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Introduction



PreCiSion era Precision physics as
- of the Standard model
@ colliders

gate to S +
DIRECTLM OR
\WDIRECTLY &

» High-Lumi upgrade of LHC :
- theory and experiments must have comparable uncertainties
* needed: %-level accuracy:

- perturbation theory and often

- diagrams with increasing no. of loops, legs & mass scales

o B W



Loop Integrals
 LEGO® blocks of perturbative QFT beyond tree level

» Key ingredient of phenomenological predictions

* Rich and interesting mathematical structures

Thousands of loop Iintegrals appear
when studying perturbative predictions!

* Crucial: Finding relations between them

* Loop integrals admit various integral representations
with different tradeoffs and mathematical properties




This work

e Study & elaborate on the method of parametric annihilators for finding
iIntegral identities,

* Focus on parametric representations of loop integrals
* Extend applications to different representations
e Similar technigue for finding differential equations

* Provide an implementation of annihilators & differential operators based on
modern linear solvers relying on cutting edge finite-fields techniques

* Implementation in the public Mathematica package: CALICO

Computing Annihilators from Linear Identities
Constraining (differential) Operators
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J
Monomials total degree

A list of exponents: a = (¢, ..., a,)

A list of variables: Z = (z4, ..., Z a _ H Q _ |
(1 n) } Z Z] ‘a‘ Zaj
E J

We are interested in integral families of the form

These include many

parametrizations I, = / d" 7 La (z) u(z)

of loop integrals
N& u(z) = | | B(2)"
NN Twist H :

B Multivalued Y u(z) = exp F(z) []8@"
j

¢,(z) closed under monomial
multiplication & differentiation
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Finding and solving linear relations satisfied by integrals having the form of [,

Express integrals within a family as a linear combination of a set of independent

master integrals (Mls)
_[a — j}{:: Cai%[@
BeEMIs

Crucial ingredient are Integration-By-Parts identities (IBP):

/d”z 0, (g@a(z)u(z)) = (

(Regulated integrals vanish at the integration boundary)

——‘
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/d”z 0, (g&a(z)u(z)) = (

By expanding the LHS of the IBP relation we get :

/d”z 0, (gpa(z)u(z)) — /d”z (0i¢al(z)) u(z) + /d”z Yo (z) (0;logu(z)) u(z)

Non-trivial identities among the integrals

0; log u(z) usually creates terms that cannot

be absorbed in ¢ () _ -
not a relation within the

original integral family!







Integral identities via parametric annihilators

Parametric annihilator of order o of u(z)
[Baikov (1996); Lee (2014); Bitoun, Bogner, Klausen, Panzer (2017)]

A =cy(z) + ch ) 0j + Z Cj1jz(2) 0, 0j,

71172

> ¢y, (2) 05, - 0,

711<--<Jo Cijar

(Z) polynomials in z

Such that 121 U(Z) — (
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For any annihilator A we have infinitely many integral identities

/dnz Do (2Z) Au(z) = 0, Va symbolic a

Using IBPs on derivatives, we get a template identity for symbolic o

[uac) =Y [u@eipa) + (=07 3 [wdy 0, (e pa) =0

J1<<Jo
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Laporta algorithm

[Chetyrkin, Tkachov (1981); Laporta (2000)]

[uac) =Y [u@eipa) + (=07 3 [wdy 0, (e pa) =0

J1<<Jo

Seeding the template eq.s : replacing symbolic a with integer numbers

> Applying each template identity to a large number of seed
integrals: obtain a linear system of equations

» Choice of an ordering: express complex integrals as a
function of simple ones

» solving 1t: reduction to master integrals*7

_[dfzz :E:: <Zgﬁpﬁg

BeMIs Computational bottleneck in

% Additional relations may exist, state-of-the-art calculations
such as symmetry relations 13



N&/ A is an annihilator = 7z”A and Q]-A are annihilators
™\ — Set of annihilators of 1(z) is a D-module

p&=>
/d”z D (Z) (ZBA u(z)) = /d”z (Zﬁgpa(z)> A u(z)
/d”z Do (Z) (ajflu(z)) = — /d”z (ngoa(z)) A u(z)

Interested In a set of

set of annihilators A iIndependent modulo linear combinations
of Z’A and 0 A

14






[Barucchi, Ponzano (1973): Kotikov (1991): Bern, Dixon, Kosower (1994): Gehrmann, Remiddi (2000)]

Integrals in the form of /[, also depend on additional free parameters x
(e.g. kinematic invariants)

Studying of analytic structure & their numerical or analytical evaluation

Reducing the derivative of MIs with respect to x to Mis, write a system
of differential equations satisfied by the Mls themselves

Opl, = Z Magfﬁ, for v € MIs.

16



Derive an operator éx that realizes differentiation with respect to x

O, = ¢y (2) Z (@)0+ Y o, (2) 05,0,

7172

LREER Z i, () 050,

j1<"'<jo

¢ polynomials
J1J2°°"
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Explicitly, integrating by parts all derivatives In éx

Oplo = /(OM) Pa /u(ﬁwa)

_ / g@acéw) Z / (x)

Z /U8]1 jO §£f) jogpa) —I—/u(ﬁxgaa)

Jl< <Jo

Our preferred way to compute derivatives
Alternatively: recurrence relations

18



How to compute
parametric annihilators

&y

D




Computing annihilators via linear constraints

» Computing parametric annihilators up to a certain order and polynomial degree

+ implemented in the CALICO package

Step 1 : From annihilators to syzygies

f(Z) . -: 0 Syzygy equation
known polynomials

f(2) = {/1(2)..... fa(2)} _

Syzygy sol.s form a module:

g(k)(z) set of solutions = g(z) = Z pj(z)g(k)(z) is also a solution

k p;(z) arbitrary polynomials
20



dentify ¢; i (Z) as the unknown

Au(z) =0
Start from (z) ~ polynomials g(z) of a syzygy £(z) - g(z) = 0

|
Q

—1

B &

Insert the expression for A = Co(Z) + Z Cj(z)&j + ...

Collect LHS under a common denominator

(Z)

Imposing vanishing of the numerator = obtain a syzygy equation for Ci .

21



 Example : first-order annihilator

Form of a syzygy equation

f(z)-g(z) =0
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Step 2: Solving syzygy equations via linear constraints
[Schabinger (2015)]

 Ansatz for the solution

g(z) =) > cjaz”é
7 o)

|| < d for some max degree d e; unit vector in the j-th direction

» Plug it into £(z) - g(z) = 0 — { Linear system for ¢,

 Impose coefft.s of each monomial Z vanish
P CALICO uses the efficient

linear solver of FiniteFlow,
based on finite-field methods

513 [Peraro (2019)]






o = o F1(b1, ba + ) bs 4+ a; x)

lo- 11§

2. First-order differential operator
bl :E—bg bz
]O i—:cg 1—2517 IO
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Momentum-space representation

d%k, 1
Jo = Jag-an /HZT‘_d/QDl...DOén

T
D.s are generalised denominators Dyp.=1[-v.— m.2
; 0 F.j ] ]
__ 712 2
D; such that a; > 0 DF,J. — 1] — m;
. Irreducible scalar products (ISPs): DJ- such that a; <0 [; linear combination of ;

v; linear combination of p;
IBPs in momentum space
[Tkachov (1981), Chetyrkin, Tkachov (1981)]

d%k, VM
/H /2 &lﬁ” DYt ... Dp" =0, with o = &', py
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Parametric representations of loop integrals

Baikov
1
I o / d"z o B(Z)fy Also Loop-by-Loop Baikov
. & Duals of loop integrals

Schwinger

I, — / A"z (ﬁ - (;)) 2 exp [ — F(z)/U(z)] U(z)

7=1
27



Baikov

1
I, = /d”z—B(z)fY

ZOl

Loop-By-Loop Baikov

20—1

I, = /d”z— HB

Change of integration vars from loop momenta to generalised denominators
Require a full set of ISPs

deg B = min(Z + e,2¢)

Less variables in LBL (Baikov change of var.s is done one loop at a time)
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Intersection theory in a nutshell

[ Mastrolia, Mizera (2019) ] [Brunello, Cacciatori, Caron-Huot, Chestnov, Crisanti, Duhr,
Frellesvig, GF, Gasparotto, Giroux, Laporta, Maggio, Mandal,
Mastrolia, Matsubara-Heo, Mattiazzi, Mizera, Munch, Peraro,
Pokraka, Porkert, Semper, Smith, Sohnle, Stavinski, Takayama
(2019 - Ongoing)]

Introduction of a scalar product, intersection number, between

+ Dual integrals [/

1 1
I, = /d”z—B(z)” I = /GI”Z—B(Z)_'y

7, VA

» Calculation of intersection numbers — Standard procedure: recursive
algorithm in the integration var.s

* Focus on dual integrals
* Linear relations
(necessary step in the

w Nl * Difterential equations e rsection numbers calculation)
29




1
Dual integrals & regulators I, = / d"z — B(z) ™’

ZCV

* (245 .-+»Z,,) pProper denominators .
a; <0 forj>m

1 1

Problem: need of additional regulators — — ——
70 7
] ]

. T O(a;—1/2 | _
Ia:Hpj( /)/Glzzoé_pB(z)7
j=1

work on the leading N o’

coefficients p, — 0 u(z)

° (Zm+1’ ,Zn) ISPs

for] < m

[GF, Peraro (2023)]
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Method of annihilator can be applied straightforwardly (Baikov, LBL Baikov)

Tmp ids require the knowledge of ¢ _(z) under

Multiplication by ~ _5; ) Pa—pe;(z)  ifay; > B ora; <0
- Z:" P (Z) .
monomials J

Differentiation ~ 0; ¢a(2z) =

Approach tested for both
Reduction of dual integrals
Computation of DEQ satisfied by dual integrals in fewer variables

Successful comparison on all examples of [GF, Peraro (2023)]
3



Lee-Pomeransky

I, = /d”z (H F(;j)> 201G (z)~9/?

j=1

G(z) =U(z) + F(z)

Schwinger

I, = /d”z (312[1 F(;Q z" texp | — F(z)/U(z)] U (z) >

* n integration variables (# number of twist includes exp. factor
proper denominators) empirically:
* no need of introducing ISPs (can be annihilators have lower degree

added if required)
- degG=7¢+1 at £ loops

More frequent use of 2nd order ann.
tmp id.s often fewer and simpler

32



£ -loop & one internal mass m, defined by the set
of £ + 1 proper denominators:

— 1.2 2 N
D]_k] — m fOr]— 1,...,f

Dypyy = (ki + - + k, —p)* —m”

Momentum space has (£ + 2)(£ — 1)/2 ISPs — for £ = 6, it has 20 ISPs

Use Lee-Pomeranski or Schwinger representation to

* Reduce to Mls _ _
Done 1n a couple of minutes on a laptop

 Derive DEQs up to 6 loops (mostly spent computing
Without the need of additional ISPs! annihilators and template eqs)

33



Cutting-edge example
Many different scales
Many external legs

Using the integral representations: Finding relations between integrals

Schwinger with constant numerator and higher

. owers of proper denominators
L ee-Pomeranski P Prop

Useful for finding integrals with good properties
° QuaSI_flnlte [von Manteuffel, Panzer, Schabinger (2014)]

* Pure functional form y.in (20131

34



Conclusions & Outlook

» Parametric annihilators are a useful tool for finding linear relations
between integrals

* Allow to use integral parametrizations tailored to specific problems

* New applications to LBL Baikov, duals of loop integrals, Schwinger
parametrisation

* Introduced similar technique for deriving differential equations

* Implementation will be released in the public package CALICO

% Bonus: can also solve syzygy equations and polynomial
decomposition problems

35



Thank you for
your attention!

.. more drawings @qftoons :)
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L. loop bananas — CALICO code snippet

This example computes differential equations (DEs) for the L-loop equal mass banana integral family,
using the Schwinger representation.

In[1]:= <<CALICO

ALl public symbols exported by the package are prefixed by
CAT (“Computing AnnihilaTors"”)

38




Set up of the integral family

You can set the number of loops here. The example has been tested up to L=6.

In[2]:= L=4
4

Define loop denominators and the twist:

n[3l:= Loopmoms = k/@Range|[L];
22 dens = Join[ Table[{loopmoms[ii],m2},{11,1,L}], {{Sum[loopmoms[ii],{11,1,L}]-p,m2}}

{{k[1], m2}, {k[2], m2}, {k[3], m2}, {k[4], m2}, {-p+k[1] +K[2] +k[3] + k[4], m2}}

nsl= {u,f,g,zs} = CATUFGPolys]

26 dens,

27 k/@Range[L],
28 {pN2 > s},
29 Z

B ]

39
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Twist output: uses symbolic polynomials, whose
analytic expression 1s substituted at a later stage

full analytic expression can also be used instead

inel:= twist = CATSchwinger[u,f,d,zs]

Outl6l= CATTwist[

_ CATFPoly[z[1],z[2],Zz[3],z[4],z[5],m2,s]
e CATUPoly(z[1],z[2],z[3],z[4],z[5],m2,s] CATUPoly[z[1], z[2], z[3], z[4], z[5], m2, s]'d/z,

[CATFPoly - (81”8213 14 16 + 81 #2° 13 B4 16 + 8l #2 #3% 1#4 16 + 0l 72 H#3 #4” 106 +
1% #2 #3 85 16 + £l #2% #3 #5 86 + 1 #2 #3% #5 16 + H1° 82 #4 H5 £6 + 0l H2° 14 15 H6 +
1#1% #3 H4 05 16 + 5 0l §2 #3 14 85 106 + §2° #3 #4 15 #6 + 1l #3° 14 #5 H6 +
12 3% 14 15 86 + #l H2 1042 15 86 + 0l §3 042 15 06 + 02 §3 #4215 16 + #l #2 H3 #5% H6 +
fl 52 14 #5° 56 + #1 #3 74 #5° 16 + #2 13 14 #5° 16 - #l B2 #3 14 65 #T &),

CATUPoly - (#1882 83 04 + 1l 12 #3 115 + 01 12 114 115 + 11 13 14 15 + 72 13 14 15 &) }]

40




In(28:= (x computing first-order annihilatorsx)
41 maxdegree = L+1; Returns the polynomials

42 maxorder = 1;

43 ann = CATAnnihilator[twist,zs,maxdegree,maxorder]

H{y, (3, {{dz[4]) +2m22z[4]*-dz[5] -2m22[5]%, 0, 0, 0, 22z[4]%, -22[5]°},
{dz[3]+2m22z[3]°-dz[5 —2m2zj5j2,0,®,2z[3]2,@,-2z;5j2},
dz[2] +2m2z[2]*-dz[5] -2m22z([5]%, 0, 2z[2]%, 0, 0, -2Zz[5]?%},
z[1] +2m2z[1]*-dz[5] -2m2z[5]%, 2z[1]%, 0, 0, 0, -22[5]°}}, {},

dz[2] xz[3] xZz[4] +2m22z[1] xz[2] xZz[3] xz[4] +2dZz[2] xZz[3] xZ[5] +

2m2z[1l] xz[2] xz[3] xZz[5]+2dz[2] xz[4] xz[5]+2m22z[1] xz[2] xZ[4] xZ[5] +
2dz[3] <z[4] ~z[5]+2m2z[1] ~z[3] ~z[4] ~z[5] + (5m2-5s) z[2] <z[3] ~z[4] ~z[5] +
dz[2] z[5]%+dz[3] z[5]°+2m22z[2] ~z[3] z[5]°+dz[4] z[5]%+2m22Zz([2] ~z[4] z[5]% +
2m2z[3] z[4] z[5]°+2m22z[2] z[5]3+2m22z[3] z[5]°+2m22Zz[4] z[5]°,

2z[1] xz[2] xZzZ[3] xz[4] +2zZ[1l] xZz[2] xZz[3] xZ[S5] +2z[1] xZ[2] xZ[4] xZ[5] +

2z[1] xz[3] xz[4] xz[5] +Zz[2] xz[3] xZz[4] xz[5],

2(2] - 2[3] - z[4] - 2[5], z[2] - 2[3] - z[4] - 2[5], 2[2] - 2[3] - z[4] - 2[5], AATAALTIENEED

In[13:= (xdegree — number of first order annihilatorsx)
Table[ deg —» Length[ann[l,deg+1]], {deg,0,Length[ann[1l]]-1}]

{00, 150 g3+0g5+®}

(@)

{
{
§
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In[831]:= (xcheck at order 2x)
51 maxdegree = 2;
52 maxorder = 2;

53 ann2 = CATAnnihilator[twist,zs,maxdegree,maxorder "MinOrder"-2,"KnownSolutions"-ann]

[, {0, 0, {{2(-4d+5d%) +4 (-m2+2dm2) z[1] +
4 (-m2+2dm2) z[2] +4m2%z[1] ~z[2] +4 (-m2+2dm2) z[3] +
4m2°z[1] z[3] +4m2°Zz[2] ~z[3] +4 (-m2+2dm2) z[4] +4m2%z[1] - z[4] +
4m2°z[2] ~z[4] +4m2°Z[3] ~z[4] + (13dm2-ds) z[5] +4m2%z[1] ~z[5] +
4m2%z[2] ~z[5] +4m2*z[3] <z[5] +4m2°z[4] ~z[5] +2 (5m2*-m2s) z[5]7,
4 (-1+2d) z[1] +4m22z[1] ~z[2] +4m2z[1l] ~z[3] +4m22z[1] ~z[4] +
dz[5] +4m22z[1] ~z[5]+2m22Zz[5]°, 4 (-1+2d) z[2] +4m22z[1] ~z[2] +

4m2z[2] ~z[3] +4m22z[2] ~z[4] +dz[5] +4m2z[2] z[5] +2m2z[5]7,
Merging the two solutions

In[23]:= (xcombine allx)

a N W —

ann = CATAnnihilatorMerge[ann,ann2];

In[24]:= (xdegree — number of second order annihilatorsx)
Table[ deg —» Length[ann[2,deg+1]], {deg,0,Length[ann[2]]-1}]

{00, le@,

42




In[27]:=

Template equations

tmpeq = CATSchwingerIdsFromAnnihilators["family",ann,zs]

{2m2 CATInt[family, {#1, #2, #3, 2+ 14, H#5}] H4 (1 +H4) +

CATInt[family, {&#l, #2, 83, 1 +t4, 05} ] 84 (2 -d + 2 £4) -
2 m2 CATInt[family, {#l1, #2, #3, 84, 2 + #5}] #5 (1 + #5) -
CATInt[family, {#1, #2, 83, #4, 1 +85}] 85 (2-d +285),
2m2 CATInt[family, {#l, 82, 2 + &3, #4, 85} ] #3 (1 + #3) +
CATInt[family, {#1l, #2, 1+ 83, 84, 85}] #3 (2 -d + 2 #3) -
2 22 (CNPIEmE [ renin W7 o feetly i80, dmigy davas s 2l asie ]l || e (1L 46 iEE) =
CATInt[family, {#1, #2, #3, #4, 1 +185}] #5 (2-d + 2 85),
2m2 CATInt[family, {#l, 2 +182, 83, &4, 85} ] 82 (1 + #2) +
CATInt[family, {&#1, 1+ 52, 43, 84, 85} ] 82 (2-d + 2 #2) -
2m2 CATInt[family, {#1, #2, 83, #4, 2 + 15} ] &5 (1 + #5) -
CariEmae [ramnl Ly, isinl, 802 88, sl Il LEis ] el (2 = @) <= 2 i) .
2m2 CATInt[family, {2 +#1, #2, #3, #4, #5}] &1 (1 + H#1) +
CATInt[family, {1 +#1l, 82, #3, #4, #5}] #1 (2-d + 2 #1) -
22 [P (NN [ el W, ik, i59) , fEiE) daves . ) i ]| ) (I s —
CATInt[family, {#1, 52, 83, #4, 1 +85}] 85 (2-d + 2 85),

43




Here we use FiniteFlow to solve the system, following section 6.1 of https://arxiv.org/pdf/1905.08019.

This example is simple enough that we can also easily find reduction tables with
FFSparseSolve[Thread[egs==0],ints,"NeededVars"->neededints]

but the overall strategy below is generally more efficient, especially in more complex cases.

FiniteFlow to solve the
tmp eq.s & derive DEQ

in[33:= FFNewGraph["g","in",params]

True

in[34:= FFAlgSparseSolver["g","ibps",{"1n"},params,Thread[eqs==0],1ints,

"NeededVars"—sneededints]

True

in[35]:= FFSolverOnlyHomogeneous["g","ibps"]

n3el:= FFGraphOutput["g","ibps"]

n[37]:= ibplearn = FFSparseSolverLearn["g",ints];

The independent unknowns of the system are the master integrals (Mls)

nsl:= mis = "IndepVars"/.ibplearn Master integra'l_s

{CATInt[family, {2, 2, 2, 1, 1}],
Canme [renn s 424 25 by dbg AL | o @ariimne e 7, §24 dhg by b L) -
CAPIE [remn L7, ok, by by dbs alB gl o @aImiE [[renmnl 57, daby aby b I, @) 1

44




Differential equations via recurrence relations

€ family [, = Jwa B’ € shifted integral family /, = Jgpa B!

7O+ — / A"z (B(z)gpa(z)> B(z)” » 1O = N BRI (9) Is, a € MIs

ﬁEMIs




Annihilators & syzygy

iy

I

v



Syzygy-based approach

« Example: u(z) = B(z)"

Qe
by

* |BP: 0 — i/dnzé’j (aj(z)gaa(z)B(Z)’Y> i

9% > Does not belong to the family / .

n

_ /an B(Z)W Zn: aj (gpa(z)aj(z)) —|—B(z)'ygpa(z) (W BiZ) Zaj(Z)ajB(Z))

7=1 j=1

» Choosing zn: a;(z)0;B(z) = b(z) B(z)

7=1

J

+ Solution a*(2).b%(2) [ 4z B(a)” 3™ 0 (¢al(2)a5 () + 1@t ()| =0

arsen, Zhang (2017); Sameshima (2019)]_

r



First-order annihilator approach isertotini (20241

* First-order annihilator

A=co(z)+ ) ci(2)d; @Y
J

-1

» Considering

B(z)' Au(z) = 0 7>

. Condition on the cj(z)s
co(2) B(z) +7 e;(2) 9;B(z) = 0
j=1

- same as choosing
Z a;(2)0;B(z) = b(z) B(z) b(z) = —co(z), aj(z) =vc;(z)
48



Drawing connections

By inserting  b(z) = —co(2), a;(z) = v¢;(2)

in/d”zB(z)” En: 0; (gpa(Z)CL;(Z)) + 0o (2)b*(2z) | =

sygyzy method yields
. E : _ the same integral

j order annihilators

* More syzgy equations can be used to constrain the form of the identities
that are generated [Gluza, Kajda, Kosower (2010);Ita (2015);Larsen, Zhang
(2015); Wu, Bohem, Ma, Xu, Zhang (2023)]. Additional constraints can be

applied to both the solutions of syzygy and annihilators of any order o

* Annihilator method generalizes the one based on syzygy eq.s
» Syzygy <= annihilatorsif o = 1

49



THE END



