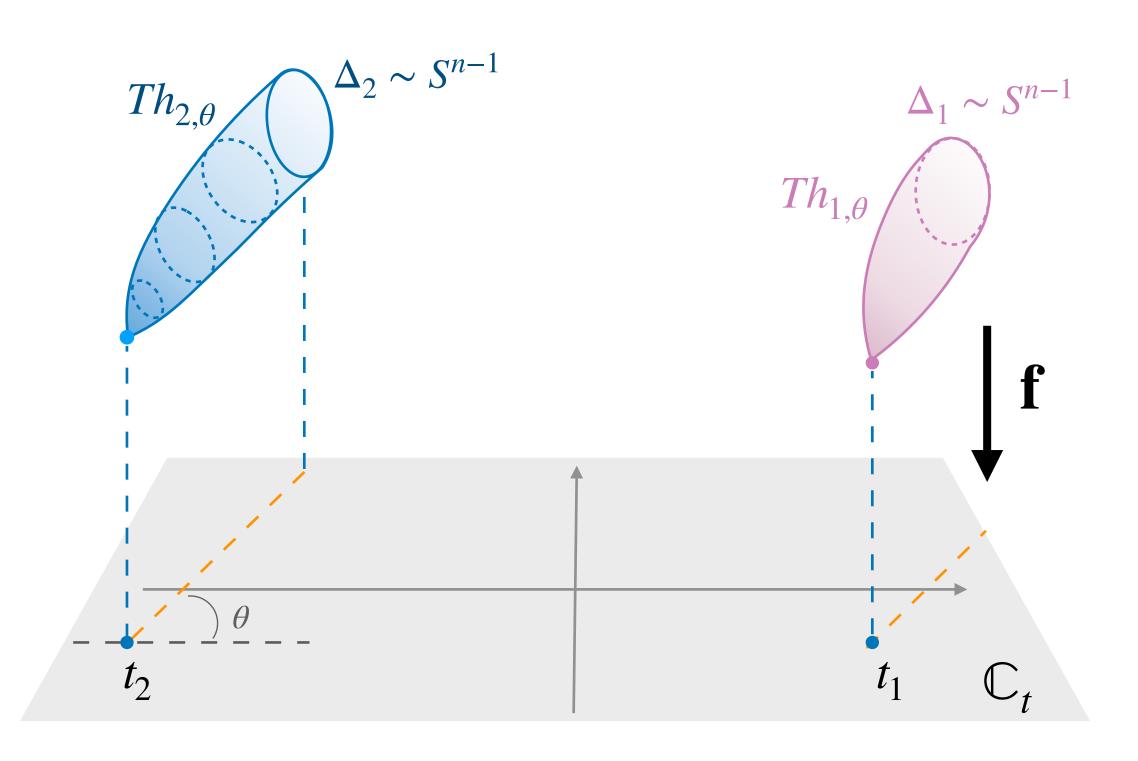
- For each critical point t_i there is a vanishing cycle Δ_i .
 - Consider the direction $\theta = arg(\gamma)$ in the t-plane and define the set of thimbles $\left\{Th_{i,\theta}\right\}_{i=1}^{N}$.

Thimble $Th_{i,\theta}$ = Trace of the vanishing cycle Δ_i along the direction $\theta = arg(\gamma)$ starting from the critical point t_i .

NOTE: Thimbles are *n*-dimensional. They have the right dimension to be integration cycles!

The whole set of thimbles constructed along the direction $arg(\gamma)$ form a basis for the Betti homology

$$H_n^{Betti,global,\gamma}(X,f,\mathbb{Z}) \simeq \langle Th_{1,\theta}, Th_{2,\theta}, \dots, Th_{N,\theta} \rangle$$



Master Integrals decomposition

Given the exponential integral, with fixed integrand and fixed $\gamma \in \mathbb{C}^*$

$$I = \int_{\Gamma} e^{-\gamma f} \mu$$

- Define a **basis** of integration contours $\{\Gamma_i\}_{i=1}^{N=dimH_n}$ for the Betti Homology group $H_n^{Betti,global,\gamma}(X,f,\mathbb{Z})$
- Define a non-degenerate internal product on the group $H_n^{Betti,global,\gamma}(X,f,\mathbb{Z})$:

$$\langle \Gamma_i, \Gamma_j \rangle = c_{ij}$$

such that the integration contour Γ can be written in terms of the following **linear** combination:

$$\Gamma = \langle \Gamma, \Gamma_1 \rangle \Gamma_1 + \langle \Gamma, \Gamma_2 \rangle \Gamma_2 + \ldots + \langle \Gamma, \Gamma_N \rangle \Gamma_N$$

leading to the following MIs decomposition for I

$$I = \langle \Gamma, \Gamma_1 \rangle \int_{\Gamma_1} e^{-\gamma f} \mu + \langle \Gamma, \Gamma_2 \rangle \int_{\Gamma_2} e^{-\gamma f} \mu + \dots + \langle \Gamma, \Gamma_N \rangle \int_{\Gamma_N} e^{-\gamma f} \mu$$

Internal product in Betti Homology

For generic values of the angle $\theta = arg(\gamma)$, thimbles associated with different critical values never intersect

We can define an intersection pairing:

$$\langle \,\cdot\,\,,\,\,\cdot\,\,\rangle \quad : \quad H_n^{Betti,global,\gamma}(X,f,\mathbb{Z}) \,\,\times\, H_n^{Betti,global,e^{i\pi}\gamma}(X,f,\mathbb{Z}) \,\,\longmapsto\,\, \mathbb{Z}$$
 Betti homology
$$\left\{Th_{i,\theta}\right\}_{i=1}^N \qquad \qquad \left\{Th_{i,\theta+\pi}\right\}_{i=1}^N$$

With respect to these basis the intersection pairing is given by: $\langle Th_{i,\theta}, Th_{j,\theta+\pi} \rangle = \delta_{ij}$

$$Th_{i,\theta+\pi}$$

$$\theta+\pi$$

$$t_i$$
 θ

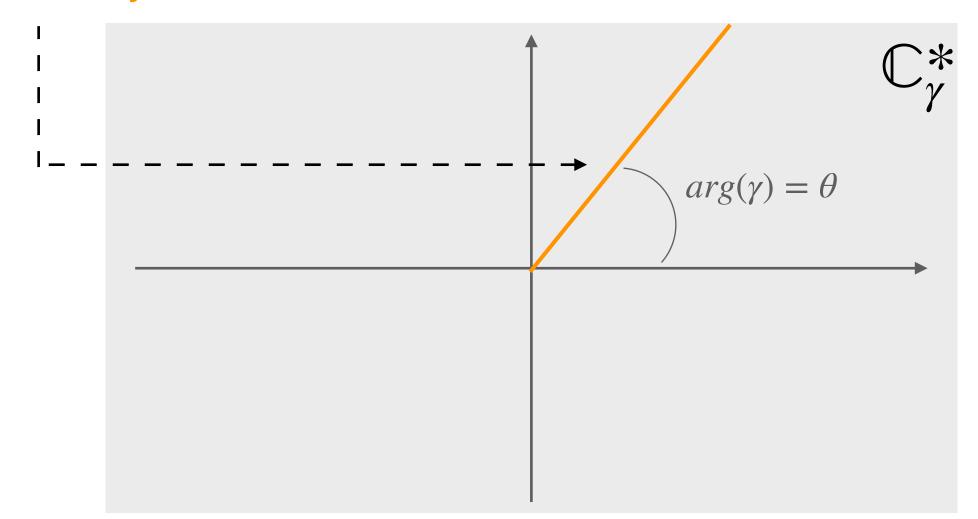
Thimbles degeneration

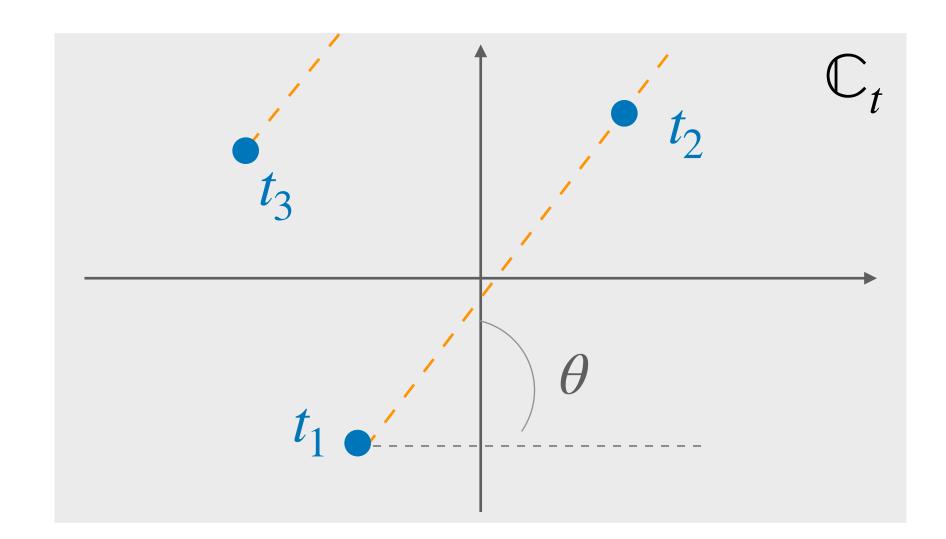
Problems appear for special values of γ for which the lines with direction $\theta = \arg(\gamma)$ in the plane \mathbb{C}_t intersect two or more critical points.

Degeneration of the corresponding thimbles

Appearence of **Stokes rays** in the plane \mathbb{C}_{γ}^* . In correspondence of this lines we have a **wrong number** of thimbles, then a corresponding **wrong computation** of the number of MIs.

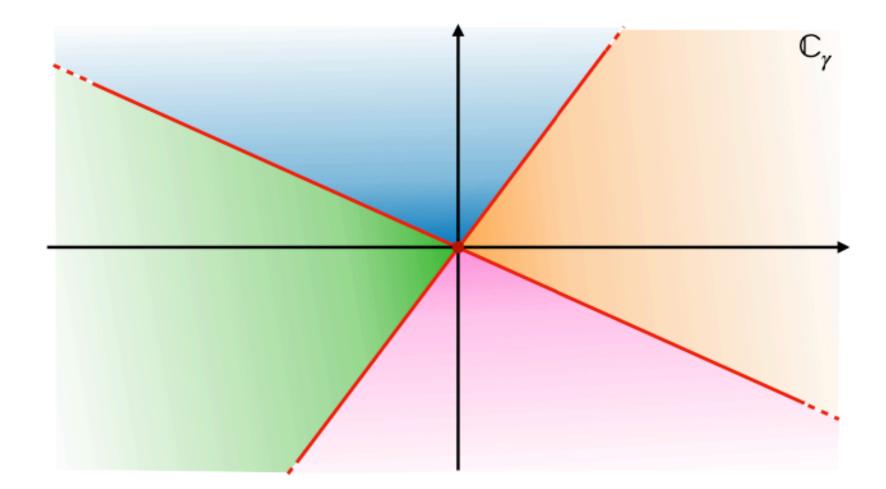
Stokes' ray





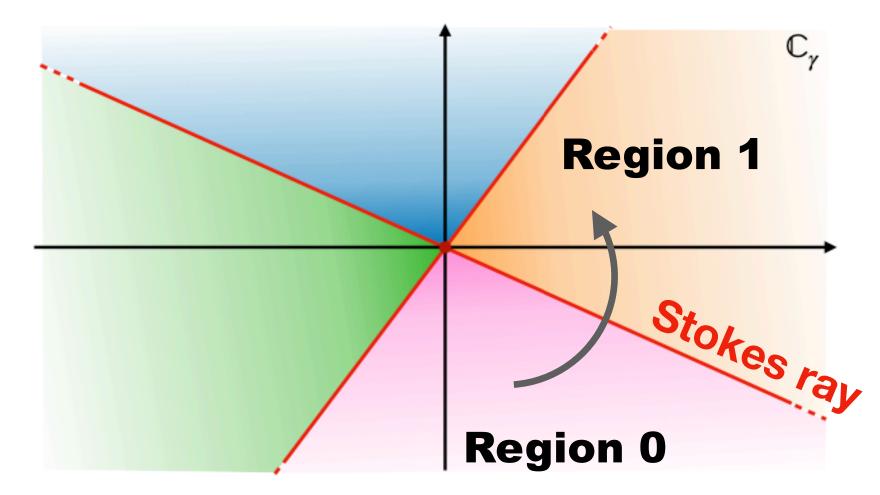
Wall Crossing Structure (WCS)

- \triangleright Stokes'rays divide the plane \mathbb{C}_{γ}^* in different sectors.
- Study how the basis of thimbles change when we cross these rays = WCS.



Wall Crossing Structure (WCS)

- \triangleright Stokes'rays divide the plane \mathbb{C}_{γ}^* in different sectors.
- Study how the basis of thimbles change when we cross these rays = WCS.



To cross a Stokes ray corresponding to a Stokes line in the \mathbb{C}_t plane connecting the critical values t_i and t_j imposes a discontinuity jump for the corresponding thimbles Th_i and Th_j described by matrix of the form:

$$\begin{pmatrix} \Gamma_i^{+(1)} \\ \Gamma_j^{+(1)} \end{pmatrix} = \begin{pmatrix} 1 & \Delta_{ij} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \Gamma_i^{+(0)} \\ \Gamma_j^{+(0)} \end{pmatrix}$$

Intersection numbers among the corresponding vanishing cycles

$$\Delta_{ij} = (\pm 1)\Delta_i \circ \Delta_j.$$

IMPORTANT!

Local monodromies around the critical points completely determine these numbers via Picard-Lefshetz theorem:

$$M_j(\Delta_i) = \Delta_i + (-1)^{n(n+1)/2} (\Delta_i \circ \Delta_j) \Delta_j$$

Holomorphic function

In the simple case in which the function $f(\mathbf{z}): X \mapsto \mathbb{C}$ is holomorphic the previous analysis connects with the study of Lefschetz thimbles in (a complexified version of) Morse theory.

$$I = \int_{\Gamma} e^{-\gamma f} \mu$$
• $K = \mathbb{C}^n$
• $h = Re(\gamma f)$ — Morse function
• Γ_i — Lefschetz thimbles:

Assure convergence of the integral along the

Solutions of the gradient flow equations:

$$\frac{du^i}{d\tau} = g^{ij} \frac{\partial h}{\partial u^j}$$

- $Im(\gamma f) = const$
- Γ_i passes through the critical point σ_i
- h monotonically increases along Γ_i

Example: Pearcey's Integral

$$P(\gamma) = \int_{\Gamma} e^{-\gamma(z^4 + bz^2 + cz + d)} dz$$

Describing the Grand-canonical partition function of gauge Skyrme models for nuclear matter.

[Cacciatori, Canfora, Lagos, Muscolino, Vera - '21]

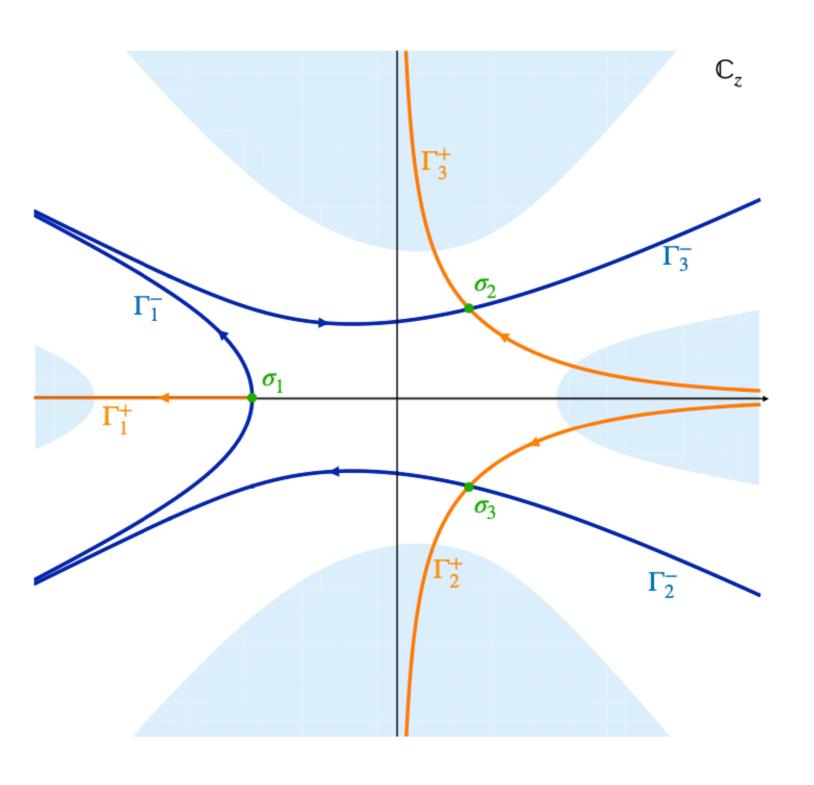
- \blacktriangleright The algebraic variety is $X = \mathbb{C}$.
- The critical points of f define the set: $\Sigma = \{ \mathbf{z} \in \mathbb{C} \mid f'(\mathbf{z}) = 4z^3 + 2bz + c = 0 \}$

According with the sign of the discriminant $\Delta = 8b^3 + 27c^2$ we have three different situations:

$$\Delta \equiv \begin{cases} > 0 & 1 \text{ real and } 2 \text{ complex conjugate solutions,} \\ < 0 & 3 \text{ real different solutions,} \\ = 0 & 3 \text{ real solutions with at least a multiple root.} \end{cases}$$

Three different regions in the parameter space (a, b) with different Betti homologies and different WCSs.

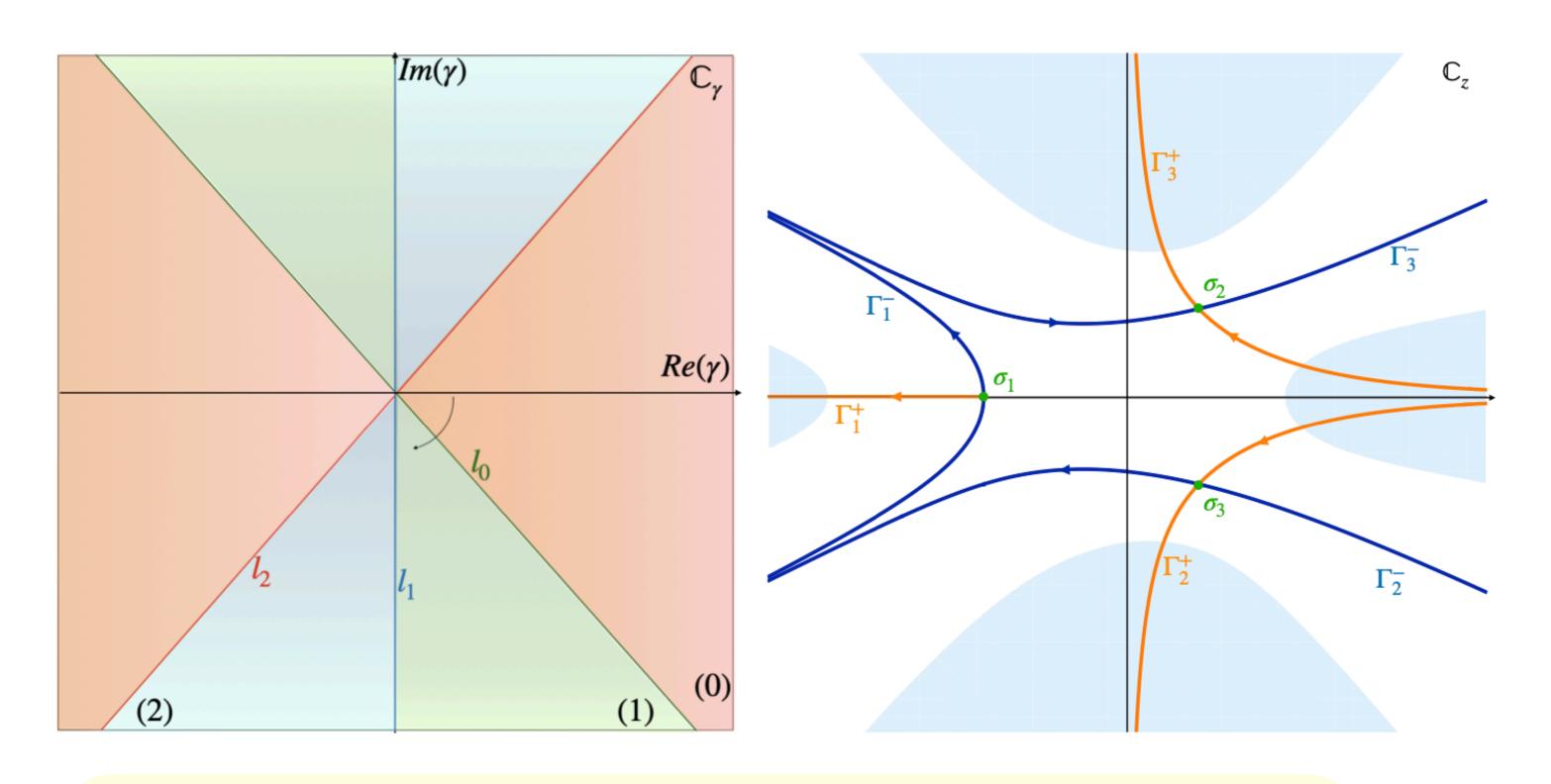
Region $\Delta > 0$



- 3 distinct critical points in $X=\mathbb{C}$
- 3 distinct thimbles $\left\{\Gamma_i^+\right\}_{i=1}^3$ for the Betti homology $H_n^{Betti,\gamma}(\mathbb{C},f,\mathbb{Z})$ and 3 distinct thimbles for the dual homology

$$dim H_1^{Betti}(\mathbb{C}, f, \mathbb{Z}) = 3$$

Region $\Delta > 0$



- 3 distinct critical points in $X = \mathbb{C}$
- 3 distinct thimbles $\left\{\Gamma_i^+\right\}_{i=1}^3$ for the Betti homology $H_n^{Betti,\gamma}(\mathbb{C},f,\mathbb{Z})$ and 3 distinct thimbles for the dual homology

$$dim H_1^{Betti}(\mathbb{C}, f, \mathbb{Z}) = 3$$

$$l_0: Re(\gamma) = -\frac{11}{16} \sqrt{\frac{3}{2}} \operatorname{Im}(\gamma), \quad \text{where} \quad \operatorname{Im}(\gamma f(z)) \big|_{\sigma_1} = \operatorname{Im}(\gamma f(z)) \big|_{\sigma_2},$$

there
$$\operatorname{Im}(\gamma f(z))|_{\sigma_1} =$$

here
$$\operatorname{Im}(\gamma f(z))|_{\sigma_1} = \operatorname{Im}(\gamma f(z))|_{\sigma_2}$$

$$l_1: Re(\gamma) = 0,$$

where
$$\operatorname{Im}(\gamma f(z))|_{\sigma_2} = \operatorname{Im}(\gamma f(z))|_{\sigma_3}$$
,

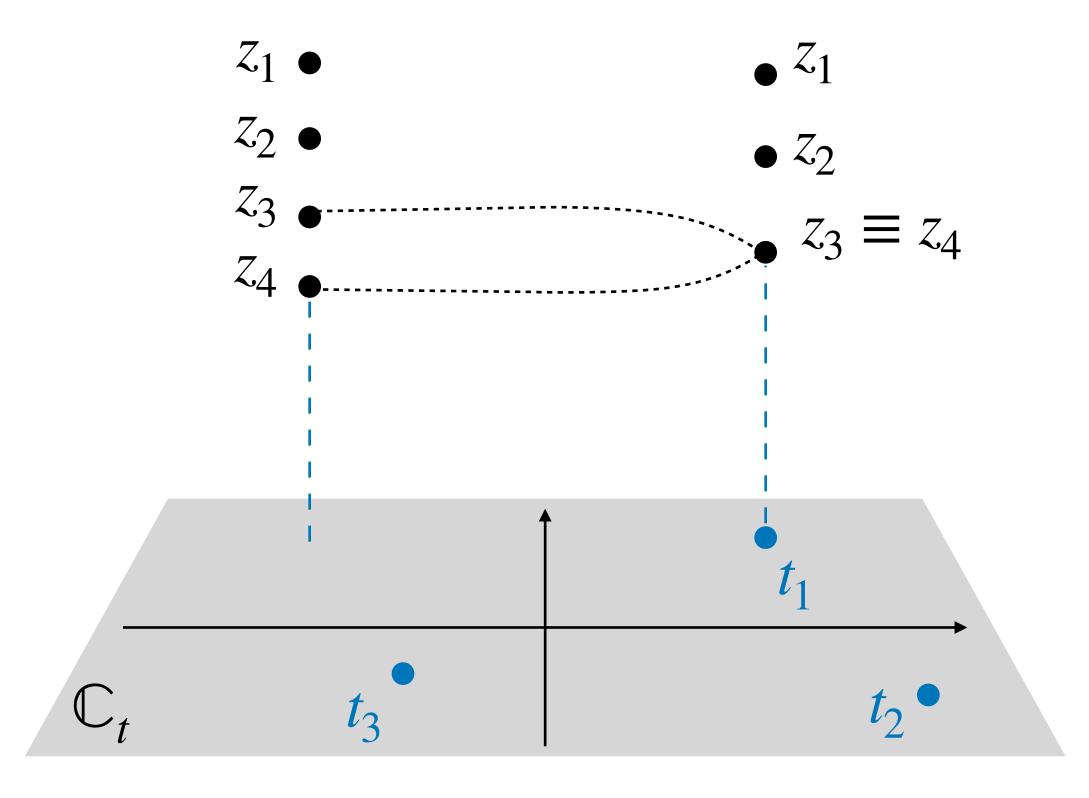
$$l_2: Re(\gamma) = \frac{11}{16} \sqrt{\frac{3}{2}} \text{Im}(\gamma), \quad \text{where} \quad \text{Im}(\gamma f(z))|_{\sigma_1} = \text{Im}(\gamma f(z))|_{\sigma_3}.$$

where
$$\operatorname{Im}(\gamma f(z))|_{\sigma_1} = \operatorname{Im}(\gamma f(z))|_{\sigma_3}$$

Stokes'rays separating the regions (0), (1) and (2) in the plane $\mathbb{C}_{\scriptscriptstyle \gamma}$

Region $\Delta > 0$

- \triangleright Fix $\gamma \notin l_i$
- \triangleright 3 critical points in Σ corresponding to the 3 critical values $f(\sigma_1)=t_1$, $f(\sigma_2)=t_2$ and $f(\sigma_3)=t_3$
- \triangleright Construct the fibration $f: \mathbb{C} \mapsto \mathbb{C}_t$, wich fibers are the four points $f^{-1}(t) = \{z_1(t), z_2(t), z_3(t), z_4(t)\}$



Construct the vanishing cycles

$$\Delta_1 = \{z_3\} - \{z_4\}$$
 and $\Delta_2 = \Delta_3 = \{z_1\} - \{z_4\}$

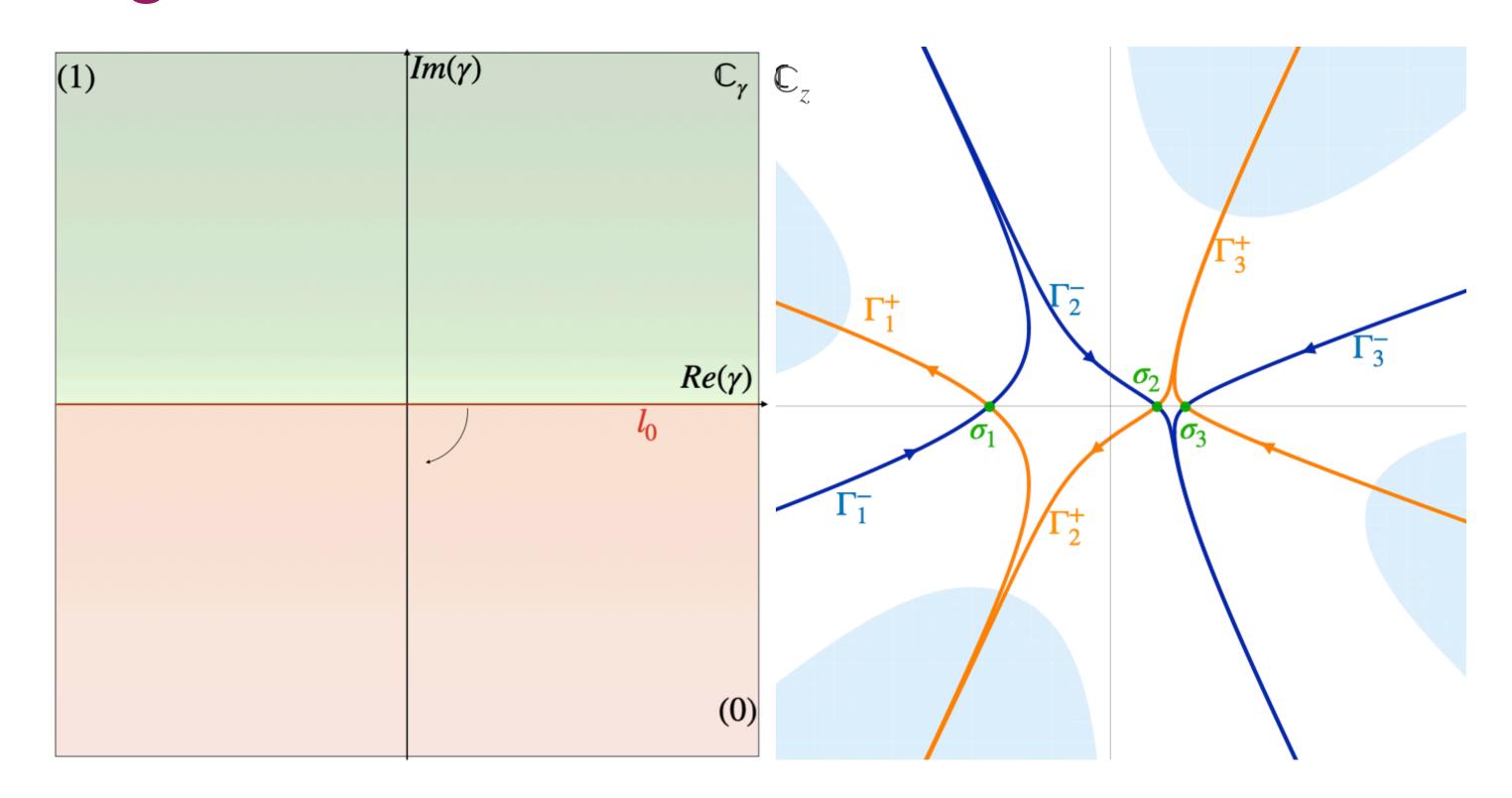
Compute the monodromies around the critical values

$$M_1 = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad \text{and} \quad M_2 = M_3 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Compute the jump matrices for the WCS

$$T^{(0)} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad T^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \qquad T^{(2)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Region $\Delta < 0$



3 vanishing cycles

$$\Delta_1 = \{z_1\} - \{z_2\},\$$
 $\Delta_2 = \{z_3\} - \{z_4\},\$
 $\Delta_3 = \{z_1\} - \{z_4\}$

Monodromies

$$M_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \text{ and } M_2 = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

▶ 1 Stokes'ray: study the corresponding WCS.

Region $\Delta = 0$



$$H_1(X, D_N, \mathbb{Z}) = span\{\Gamma_1^+, \Gamma_{23}^+\} \cong \mathbb{Z}^2$$

$$H_1(X, D_N, \mathbb{Z})^{\vee} = span\{\Gamma_1^-, \Gamma_{23}^-\} \cong \mathbb{Z}^2 \qquad H_1(X, D_N, \mathbb{Z})^{\vee} = span\{\Gamma_{123}^-\} \cong \mathbb{Z}$$

$$H_1(X, D_N, \mathbb{Z}) = span\{\Gamma_{123}^+\} \cong \mathbb{Z}$$

$$H_1(X, D_N, \mathbb{Z})^{\vee} = span\{\Gamma_{123}^-\} \cong \mathbb{Z}$$

Multivalued function

Let us consider the case in which $f: X \mapsto \mathbb{C}$ is a multivalued function.

The main constructions underlying the analysis still work but we need some modifications!

MAIN POTENTIAL PROBLEM

Additional contribution to the 1-form α defining the **twist** in the de Rham cohomology

- Holomorphic case: $\alpha = df$ (exact form)
- Multivalued case: $\alpha = \alpha_{reg} + \alpha_{log} + \alpha_{\infty}$ (closed form, not necessary exact)

Geometric Manipulations:

ightharpoonup Choose a suitable compactification for $X\mapsto \overline{X}$ s.t.: $\overline{X}-X=D_h\cup D_v\cup D_{log}$

Multivalued function

Let us consider the case in which $f: X \mapsto \mathbb{C}$ is a multivalued function.

The main constructions underlying the analysis still work but we need some modifications!

MAIN POTENTIAL PROBLEM

Additional contribution to the 1-form α defining the **twist** in the de Rham cohomology

- Holomorphic case: $\alpha = df$ (exact form)
- Multivalued case: $\alpha = \alpha_{reg} + \alpha_{log} + \alpha_{\infty}$ (closed form, not necessary exact)

Geometric Manipulations:

ightharpoonup Choose a suitable compactification for $X\mapsto \overline{X}$ s.t.: $\overline{X}-X=D_h\cup D_v\cup D_{log}$

 \blacktriangleright Study the behavior of $\overline{f}: \overline{X} \mapsto \mathbb{C}$

Horizontal divisor
Locus at infinity where \bar{f} is finite.

Vertical divisor Locus at infinity where \bar{f} diverges.

Log divisor

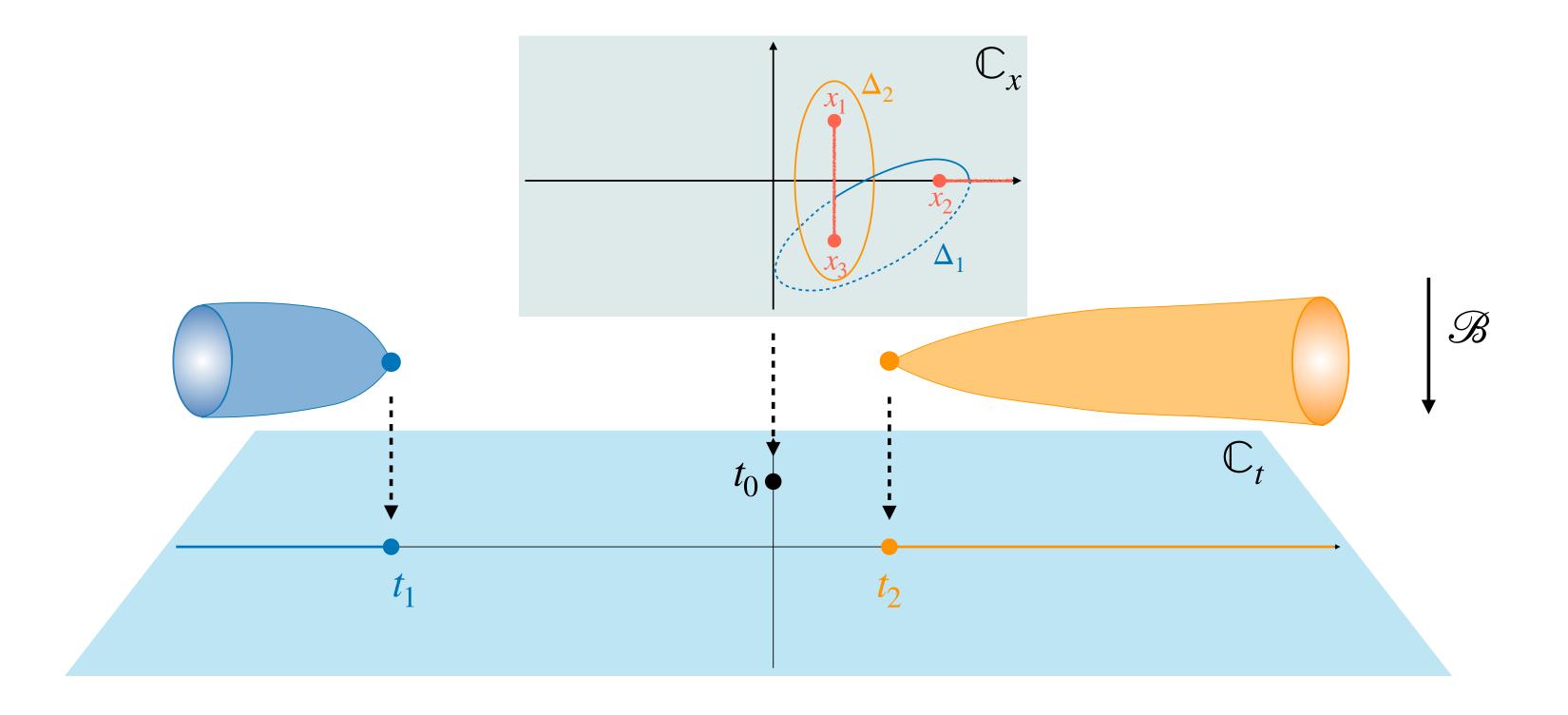
Locus at which df has log poles.

Logarithmic exponent

$$I = \int_{\Gamma} \frac{dx \wedge dy}{\left[y^2 + x(x-1)(x-\lambda)\right]^{\gamma}} = \int_{\Gamma} e^{-\gamma \log\left[y^2 + x(x-1)(x-\lambda)\right]} dx \wedge dy = \int_{\Gamma} e^{-\gamma \log\mathcal{B}(x,y;\lambda)} dx \wedge dy$$

- $X = \mathbb{C}^2 \setminus \{ \mathscr{B} = 0 \}$
- $\overline{X} = \mathbb{P}^2 = \mathbb{C}^2 \cup \mathbb{P}^1$
- We study the closed form: $d \log \overline{\mathcal{B}} = \frac{2\eta y dy + [y^2 + x^2 + x\lambda(x 2\eta)]d\eta + [-3x^2 \eta^2\lambda + 2x\eta(1 + \lambda)]dx}{y^2\eta x(x \eta)(x \eta\lambda)}$
- $D_h = D_v = \emptyset$
- $D_{log} = D_{\overline{\mathscr{B}}} \cup D_{\infty}$ with $D_{\overline{\mathscr{B}}} = \overline{\mathscr{E}}_{\lambda} = \{[x:y:\eta] \in \mathbb{P}^2 | \overline{\mathscr{B}} = 0\}$ $D_{\infty} = \mathbb{P}^1 = \{[x:y:0] \in \mathbb{P}^2\}$

Logarithmic exponent



Rank (Betti homology) = 2 Number of independent thimbles

Conclusions and future directions

- Exponential integrals provide a well defined pairing between twisted de Rham co-cycles and Betti cycles over complex manifolds that allow to accomodate in the same framework a wide range of physically relevant integrals.
- The WCS analysis allows for an analytic continuation of the MIs decomposition in the parameter γ to study Stokes' phenomena to assure a sharp counting of the co-homology dimension.
- To test the analysis in Feynman integrals in different representations; (WIP with S.L.Cacciatori, A.Massidda, P.Mastrolia and S.Noja)
- To study in detail the dependence of the pairing on the kinematic parameters (~ complex structure moduli for vanishing cycles);
 (WIP with S.L.Cacciatori, A.Massidda, P.Mastrolia and S.Noja)
- To performe explicit computations for families of higher CYs (beyond elliptic curves): $K3, CY_3, CY_4, \ldots$;
 - (WIP with S.L.Cacciatori, A.Massidda, P.Mastrolia and S.Noja)
- To use the same method to analyze conformal correlators (aka string amplitudes);
 - (Project in the definition stage)
- ---

Thank you for your attention!