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Algebraic integration

@ Can we compute integrals

'/rf(xl,...,xn)dxln-dxn

using algebraic relations?

1/19



Algebraic integration

@ Ccan we compute integrals

‘/rf(xl,...,xn)dx1-~-dxn

using algebraic relations?

v/ Yes!
D-module theory provides an expressive and effective framework.

1/19



Can we compute integrals

/rf(xl,...,xn)dx1-~dxn

using algebraic relations?

v/ Yes!
D-module theory provides an expressive and effective framework.

Saito, M., Sturmfels, B., & Takayama, N. (2000). Grobner
deformations of hypergeometric differential equations (Vol. 6).
Springer-Verlag

1/19



Can we compute integrals

/rf(xl,...,xn)dx1-~dxn

using algebraic relations?

v/ Yes!
D-module theory provides an expressive and effective framework.

Saito, M., Sturmfels, B., & Takayama, N. (2000). Grobner
deformations of hypergeometric differential equations (Vol. 6).
Springer-Verlag

How to compute them faster?
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What does computing mean? I

v/ Computing master integrals
Given fi(x), ..., fr(x), find linear relations

a; /f1(x)dx+-~-+ar/fr(x)dx:0.
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What does computing mean? II

v/ Picard-Fuchs equations
Given y(t) = / f(t,x)dx, find a differential equation

ar()y" () + -+ a1 ()Y (t) + ao(t)y(t) = 0.

3/19



v Picard-Fuchs equations
Given y(t) = / f(t,x)dx, find a differential equation

ar()y" () + -+ a1 ()Y (t) + ao(t)y(t) = 0.

This reduces to finding a relation between several integrals:
x Use C(t) as the base field.
* Find a relation between the integrals

y(t) = / F(t,x)dx,

yo = [ Lo ax

2
o= [0,
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What does computing not mean?

Numerical evaluation
Given f(x), compute a numerical approximation of

/ f(x)dx.

Finding master integrals, or computing differential equations, may help,
but it is only a step.
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Definition
A D-module M is a space of functions of x1, . .., X, in which you can:

« multiply by polynomial functions in x
« differentiate with respect to x
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Definition
A D-module M is a space of functions of x1, . .., X, in which you can:

« multiply by polynomial functions in x
« differentiate with respect to x

Definition (alternative)
LetD = C|[xy,...,Xn]{81,-..,0,) be the nth Weyl algebra:

« [xi, xj] = [8;, 8] = [8i, %] =0
« [8;,x;] =1 (Leibniz’ rule)
A D-module is a D-module.

Examples
* Polynomials in x
* Holomorphic functions on an open subset of C"
* Schwartz distributions on R"
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Holonomic D-modules

Definition
A D-module M is holonomic if:

1. itis finitely generated (as a module over D)
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Definition
A D-module M is holonomic if:

1. it is finitely generated (as a module over D)
2. forany f € M,as s — oo,

dimc Vect {x%9P - f | |a| + |B| < s} = O(sM).

Examples
v M =C[xq,...,Xn]
M =C(xy,...,Xn)
v M=C[xy,...,%n, FY] = {aF | a e C[x],k > 0}
v M =C[xy,...,Xxn, F1]F¢

_ 1
M = C[X] 1+exp(x)
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Computer representation of holonomic D-modules

with:

s (M): the number of generators of M (we can always assume m = 1,
but this is not free)

% _: the module of relations between the generators
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Computer representation of holonomic D-modules

Dm

M =~ s
Dgi+---+Dgs

with:

* (m: the number of generators of M (we can always assume m =1,
but this is not free)

* | Dgq + -+ - + Dgs : the module of relations between the generators

Examples
v/ C[x] ~D/(D3; + - - + Ddy)

v C[x]® 2D/(ZiD(3i i))

- X
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Computer representation of holonomic D-modules

Dm

M =~ s
Dgi+---+Dgs

with:
* (m): the number of generators of M (we can always assume m = 1,
but this is not free)

* | Dgq + -+ - + Dgs : the module of relations between the generators

Examples
v/ C[x] ~D/(D3; + - - + Ddy)

v Clx]e/® = D/(2:D(6: - )
© D- 315 ~ D/(D(3x8x + 2ydy + 6) + D(3y*dx + 2x8y))

XZ—y3
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Rational functions as D-modules

Letf=1-(1-xy)z—-xyz(1-x)(1-y)(1-2z) (Beukers & Peters, 1984)
and consider M = C[x,y, z,f!].

It is not finitely generated as a C[x, y, z]-module.
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Rational functions as D-modules

Letf=1-(1-xy)z—-xyz(1-x)(1-y)(1-2z) (Beukers & Peters, 1984)
and consider M = C[x,y, z,f!].

It is not finitely generated as a C[x, y, z]-module.
It is generated by f~2 as a D-module:

Clxy,zf =D -f2%=~D/I

where [ is the left ideal generated by

“1r Singular (Andres et al., 2010) or Macaulay2 (Leykin, 2002).
© Do we deal correctly with poles?
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Definition
An integral / on a D-module M is a linear form / : M — C such that for

any fi,...,fneC,

/ (31f1 + "'+3nfn) dx =0.
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Definition
An integral / on a D-module M is a linear form / : M — C such that for

any fi,...,fneC,

/ (31f1 + "'+3nfn) dx =0.

Definition
The integral of a D-module M is the C-linear space

\ M
[Mm= :
MM + - + oM

(So an integral on M is a linear form f M — C.)

Theorem (Kashiwara)
If M is holonomic, [ M is finite dimensional.
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Integrals with boundaries

In general

/r(alf1+---+anfn)dx=/ [...] #0.

ar
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In general

/r(31f1+~-+8nfn)dX:/ [...] #0.

ar

* In the D-module approach, we need oI' = @.

* Even if 0T # @, you still learn something useful from your integral
by studying the consequences of

/(31f1+"'+3nfn)dX:O.
«* The approach of Oaku (2013) may apply:

/rfdx:/Rnﬂrfdx,

if you can work with Schwartz distributions.
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Takayama's algorithm for integration
Let M = D/I a holonomic D-module with I C D a left ideal.

[y M ~ D
M+ 4+ M  I+8D+---+8,D
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Let M = D/I a holonomic D-module with I C D a left ideal.

[ M N D
M4+ M  I+8D+---+8,D

Algorithm (Takayama, 1990)
1. Pick some r and some s large enough.
2. Compute the finite dimensional vector space

Vits =TI N Dypys+ 01Dpys—1 + -+ + InDrys—1,

where Dy = Vect {x%3 | o] + |B| < k}.
3. Return D,/ (Vyys N Dy).
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Let M = D/I a holonomic D-module with I C D a left ideal.

[ M N D
M4+ M  I+8D+---+8,D

Algorithm (Takayama, 1990)
1. Pick some r and some s large enough.
2. Compute the finite dimensional vector space

Vits =TI N Dypys+ 01Dpys—1 + -+ + InDrys—1,
where Dy = Vect {x%3 | o] + |B| < k}.
3. Return D,/ (Vyys N Dy).

Correctness. There is a canonical map D;/(Vy4s N D;) — / M.
It is surjective if r > 0 and injective if s > 0.
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Issues with Takayama's algorithm

@ How to choose r and s?

Important theoretical question, but in practice:

— Choose rlarge enough so that D, contains what you want
— Increase s until you discover no new relations
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Issues with Takayama's algorithm

@ How to choose r and s?

Important theoretical question, but in practice:

— Choose rlarge enough so that D, contains what you want
— Increase s until you discover no new relations

Linear algebra in large dimension
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A priori bounds

« Let w(x%8P) = |a| — | B| be the weight of a monomial.
x Let w(g) = max {w(m) | mis a monomial in g}
* Let 0 = ); x;0;.

NB 0 -x% = |a|x* and 6 = —n + }}; 3iX;.
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« Let w(x%8P) = |a| — | B| be the weight of a monomial.
* Let w(g) = max {w(m) | mis a monomial in g}
* Let 0 = ); x;0;.

NB 0 -x% = |a|x* and 6 = —n + }}; 3iX;.

[b-function theory] There is some g € I and b € C[s] such that
g = b(0) + terms of negative weights.
For any x¢,

x%g = b(-|a] — n)x* + lower order terms + Z 9i(...)
i

v/ In Takayama’s algorithm,
ifr > max{k € N|b(-k —n) =0}
then D,/(Vyrs N D;) — [ M surjective.
(It is also injective, but this is more subtle.)
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Integration of rational functions

Let a,f € C[x] homogeneous, k > 0 with dega + n = kdegf.

The following questions are equivalent:
« Is [ frdx =0

14/19



Integration of rational functions

Let a,f € C[x] homogeneous, k > 0 with dega + n = kdegf.

The following questions are equivalent:
« Is [ frdx =0

* Is/aefdx:O?

14/19



Integration of rational functions

Let a,f € C[x] homogeneous, k > 0 with dega + n = kdegf.

The following questions are equivalent:
x Is f f%dx =0?
x Is [aefdx =0?
+ Does aef = 3; - (u; /) for some polynomials u;?
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Integration of rational functions

Let a,f € C[x] homogeneous, k > 0 with dega + n = kdegf.
The following questions are equivalent:

Is [ frdx =0?

Is [aeldx =0?

Does a e/ = 3}; - (u; ef) for some polynomials u;?

*

*

*

*

Doesa €I +81D +:--+d,D where I = ¥, D(8; — 3£)?
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Griffiths-Dwork reduction
The reduction step modulo I + 81D + - - - + 9,D:

Z bigt-= > bidi (mod )
i

= Z dib; — g—f(: (commutation rule in D)

E—Zab' (mod 81D + --- + 9,D)
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Griffiths-Dwork reduction
The reduction step modulo I + 81D + - - - + 9,D:

Z bigt-= > bidi (mod )
i

= Z dib; — g—i’(: (commutation rule in D)

~ > % (mod 31D+ +6,D)
i

def GD(a):
while True:
r+ Zibig—f; «— a [multivariate polynomial division]
ifa=r:
return a

a«—r-— Zl Bxl
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Griffiths-Dwork reduction
Theorem (Dwork, 1962, 1964; Griffiths, 1969)
If {f = 0} is smooth in P"~!, then GD(a) = 0 if and only if [‘a e/ =0.

More often than not, {f = 0} is not smooth...
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Theorem (Dwork, 1962, 1964; Griffiths, 1969)
If {f = 0} is smooth in P""%, then GD(a) = 0 if and only if [ae/ = 0.

More often than not, {f = 0} is not smooth...

Syzigies give more relations! (Lairez, 2016)

of ob;
Zi:bia—)q:O:zi:a—X;eI+ZaiD.

And only nontrivial syzigies may give new relations.
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A Griffiths-Dwork reduction for holonomic ideal?

Let M = D/I be a holonomic D-module. We want to compute in

D
M =~ .
T Ty
——

left ideal right ideal
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A Griffiths-Dwork reduction for holonomic ideal?

Let M = D/I be a holonomic D-module. We want to compute in

D

fu -
!+ )
——
left ideal right ideal

def GenGD(a): [Brochet, Chyzak, and Lairez, 2025]
while a is reducible:
a < LeftRem(a,I)
a «— RightRem(a, 81D + - - - + 3,D)
return a
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x An element a € D is irreducible if GenGD(a) = a.
Irreducible elements forms a linear subspace E C D.
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x An element a € D is irreducible if GenGD(a) = a.
Irreducible elements forms a linear subspace E C D.

* We may have missed relations!
They form the subspace EN (I + }}; 8;D).

To fix GenGD, we need to compute (or rather enumerate) a
generating set of EN (I + }; 8;D).

The missing relations come from monomials m € D that are
reducible both by I and by };; ;D (critical pairs)

Among this critical pairs, many can be eliminated a priori.

18/19



v/ GenGD Coincides with Griffiths—-Dwork reduction
when M = C[x]e’.
Does not reduce every derivatives to zero, but this can be fixed.

v After taking into accounts these critical pairs,
we obtain all the relations.

© https://github.com/HBrochet/MultivariateCreativeTelescoping.jl
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v/ GenGD Coincides with Griffiths—-Dwork reduction
when M = C[x]e’.

Does not reduce every derivatives to zero, but this can be fixed.

v After taking into accounts these critical pairs,
we obtain all the relations.

© https://github.com/HBrochet/MultivariateCreativeTelescoping.jl

Q@ Isit fast?

Sometimes not.
For example: I = D8 + - - - + D3y, so that D/I = C[x]. We just want to
integrate polynomials. This should be trivial, but GenGD is just the identity
map...

v/ Sometimes yes.
For example: computation of the generating series of the number of
8-regular graphs on k vertices.
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