CALICO:

parametric annihilators for loop integrals & special functions

Gaia Fontana (University of Zürich)

In collaboration with Giuseppe Bertolini & Tiziano Peraro

arXiv:2506.13653

Menu of the day

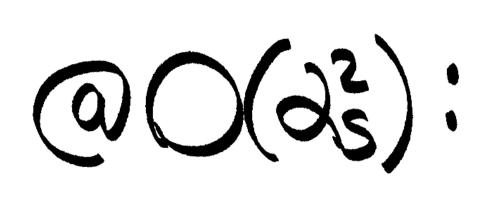
- Introduction & notation
- Parametric annihilators
 - How do we compute them?
- A similar technique for differential operators
- Applications
- Conclusions & outlook

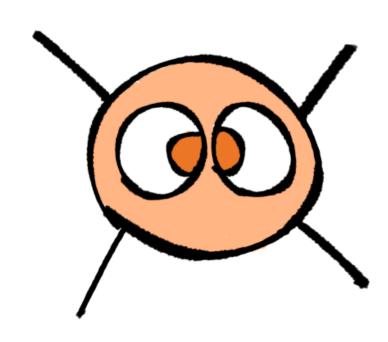
Introduction

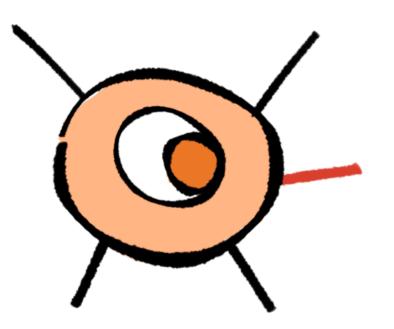
Precision era @ colliders

- Precision physics as
 - test of the Standard model
 - gate to new physics

- High-Lumi upgrade of LHC:
- theory and experiments must have comparable uncertainties
 - needed: %-level accuracy:
 - perturbation theory @ NNLO and often N3LO
 - diagrams with increasing no. of loops, legs & mass scales









Loop Integrals

- LEGO® blocks of perturbative QFT beyond tree level
- Key ingredient of phenomenological predictions
- Rich and interesting mathematical structures

Thousands of loop integrals appear when studying perturbative predictions!

- Crucial: Finding relations between them
- Loop integrals admit various integral representations with different tradeoffs and mathematical properties

This work

- Study & elaborate on the method of parametric annihilators for finding integral identities,
 - Focus on parametric representations of loop integrals
 - Extend applications to different representations
 - Similar technique for finding differential equations
- Provide an implementation of annihilators & differential operators based on modern linear solvers relying on cutting edge finite-fields techniques
- Implementation in the public Mathematica package: CALICO

Computing Annihilators from Linear Identities Constraining (differential) Operators

Some useful definitions

A list of variables:
$$\mathbf{z} = (z_1, ..., z_n)$$
A list of exponents: $\alpha = (\alpha_1, ..., \alpha_n)$

Monomials

$$\mathbf{z}^{\alpha} = \prod_j z_j^{\alpha_j} \quad |\alpha| = \sum_j \alpha_j$$

Monomials total degree

We are interested in integral families of the form

These include many parametrizations of loop integrals

$$I_{\alpha} = \int \mathrm{d}^n \mathbf{z} \, \boldsymbol{\varphi}_{\alpha}(\mathbf{z}) \, u(\mathbf{z})$$

Rational factors raised to integer powers

Assumption:

 $\varphi_{\alpha}(\mathbf{Z})$ closed under monomial multiplication & differentiation

Twist Multivalued
$$\begin{cases} u(\mathbf{z}) = \prod_{j} B_{j}(\mathbf{z})^{\gamma_{j}} \\ u(\mathbf{z}) = \exp F(\mathbf{z}) \prod_{j} B_{j}(\mathbf{z})^{\gamma_{j}} \end{cases}$$

What do we want to do?

- Finding and solving linear relations satisfied by integrals having the form of I_{lpha}
- Express integrals within a family as a linear combination of a set of independent master integrals (MIs)

$$I_{\alpha} = \sum_{\beta \in MIs} c_{\alpha\beta} I_{\beta}$$

Crucial ingredient are Integration-By-Parts identities (IBP):

$$\int d^n \mathbf{z} \, \partial_j \left(\varphi_\alpha(\mathbf{z}) \, u(\mathbf{z}) \right) = 0$$

(Regulated integrals vanish at the integration boundary)

$$\int d^n \mathbf{z} \, \partial_j \left(\varphi_\alpha(\mathbf{z}) \, u(\mathbf{z}) \right) = 0$$

By expanding the LHS of the IBP relation we get:

$$\int d^n \mathbf{z} \, \partial_j \Big(\varphi_\alpha(\mathbf{z}) \, u(\mathbf{z}) \Big) = \int d^n \mathbf{z} \, \left(\partial_j \varphi_\alpha(\mathbf{z}) \right) \, u(\mathbf{z}) + \int d^n \mathbf{z} \, \varphi_\alpha(\mathbf{z}) \, \left(\partial_j \log u(\mathbf{z}) \right) \, u(\mathbf{z})$$

We get:

- Non-trivial identities among the integrals
- $\partial_j \log u(\mathbf{z})$ usually creates terms that cannot be absorbed in $\varphi_{\alpha}(\mathbf{z})$

not a relation within the original integral family!

Parametric annihilators

Integral identities via parametric annihilators

Parametric annihilator of order o of u(z)

[Baikov (1996); Lee (2014); Bitoun, Bogner, Klausen, Panzer (2017)]

$$\hat{A} = c_0(\mathbf{z}) + \sum_j c_j(\mathbf{z}) \,\partial_j + \sum_{j_1 \leq j_2} c_{j_1 j_2}(\mathbf{z}) \,\partial_{j_1} \partial_{j_2}$$

$$+\cdots + \sum_{j_1 \leq \cdots \leq j_o} c_{j_1 \cdots j_o}(\mathbf{z}) \, \partial_{j_1} \cdots \partial_{j_o}$$

 $c_{j_1j_2}...(\mathbf{z})$ polynomials in \mathbf{z}

Such that

$$\hat{A} u(\mathbf{z}) = 0$$

$$\hat{A}u(\mathbf{z}) = 0$$

For any annihilator \hat{A} , we have infinitely many integral identities

$$\int d^n \mathbf{z} \, \varphi_\alpha(\mathbf{z}) \, \hat{A} \, u(\mathbf{z}) = 0, \ \forall \alpha$$

symbolic α

Using IBPs on derivatives, we get a template identity for symbolic α

$$\int u(\varphi_{\alpha}c_0) - \sum_{j} \int u(\partial_j c_j \varphi_{\alpha}) + \dots + (-1)^o \sum_{j_1 \leq \dots \leq j_o} \int u \,\partial_{j_1} \dots \partial_{j_o}(c_{j_1 \dots j_o} \varphi_{\alpha}) = 0$$

All the integrals belong to the family I_{α}

Laporta algorithm

[Chetyrkin, Tkachov (1981); Laporta (2000)]

$$\int u(\varphi_{\alpha}c_0) - \sum_{j} \int u(\partial_j c_j \varphi_{\alpha}) + \dots + (-1)^o \sum_{j_1 \leq \dots \leq j_o} \int u \,\partial_{j_1} \dots \partial_{j_o}(c_{j_1 \dots j_o} \varphi_{\alpha}) = 0$$

Seeding the template eq.s : replacing symbolic α with integer numbers

- ► Applying each template identity to a large number of seed integrals: obtain a linear system of equations
- Choice of an ordering: express complex integrals as a function of simple ones
- ► solving it: reduction to master integrals*

$$I_{\alpha} = \sum_{\beta \in \text{MIs}} c_{\alpha\beta} I_{\beta}$$

★ Additional relations may exist, such as symmetry relations

Computational bottleneck in state-of-the-art calculations

Properties of parametric annihilators

 \hat{A} is an annihilator $\Rightarrow \mathbf{z}^{\beta}\hat{A}$ and $\partial_{j}\hat{A}$ are annihilators

Set of annihilators of u(z) is a D-module

$$\int d^{n}\mathbf{z} \,\varphi_{\alpha}(\mathbf{z}) \left(\mathbf{z}^{\beta} \hat{A} \,u(\mathbf{z})\right) = \int d^{n}\mathbf{z} \left(\mathbf{z}^{\beta} \varphi_{\alpha}(\mathbf{z})\right) \hat{A} \,u(\mathbf{z})$$

$$\int d^{n}\mathbf{z} \,\varphi_{\alpha}(\mathbf{z}) \left(\partial_{j} \hat{A} \,u(\mathbf{z})\right) = -\int d^{n}\mathbf{z} \left(\partial_{j} \varphi_{\alpha}(\mathbf{z})\right) \hat{A} \,u(\mathbf{z})$$

 $\varphi_{\alpha}(\mathbf{z})$ closed under monomial multiplication & differentiation

interested in a minimal set of generators:

set of annihilators \hat{A} independent modulo linear combinations of $\mathbf{z}^{\beta}\hat{A}$ and $\partial_{i}\hat{A}$

Differential operators

Differential equations

[Barucchi, Ponzano (1973); Kotikov (1991); Bern, Dixon, Kosower (1994); Gehrmann, Remiddi (2000)]

- Integrals in the form of I_{α} also depend on additional free parameters x (e.g. kinematic invariants)
- Studying of analytic structure & their numerical or analytical evaluation
- Reducing the derivative of MIs with respect to x to MIs, write a system of differential equations satisfied by the MIs themselves

$$\partial_x I_\alpha = \sum_{\beta \in \text{MIs}} M_{\alpha\beta} I_\beta, \quad \text{for } \alpha \in \text{MIs}.$$

x free parameter of the integrals

Differential equations via differential operators

Derive an operator \hat{O}_x that realizes differentiation with respect to x

$$\hat{O}_x = c_0^{(x)}(\mathbf{z}) + \sum_j c_j^{(x)}(\mathbf{z}) \,\partial_j + \sum_{j_1 \le j_2} c_{j_1 j_2}^{(x)}(\mathbf{z}) \,\partial_{j_1} \partial_{j_2}$$

$$+ \dots + \sum_{j_1 \le \dots \le j_o} c_{j_1 \dots j_o}^{(x)}(\mathbf{z}) \,\partial_{j_1} \dots \partial_{j_o}$$

 $C_{i_1 i_2 \dots}^{(x)}$ polynomials

Such that
$$\hat{O}_{\chi} u(\mathbf{Z}) = \partial_{\chi} u(\mathbf{Z})$$

Differential equations via differential operators

Explicitly, integrating by parts all derivatives in \hat{O}_{χ}

$$\partial_x I_{\alpha} = \int (\hat{O}_x u) \, \varphi_{\alpha} + \int u \, (\partial_x \varphi_{\alpha})$$

$$= \int u \, (\varphi_{\alpha} c_0^{(x)}) - \sum_j \int u \, (\partial_j c_j^{(x)} \varphi_{\alpha}) + \cdots$$

$$+ (-1)^o \sum_{j_1 \le \dots \le j_o} \int u \, \partial_{j_1} \dots \partial_{j_o} (c_{j_1 \dots j_o}^{(x)} \varphi_{\alpha}) + \int u \, (\partial_x \varphi_{\alpha})$$

- Our preferred way to compute derivatives
 - Alternatively: recurrence relations

How to compute parametric annihilators

Computing annihilators via linear constraints

- Computing parametric annihilators up to a certain order and polynomial degree
- implemented in the CALICO package

Step 1: From annihilators to syzygies

$$\mathbf{f}(\mathbf{z}) \cdot \mathbf{g}(\mathbf{z}) = 0$$
 Syzygy equation

known polynomials

$$\mathbf{f}(\mathbf{z}) = \{f_1(\mathbf{z}), \dots, f_n(\mathbf{z})\}$$

unknown polynomials

$$\mathbf{g}(\mathbf{z}) = \{g_1(\mathbf{z}), \dots, g_n(\mathbf{z})\}$$

Syzygy sol.s form a module:

$$\mathbf{g}^{(k)}(\mathbf{z})$$
 set of solutions $\Rightarrow \mathbf{g}(\mathbf{z}) = \sum_k p_j(\mathbf{z})\mathbf{g}^{(k)}(\mathbf{z})$ is also a solution $p_j(\mathbf{z})$ arbitrary polynomials

Start from
$$\hat{A}u(\mathbf{z}) = 0 \Rightarrow \begin{cases} \text{Identify } c_{j_1, \dots, j_k}(\mathbf{z}) \text{ as the unknown} \\ \text{polynomials } \mathbf{g}(\mathbf{z}) \text{ of a syzygy } \mathbf{f}(\mathbf{z}) \cdot \mathbf{g}(\mathbf{z}) = 0 \end{cases}$$

$$\frac{1}{u(\mathbf{z})} \hat{A} u(\mathbf{z}) = 0$$

- Insert the expression for $\hat{A} = c_0(\mathbf{z}) + \sum c_j(\mathbf{z}) \partial_j + \dots$
- Collect LHS under a common denominator
- Imposing vanishing of the numerator \Rightarrow obtain a syzygy equation for $c_{j_1,\dots,j_k}(\mathbf{z})$

• Example : first-order annihilator

$$\hat{A} = c_0(\mathbf{z}) + \sum_j c_j(\mathbf{z}) \,\partial_j \qquad u(\mathbf{z}) = \prod_j B_j(\mathbf{z})^{\gamma_j}$$

$$c_0(\mathbf{z}) \prod_k B_k(\mathbf{z}) + \sum_{j=1}^n c_j(\mathbf{z}) \sum_k \gamma_k \left(\partial_j B_k(\mathbf{z})\right) \prod_{l \neq k} B_l(\mathbf{z}) = 0$$

Form of a syzygy equation

$$\mathbf{f}(\mathbf{z}) \cdot \mathbf{g}(\mathbf{z}) = 0$$

Step 2: Solving syzygy equations via linear constraints

[Schabinger (2015)]

Ansatz for the solution

$$\mathbf{g}(\mathbf{z}) = \sum_{j} \sum_{\alpha} c_{j\alpha} \, \mathbf{z}^{\alpha} \, \hat{e}_{j}$$

 $|\alpha| \le d$ for some max degree d

 \hat{e}_{i} unit vector in the j-th direction

- Plug it into $f(z) \cdot g(z) = 0$
- Impose coeff.s of each monomial z vanish

$$\Rightarrow$$
 Linear system for $c_{j\alpha}$

CALICO uses the efficient linear solver of FiniteFlow, based on finite-field methods

Applications

Hypergeometric $_2F_1$

$$I_{\alpha} = \int_{0}^{1} dz \, \varphi_{\alpha}(z) \, u(z)$$

$$\varphi_{\alpha}(z) = z^{\alpha}, \qquad u(z) = z^{b_{2}-1} \, (1-z)^{b_{3}-b_{2}-1} \, (1-xz)^{-b_{1}}$$

$$I_{\alpha} = \frac{\Gamma(b_2 + \alpha)\Gamma(b_3 - b_2)}{\Gamma(b_3 + \alpha)} {}_{2}F_{1}(b_1, b_2 + \alpha, b_3 + \alpha; x)$$

1. 1 first-order annihilator \rightarrow reduction to 2 MIs

$$\{I_0, I_1\}$$

2. First-order differential operator

$$\partial_x \begin{pmatrix} I_1 \\ I_0 \end{pmatrix} = \begin{pmatrix} \frac{b_1 x - b_3}{(1 - x) x} & \frac{b_2}{(1 - x) x} \\ \frac{b_1 - b_3}{1 - x} & \frac{b_2}{1 - x} \end{pmatrix} \cdot \begin{pmatrix} I_1 \\ I_0 \end{pmatrix}$$

Generalised to Hypergeometric $_{n+1}F_n$

Loop integrals

Momentum-space representation

$$J_{\alpha} = J_{\alpha_{1} \dots \alpha_{n}} = \int \prod_{i=1}^{\ell} \frac{\mathrm{d}^{d} k_{i}}{i \pi^{d/2}} \frac{1}{D_{1}^{\alpha_{1}} \dots D_{n}^{\alpha_{n}}}$$

 $D_i s$ are generalised denominators

- Proper denominators: D_i such that $\alpha_i > 0$
- Irreducible scalar products (ISPs): D_i such that $\alpha_i \leq 0$

$$D_{F,j} = l_j \cdot v_j - m_j^2$$

$$D_{F,j} = l_j^2 - m_j^2$$

$$D_{F,j} = l_j^2 - m_j^2$$

 l_i linear combination of k_i , v_i linear combination of p_i

IBPs in momentum space

[Tkachov (1981), Chetyrkin, Tkachov (1981)]

$$\int \prod_{i=1}^{\ell} \frac{\mathrm{d}^d k_i}{i\pi^{d/2}} \frac{\partial}{\partial k_j^{\mu}} \frac{v^{\mu}}{D_1^{\alpha_1} \dots D_n^{\alpha_n}} = 0, \quad \text{with } v^{\mu} = k_i^{\mu}, p_i^{\mu}$$

Parametric representations of loop integrals

Baikov

$$I_{\alpha} = \int \mathrm{d}^n \mathbf{z} \, \frac{1}{\mathbf{z}^{\alpha}} \, B(\mathbf{z})^{\gamma}$$

Also Loop-by-Loop Baikov & Duals of loop integrals

Lee-Pomeransky

$$I_{\alpha} = \int d^{n}\mathbf{z} \left(\prod_{j=1}^{n} \frac{1}{\Gamma(\alpha_{j})} \right) \mathbf{z}^{\alpha-1} G(\mathbf{z})^{-d/2}$$

$$G(\mathbf{z}) = \mathcal{U}(\mathbf{z}) + \mathcal{F}(\mathbf{z})$$

Schwinger
$$I_{\alpha} = \int \mathrm{d}^{n}\mathbf{z} \left(\prod_{j=1}^{n} \frac{1}{\Gamma(\alpha_{j})}\right) \mathbf{z}^{\alpha-1} \exp\left[-\mathcal{F}(\mathbf{z})/\mathcal{U}(\mathbf{z})\right] \mathcal{U}(\mathbf{z})^{-d/2}$$

Baikov representation

Baikov

$$I_{lpha} = \int \mathrm{d}^n \mathbf{z} \, oldsymbol{arphi}_{lpha}(\mathbf{z}) \, u(\mathbf{z})$$
Reminder

$$I_{\alpha} = \int \mathrm{d}^n \mathbf{z} \, \frac{1}{\mathbf{z}^{\alpha}} B(\mathbf{z})^{\gamma}$$

Loop-By-Loop Baikov

$$I_{\alpha} = \int d^{n}\mathbf{z} \frac{1}{\mathbf{z}^{\alpha}} \begin{bmatrix} 2\ell-1 \\ \prod_{j=1}^{2\ell-1} B_{j}(\mathbf{z})^{\gamma_{j}} \\ j=1 \end{bmatrix}$$

Change of integration vars from loop momenta to generalised denominators

- Require a full set of ISPs
- $\deg B = \min(\ell + e, 2\ell)$
- Less variables in LBL (Baikov change of var.s is done one loop at a time)

Intersection theory in a nutshell

[Mastrolia, Mizera (2019)] [Brunello, Cacciatori, Caron-Huot, Chestnov, Crisanti, Duhr, Frellesvig, GF, Gasparotto, Giroux, Laporta, Maggio, Mandal, Mastrolia, Matsubara-Heo, Mattiazzi, Mizera, Munch, Peraro, Pokraka, Porkert, Semper, Smith, Sohnle, Stavinski, Takayama (2019 - Ongoing)]

Introduction of a scalar product, intersection number, between

• Integrals I_{α}

$$I_{\alpha} = \int \mathrm{d}^n \mathbf{z} \, \frac{1}{\mathbf{z}^{\alpha}} \, B(\mathbf{z})^{\gamma}$$

• Dual integrals I_{α}^{\star}

$$I_{\alpha}^{\star} = \int \mathrm{d}^{n} \mathbf{z} \, \frac{1}{\mathbf{z}^{\alpha}} \, B(\mathbf{z})^{-\gamma}$$

Calculation of intersection numbers →

standard procedure: recursive algorithm in the integration var.s

- Focus on dual integrals
 - Linear relations
 - Differential equations

(necessary step in the intersection numbers calculation)

Dual integrals & regulators

$$I_{\alpha}^{\star} = \int \mathrm{d}^{n} \mathbf{z} \, \frac{1}{\mathbf{z}^{\alpha}} B(\mathbf{z})^{-\gamma}$$

•
$$(z_1, ..., z_m)$$
 proper denominators
$$\left. \begin{array}{l} \alpha_j \leq 0 \text{ for } j > m \\ \vdots \\ (z_{m+1}, ..., z_n) \text{ ISPs} \end{array} \right.$$

•
$$(z_{m+1},...,z_n)$$
 ISPs

$$\alpha_j \leq 0 \text{ for } j > m$$

Problem: need of additional regulators $\frac{1}{z_i^{\alpha_j}} \to \frac{1}{z_i^{\alpha_j - \rho_j}}$ for $j \le m$

[GF, Peraro (2023)]
$$I_{\alpha}^{\star} = \prod_{j=1}^{m} \rho_{j}^{\Theta(\alpha_{j}-1/2)} \int \mathrm{d}^{n}\mathbf{z} \frac{1}{\mathbf{z}^{\alpha-\rho}} B(\mathbf{z})^{-\gamma}$$

work on the leading coefficients $\rho_i \rightarrow 0$

$$\varphi_{\alpha}(\mathbf{Z})$$

$$u(\mathbf{Z})$$

Reduction of dual integrals

- Method of annihilator can be applied straightforwardly (Baikov, LBL Baikov)
- Tmp ids require the knowledge of $\varphi_{\alpha}(\mathbf{z})$ under

Multiplication by monomials
$$z_j^{\beta_j} \varphi_{\alpha}(\mathbf{z}) = \begin{cases} \varphi_{\alpha - \beta_j \hat{e}_j}(\mathbf{z}) & \text{if } \alpha_j > \beta_j \text{ or } \alpha_j \leq 0 \\ 0 & \text{if } 0 < \alpha_j \leq \beta_j. \end{cases}$$

Differentiation

$$\partial_{j} \varphi_{\alpha}(\mathbf{z}) = \begin{cases} -(\alpha_{j} - \delta_{\alpha_{j}0}) \varphi_{\alpha + \hat{e}_{j}}(\mathbf{z}) & \text{if } j \leq m \\ -\alpha_{j} \varphi_{\alpha + \hat{e}_{j}}(\mathbf{z}) & \text{if } j > m. \end{cases}$$

- Approach tested for both
 - Reduction of dual integrals
 - Computation of DEQ satisfied by dual integrals in fewer variables
- Successful comparison on all examples of [GF, Peraro (2023)]

Lee-Pomeransky and Schwinger rep.s

Lee-Pomeransky

$$I_{\alpha} = \int d^{n}\mathbf{z} \left(\prod_{j=1}^{n} \frac{1}{\Gamma(\alpha_{j})} \right) \mathbf{z}^{\alpha-1} G(\mathbf{z})^{-d/2}$$

$$G(\mathbf{z}) = \mathcal{U}(\mathbf{z}) + \mathcal{F}(\mathbf{z})$$

Schwinger

$$I_{\alpha} = \int d^{n}\mathbf{z} \left(\prod_{j=1}^{n} \frac{1}{\Gamma(\alpha_{j})} \right) \mathbf{z}^{\alpha-1} \exp \left[-\mathcal{F}(\mathbf{z}) / \mathcal{U}(\mathbf{z}) \right] \mathcal{U}(\mathbf{z})^{-d/2}$$

- *n* integration variables (# number of proper denominators)
- no need of introducing ISPs (can be added if required)
- $\deg G = \ell + 1$ at ℓ loops

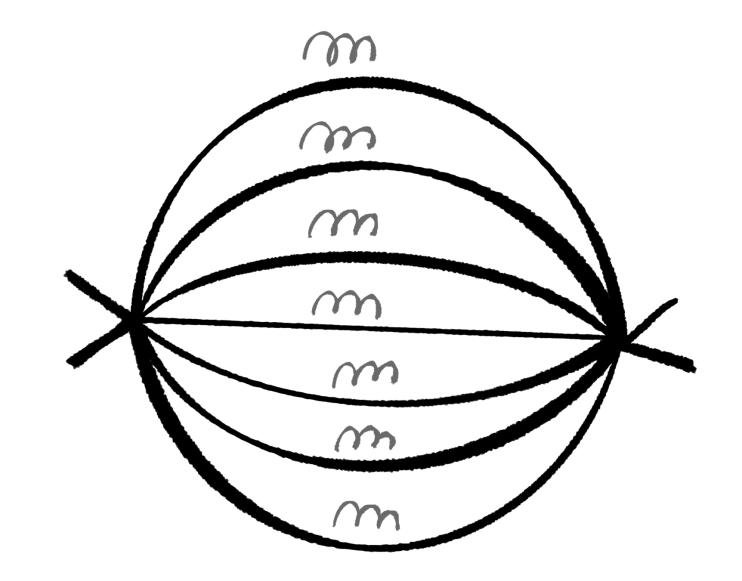
- twist includes exp. factor
- empirically:
 - annihilators have lower degree
 - More frequent use of 2nd order ann.
 - tmp id.s often fewer and simpler

L loop bananas

 ℓ -loop & one internal mass m, defined by the set of $\ell+1$ proper denominators:

$$D_{j} = k_{j}^{2} - m^{2} \quad \text{for } j = 1, ..., \ell$$

$$D_{\ell+1} = (k_{1} + \cdots + k_{\ell} - p)^{2} - m^{2}$$



Momentum space has $(\ell + 2)(\ell - 1)/2$ ISPs \rightarrow for $\ell = 6$, it has 20 ISPs

Use Lee-Pomeranski or Schwinger representation to

- Reduce to MIs
- Derive DEQs

Without the need of additional ISPs!

Done in a couple of minutes on a laptop up to 6 loops (mostly spent computing annihilators and template eqs)

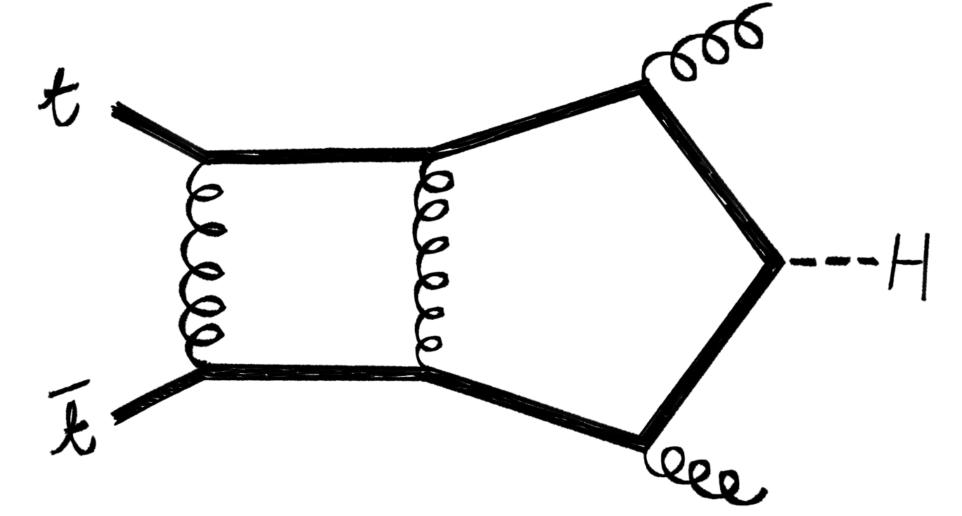
Family for $t\bar{t}H$ production

Cutting-edge example

- Many different scales
- Many external legs

- Schwinger (More efficient!)
- Lee-Pomeranski

Tested: numerical reduction on a laptop with up to 3 extra powers of denominators



Finding relations between integrals with constant numerator and higher powers of proper denominators

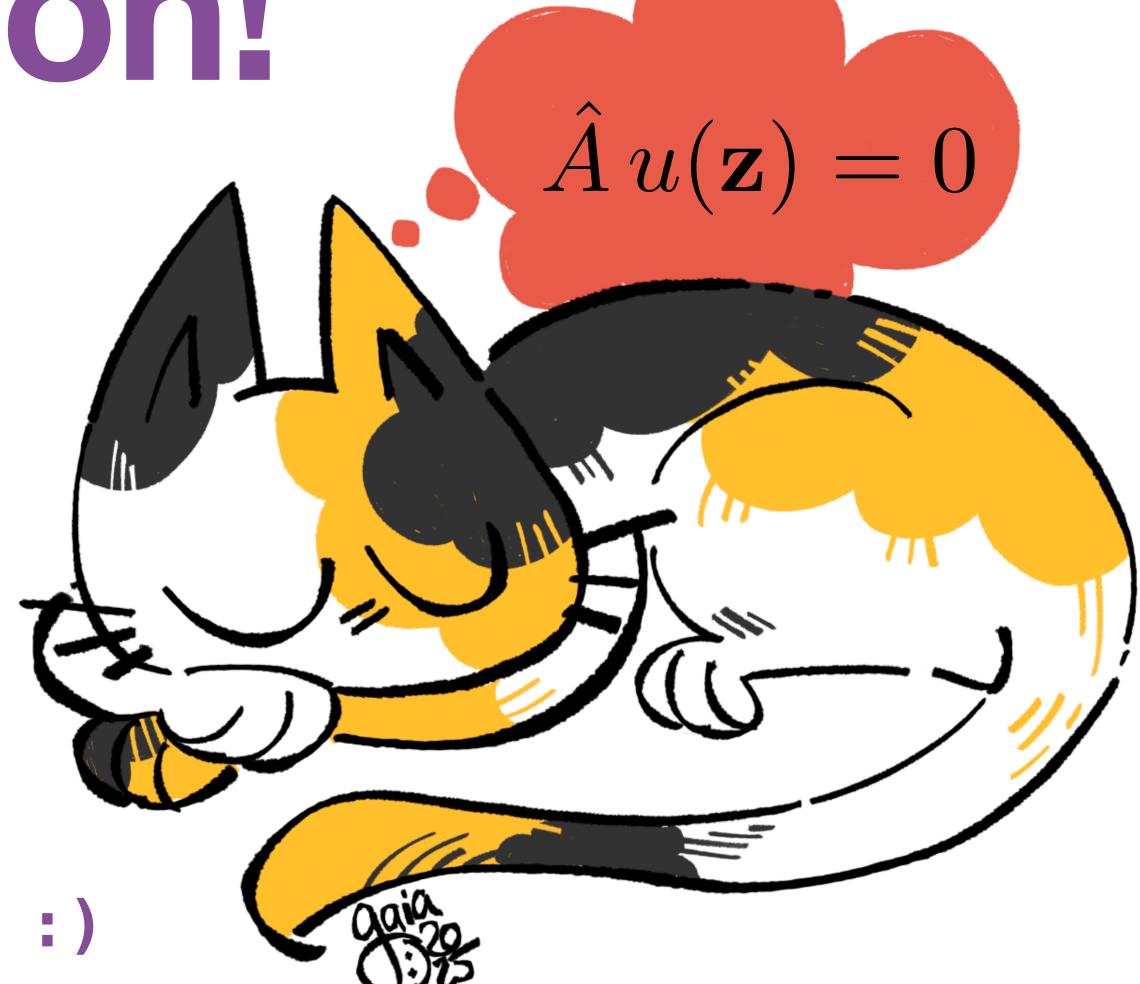
Useful for finding integrals with good properties

- Quasi-finite [von Manteuffel, Panzer, Schabinger (2014)]
- Pure functional form [Henn (2013)]

Conclusions & Outlook

- Parametric annihilators are a useful tool for finding linear relations between integrals
- Allow to use integral parametrizations tailored to specific problems
 - New applications to LBL Baikov, duals of loop integrals, Schwinger parametrisation
- Introduced similar technique for deriving differential equations
- Implementation will be released in the public package CALICO
- ★Bonus: can also solve syzygy equations and polynomial decomposition problems

Thank you for your attention!



Backup

L loop bananas — CALICO code snippet

This example computes differential equations (DEs) for the L-loop equal mass banana integral family, using the Schwinger representation.

In[1]:= <<CALICO`</pre>

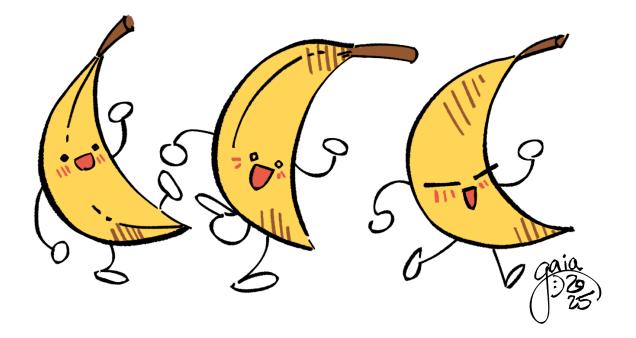
All public symbols exported by the package are prefixed by CAT ("Computing AnnihilaTors")

Set up of the integral family

```
You can set the number of loops here. The example has been tested up to L=6.
ln[2]:= L=4
Out[2]=4
      Define loop denominators and the twist:
In[3]:= loopmoms = k/@Range[L];
      dens = Join[ Table[{loopmoms[ii],m2},{ii,1,L}], {{Sum[loopmoms[ii],{ii,1,L}]-p,m2}} ]
Out[4] = \{\{k[1], m2\}, \{k[2], m2\}, \{k[3], m2\}, \{k[4], m2\}, \{-p+k[1]+k[2]+k[3]+k[4], m2\}\}\}
ln[5]:= \{u,f,g,zs\} = CATUFGPolys[
        dens,
        k/@Range[L],
       \{p^{\wedge}2 \rightarrow s\},
```

Twist output: uses symbolic polynomials, whose analytic expression is substituted at a later stage

full analytic expression can also be used instead



```
In[28]:= (* computing first-order annihilators*)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Returns the polynomials c_{i_1i_2...}(\mathbf{z})
                                   41 maxdegree = L+1;
                                   42 maxorder = 1;
                                     ann = CATAnnihilator[twist,zs,maxdegree,maxorder]
Out[30]= \{\{\{\}, \{\}, \{\}, \{\{dz[4] + 2m2z[4]^2 - dz[5] - 2m2z[5]^2, 0, 0, 0, 0, 2z[4]^2, -2z[5]^2\},
                                                                                                                               \{dz[3] + 2m2z[3]^2 - dz[5] - 2m2z[5]^2, 0, 0, 2z[3]^2, 0, -2z[5]^2\},
                                                                                                                              \{dz[2] + 2m2z[2]^2 - dz[5] - 2m2z[5]^2, 0, 2z[2]^2, 0, 0, -2z[5]^2\},
                                                                                                                             \{dz[1] + 2m2z[1]^2 - dz[5] - 2m2z[5]^2, 2z[1]^2, 0, 0, 0, -2z[5]^2\}\}, \{\},
                                                                                                         \left\{ \left\{ d\,z\,[\,2\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,4\,]\,+\,2\,\,m\,2\,\,z\,[\,1\,]\,\times\,z\,[\,2\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,4\,]\,+\,2\,\,d\,\,z\,[\,2\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,5\,]\,+\,2\,\,d\,\,z\,[\,2\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,5\,]\,+\,2\,\,d\,\,z\,[\,2\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,z\,[\,3\,]\,\times\,
                                                                                                                                                2\ m2\ z[1] \times z[2] \times z[3] \times z[5] + 2\ d\ z[2] \times z[4] \times z[5] + 2\ m2\ z[1] \times z[2] \times z[4] \times z[5] + 2\ m2\ z[1] \times z[2] \times z[4] \times z[5] + 2\ m2\ z[1] \times z[2] \times z[2] \times z[4] \times z[5] + 2\ m2\ z[2] \times z[2] \times z[4] \times z[5] + 2\ m2\ z[2] \times z[4] \times z[5] + 2\ m2\ z[4] \times z[5] \times z[5] \times z[5] + 2\ m2\ z[5] \times z[5] \times z[5] \times z[5] + 2\ m2\ z[5] \times z[5] \times z[5] \times z[5] + 2\ m2\ z[5] \times z[5] \times z[5] \times z[5] + 2\ m2\ z[5] \times z
                                                                                                                                                2\ d\ z[3] \times z[4] \times z[5] + 2\ m2\ z[1] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[2] \times z[3] \times z[4] \times z[5] + (5\ m2-s)\ z[3] \times z[4] \times z[4] \times z[5] + (5\ m2-s)\ z[4] \times z[4]
                                                                                                                                                dz[2]z[5]^2 + dz[3]z[5]^2 + 2m2z[2] \times z[3]z[5]^2 + dz[4]z[5]^2 + 2m2z[2] \times z[4]z[5]^2 +
                                                                                                                                                2 \text{ m2 } z[3] \times z[4] z[5]^2 + 2 \text{ m2 } z[2] z[5]^3 + 2 \text{ m2 } z[3] z[5]^3 + 2 \text{ m2 } z[4] z[5]^3
                                                                                                                                   2z[1] \times z[2] \times z[3] \times z[4] + 2z[1] \times z[2] \times z[3] \times z[5] + 2z[1] \times z[2] \times z[4] \times z[5] + 2z[1] \times z[2] \times z[3] \times z[4] \times z[5] + 2z[1] \times z[2] \times z[3] \times z[4] \times z[5] + 2z[1] \times z[5] \times z[5] + 2z[1] \times z[2] \times z[4] \times z[5] + 2z[1] \times z[5] \times z[5] + 2z[1
                                                                                                                                                2z[1] \times z[3] \times z[4] \times z[5] + z[2] \times z[3] \times z[4] \times z[5]
                                                                                                                                   z[2] \times z[3] \times z[4] \times z[5], z[2] \times z[3] \times z[4] \times z[5], z[2] \times z[3] \times z[4] \times z[5], etc, etc, . .
          In[13]:= (*degree → number of first order annihilators*)
                                                                                Table [ deg \rightarrow Length[ann[1,deg+1]], \{deg,0,Length[ann[1]]-1\}]
```

Out[13]= $\{0 \to 0, 1 \to 0, 2 \to 4, 3 \to 0, 4 \to 5, 5 \to 0\}$

```
In[31]:= (*check at order 2*)
               maxdegree = 2;
               52 maxorder = 2;
               ann2 = CATAnnihilator[twist,zs,maxdegree,maxorder,"MinOrder"→2,"KnownSolutions"→ann]
Out[33]= \{\{\}, \{\}, \{\}, \{\}, \{\}, \{2(-4d+5d^2)+4(-m2+2dm2)z[1]+
                                                            4 (-m2 + 2 d m2) z[2] + 4 m2^{2} z[1] \times z[2] + 4 (-m2 + 2 d m2) z[3] +
                                                            4 \text{ m2}^2 \text{ z} [1] \times \text{z} [3] + 4 \text{ m2}^2 \text{ z} [2] \times \text{z} [3] + 4 (-\text{m2} + 2 \text{ d m2}) \text{ z} [4] + 4 \text{ m2}^2 \text{ z} [1] \times \text{z} [4] +
                                                            4 \text{ m2}^2 \text{ z}[2] \times \text{z}[4] + 4 \text{ m2}^2 \text{ z}[3] \times \text{z}[4] + (13 \text{ d m2} - \text{d s}) \text{ z}[5] + 4 \text{ m2}^2 \text{ z}[1] \times \text{z}[5] +
                                                            4 \text{ m2}^2 \text{ z}[2] \times \text{z}[5] + 4 \text{ m2}^2 \text{ z}[3] \times \text{z}[5] + 4 \text{ m2}^2 \text{ z}[4] \times \text{z}[5] + 2 (5 \text{ m2}^2 - \text{m2 s}) \text{ z}[5]^2,
                                                      4 \; (-1 + 2 \; d) \; z \; [1] \; + \; 4 \; m \; 2 \; z \; [1] \; \times \; z \; [2] \; + \; 4 \; m \; 2 \; z \; [1] \; \times \; z \; [3] \; + \; 4 \; m \; 2 \; z \; [1] \; \times \; z \; [4] \; + \; z
                                                             dz[5] + 4 m2 z[1] \times z[5] + 2 m2 z[5]^2, 4 (-1 + 2 d) z[2] + 4 m2 z[1] \times z[2] +
                                                            4 \text{ m2 } z[2] \times z[3] + 4 \text{ m2 } z[2] \times z[4] + dz[5] + 4 \text{ m2 } z[2] \times z[5] + 2 \text{ m2 } z[5]^2, etc, etc,
```

Merging the two solutions

```
In[23]:= (*combine all*)
ann = CATAnnihilatorMerge[ann,ann2];

In[24]:= (*degree → number of second order annihilators*)
Table[ deg → Length[ann[2,deg+1]], {deg,0,Length[ann[2]]-1}]

Out[24]= {0 → 0, 1 → 0, 2 → 1}
```

Template equations

```
In[27]:= tmpeq = CATSchwingerIdsFromAnnihilators["family",ann,zs]
                           \{2 \text{ m2 CATInt}[family, \{\pm 1, \pm 2, \pm 3, 2 + \pm 4, \pm 5\}] \pm 4 (1 + \pm 4) + 4\}
                                        CATInt[family, \{\pm 1, \pm 2, \pm 3, 1 + \pm 4, \pm 5\}] \pm 4 (2 - d + 2 \pm 4) -
                                       2 m2 CATInt[family, {\pm1, \pm2, \pm3, \pm4, 2 + \pm5}] \pm5 (1 + \pm5) -
                                       CATInt[family, \{\pm 1, \pm 2, \pm 3, \pm 4, 1 + \pm 5\}] \pm 5 (2 - d + 2 \pm 5),
                                    2 m2 CATInt[family, \{ \pm 1, \pm 2, 2 + \pm 3, \pm 4, \pm 5 \} ] \pm 3 (1 + \pm 3) + 2 = 2 \pm 3 = 
                                        CATInt[family, \{\pm 1, \pm 2, 1 + \pm 3, \pm 4, \pm 5\}] \pm 3 (2 - d + 2 \pm 3) - 4
                                       2 m2 CATInt[family, {\pm1, \pm2, \pm3, \pm4, 2 + \pm5}] \pm5 (1 + \pm5) -
                                       CATInt[family, \{\pm 1, \pm 2, \pm 3, \pm 4, 1 + \pm 5\}] \pm 5 (2 - d + 2 \pm 5),
                                    2 m2 CATInt[family, \{\pm 1, 2 + \pm 2, \pm 3, \pm 4, \pm 5\}] \pm 2 (1 + \pm 2) + 2 (1 + \pm 2)
                                       CATInt[family, \{\pm 1, 1 + \pm 2, \pm 3, \pm 4, \pm 5\}] \pm 2 (2 - d + 2 \pm 2) - 4 = 2 \pm 2
                                       2 m2 CATInt[family, \{\pm 1, \pm 2, \pm 3, \pm 4, 2 + \pm 5\}] \pm 5 (1 + \pm 5) –
                                       CATInt[family, \{\pm 1, \pm 2, \pm 3, \pm 4, 1 + \pm 5\}] \pm 5 (2 - d + 2 \pm 5),
                                    CATInt[family, \{1 + \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}] \pm 1 (2 - d + 2 \pm 1) - 4
                                        2 m2 CATInt[family, {\pm1, \pm2, \pm3, \pm4, 2 + \pm5}] \pm5 (1 + \pm5) -
                                        CATInt[family, {\pm1, \pm2, \pm3, \pm4, 1 + \pm5}] \pm5 (2 - d + 2 \pm5), etc, etc, ____//
```

Here we use FiniteFlow to solve the system, following section 6.1 of https://arxiv.org/pdf/1905.08019.

This example is simple enough that we can also easily find reduction tables with

FFSparseSolve[Thread[eqs==0],ints,"NeededVars"->neededints]

but the overall strategy below is generally more efficient, especially in more complex cases.

```
FiniteFlow to solve the
In[33]:= FFNewGraph["g","in",params]
                                                                        tmp eq.s & derive DEQ
Out[33]= True
In[34]:= FFAlgSparseSolver["g","ibps",{"in"},params,Thread[eqs==0],ints,
      "NeededVars"→neededints]
Out[34]= True
In[35]:= FFSolverOnlyHomogeneous["g","ibps"]
In[36]:= FFGraphOutput["g","ibps"]
In[37]:= ibplearn = FFSparseSolverLearn["g",ints];
      The independent unknowns of the system are the master integrals (MIs)
In[38]:= mis = "IndepVars"/.ibplearn
                                          Master integrals
Out[38]= {CATInt[family, {2, 2, 2, 1, 1}],
       CATInt[family, {2, 2, 1, 1, 1}], CATInt[family, {2, 1, 1, 1, 1}],
       CATInt[family, {1, 1, 1, 1, 1}], CATInt[family, {1, 1, 1, 0}]}
```

Differential equations via recurrence relations

$$\partial_x I_{\alpha} = \int d^n \mathbf{z} \left(\partial_x \varphi_{\alpha}(\mathbf{z}) \right) B(\mathbf{z})^{\gamma} + \gamma \int d^n \mathbf{z} \, \varphi_{\alpha}(\mathbf{z}) \left(\partial_x B(\mathbf{z}) \right) B(\mathbf{z})^{\gamma - 1}$$

$$\in {\bf family} \ I_\alpha = \int \varphi_\alpha \, B^\gamma$$

$$\in \text{family } I_{\alpha} = \begin{bmatrix} \varphi_{\alpha} \, B^{\gamma} \\ & \in \text{shifted integral family } I_{\alpha} = \end{bmatrix} \varphi_{\alpha} \, B^{\gamma-1}$$

- Need to derive a recurrence relation to shift $\gamma-1\to\gamma$
- Easy shift: $\gamma \rightarrow \gamma + 1$

$$I_{\alpha}^{(\gamma+1)} = \int \mathrm{d}^n \mathbf{z} \left(B(\mathbf{z}) \varphi_{\alpha}(\mathbf{z}) \right) B(\mathbf{z})^{\gamma}$$

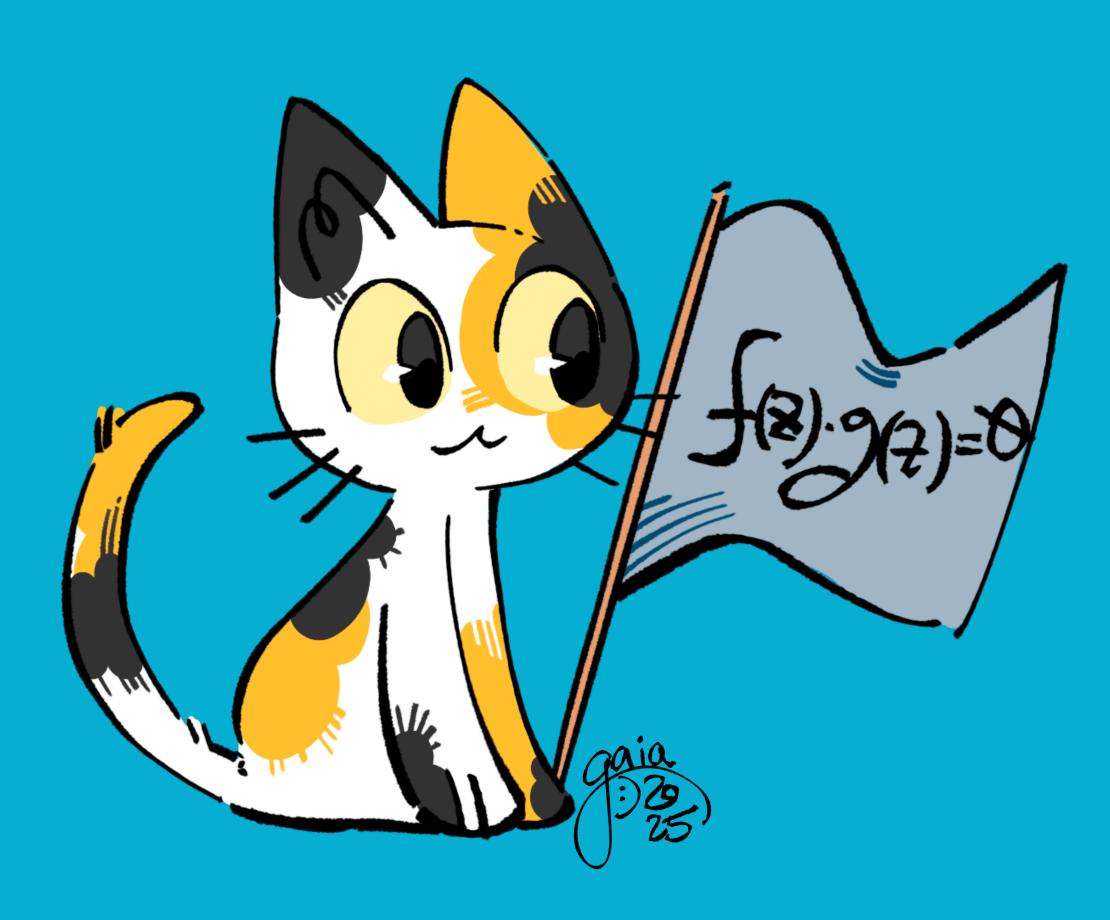
$$I_{\alpha}^{(\gamma+1)} = \int d^{n}\mathbf{z} \left(B(\mathbf{z})\varphi_{\alpha}(\mathbf{z})\right) B(\mathbf{z})^{\gamma} \qquad I_{\alpha}^{(\gamma+1)} = \sum_{\beta \in MIs} R_{\alpha\beta}^{(+)}(\gamma) I_{\beta}, \ \alpha \in MIs$$

Shift back $\gamma \rightarrow \gamma - 1$

$$I_{\alpha}^{(\gamma-1)} = \sum_{\beta \in \text{MIs}} R_{\alpha\beta}^{(-)}(\gamma) I_{\beta}, \ \alpha \in \text{MIs}$$

$$R_{\alpha\beta}^{(-)}(\gamma) = \left[R^{(+)}(\gamma - 1) \right]_{\alpha\beta}^{-1}$$

Annihilators & syzygy



Syzygy-based approach

• Example:
$$u(\mathbf{z}) = B(\mathbf{z})^{\gamma}$$

• IBP: $0 = \sum_{j=1}^{n} \int \mathrm{d}^{n}\mathbf{z} \, \partial_{j} \left(a_{j}(\mathbf{z}) \varphi_{\alpha}(\mathbf{z}) B(\mathbf{z})^{\gamma} \right)$

Does not belong to the family I_{lpha}

$$= \int d^n \mathbf{z} \left[B(\mathbf{z})^{\gamma} \sum_{j=1}^n \partial_j \left(\varphi_{\alpha}(\mathbf{z}) a_j(\mathbf{z}) \right) + B(\mathbf{z})^{\gamma} \varphi_{\alpha}(\mathbf{z}) \left(\gamma \frac{1}{B(\mathbf{z})} \sum_{j=1}^n a_j(\mathbf{z}) \partial_j B(\mathbf{z}) \right) \right]$$

Choosing

$$\sum_{j=1}^{n} a_j(\mathbf{z}) \partial_j B(\mathbf{z}) = b(\mathbf{z}) \, B(\mathbf{z})$$
 Syzygy equation to determine $a_j(\mathbf{z}), b(\mathbf{z})$

determine $a_i(\mathbf{z}), b(\mathbf{z})$

• Solution
$$a^*(\mathbf{z}), b^*(\mathbf{z})$$

$$\int d^n \mathbf{z} B(\mathbf{z})^{\gamma} \left[\sum_{j=1}^n \partial_j \left(\varphi_{\alpha}(\mathbf{z}) a_j^*(\mathbf{z}) \right) + \gamma \varphi_{\alpha}(\mathbf{z}) b^*(\mathbf{z}) \right] = 0$$

[Larsen, Zhang (2017); Sameshima (2019)]

First-order annihilator approach

[Bertolini (2024)]

First-order annihilator

$$\hat{A} = c_0(\mathbf{z}) + \sum_j c_j(\mathbf{z})\partial_j$$

Considering

$$B(\mathbf{z})^{1-\gamma} \hat{A}u(\mathbf{z}) = 0$$

• Condition on the $c_i(\mathbf{z})$ s

$$c_0(\mathbf{z}) B(\mathbf{z}) + \gamma \sum_{j=1}^n c_j(\mathbf{z}) \partial_j B(\mathbf{z}) = 0$$

same as

$$\sum_{j=1}^{n} a_j(\mathbf{z}) \partial_j B(\mathbf{z}) = b(\mathbf{z}) B(\mathbf{z})$$

choosing

$$b(\mathbf{z}) = -c_0(\mathbf{z}), \ a_j(\mathbf{z}) = \gamma c_j(\mathbf{z})$$

Drawing connections

By inserting

$$b(\mathbf{z}) = -c_0(\mathbf{z}), \ a_j(\mathbf{z}) = \gamma c_j(\mathbf{z})$$

$$\inf \int d^n \mathbf{z} B(\mathbf{z})^{\gamma} \left[\sum_{j=1}^n \partial_j \left(\varphi_{\alpha}(\mathbf{z}) a_j^{\star}(\mathbf{z}) \right) + \gamma \varphi_{\alpha}(\mathbf{z}) b^{\star}(\mathbf{z}) \right] = 0$$

We get same id.s as
$$\int u\left(\varphi_{\alpha}c_{0}\right)-\sum_{j}\int u\left(\partial_{j}c_{j}\varphi_{\alpha}\right)=0$$

sygyzy method yields the same integral identities as firstorder annihilators

- More syzgy equations can be used to constrain the form of the identities that are generated [Gluza, Kajda, Kosower (2010); Ita (2015); Larsen, Zhang (2015); Wu, Bohem, Ma, Xu, Zhang (2023)]. Additional constraints can be applied to both the solutions of syzygy and annihilators of any order o
- Annihilator method generalizes the one based on syzygy eq.s
 - Syzygy \iff annihilators if o = 1

#