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Univariate Polynomial Division

Polynomial division allows us to decompose functions as

f(x) = q(x)p(x) + r(x)

deg(r) < deg(p)

f(x) = r(x) mod p(x)

Can always be done — best seen by example!

f(x) = x3 + ax2
− (4 + 2a)x+ 1 p(x) = x

2
− 2x− 1 x

2 = p(x) + 2x+ 1

f(x) = x (p(x) + 2x+ 1) + a (p(x) + 2x+ 1)− (4 + 2a)x+ 1

= p(x)(x+ a) + 2x2 + a− 3x+ 1

= p(x)(x+ a) + 2(p(x) + 2x+ 1) + a− 3x+ 1

= p(x)(x+ a+ 2) + x+ a+ 3
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Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
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3
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∞
> · · · > y > 1

Degree Lexicographic: · · · > y
3
> x

2
> xy > y

2
> x > y > 1

Is the division unique?
Unfortunately, this is not enough to uniquely determine a multivariate polynomial division 

I = ⟨xy − x, xy − y − 1⟩Consider . What is x y = ? mod I

xy = x mod I xy = y + 1 mod I

Problem normally fixed by introducing Groebner Bases
[Buchberger, 1965]
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Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis     is a set of generators for the ideal    that has many nice propertiesG I

For this talk: Roots of            are the same as          , and polynomial division ambiguities fixed G = 0 I = 0

I = ⟨xy − x, xy − y − 1⟩ G = ⟨y2 − 1, x− y − 1⟩ (Lexicograhpic)

Any possible combination of the elements of     will result in the same polynomial remainderG

xy = (y + 1)y = y + y2 = y + 1 mod G
2 1 xy

2
= x = y + 1

xy
2 = (y + 1)y2 = y + 1

mod G

Groebner bases can be very difficult to calculate and are often computational bottlenecks!

Claim: We can explicitly avoid computing a Groebner basis, and still obtain the correct result from 
polynomial division, using row reduction 

Allows us to compute polynomial divisions without needing to reconstruct the “intermediate” Groebner Basis

1

12

2

[Faugére, 1999] [Buchberger, 1985]

Avoiding Groebner Bases
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Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2

Seed a linear system by multiplying    by     I x
n
y
m

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

I = ⟨xy − x, xy − y − 1⟩
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Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2

Seed a linear system by multiplying    by     I x
n
y
m

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 0 0 −2 −2
0 0 1 0 0 0 0 0 −2 −2
0 0 0 1 0 0 0 0 −2 −2
0 0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 1 0 0 −1 −1
0 0 0 0 0 0 1 0 −1 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

RowRed

I = ⟨xy − x, xy − y − 1⟩
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⎢

⎢
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⎢
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⎢

⎢
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⎥

⎥

⎥

⎥

⎥
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⎢
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⎢

⎢

⎢
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⎥

⎥

⎥
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⎢

⎢
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⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥
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⎢
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⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥
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⎥

⎥

⎥
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Important to note: this approach does not escape the complexity of computing Groebner Bases
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Irreducible monomialsRead off from top row: f(x, y) = y + 1 mod I No explicit Groebner Basis required!

I = ⟨xy − x, xy − y − 1⟩

Important to note: this approach does not escape the complexity of computing Groebner Bases

For example: the size of the system one needs to generate is unclear a priori and can be very large
[Buchberger, 1985]
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large very quickly. Solution to this problem: Companion Matrices

[Sturmfels, 2002]
[Buchberger, 1985]

[Cox, Little O’Shea, 2015]
[Telen, 2020]

[Brunello, Chestnov, Mastrolia, 2024]
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⎦
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If we want to reduce polynomials with large monomial powers, the system to row reduce can become very 
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⎢
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⎦
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Mf1+f2 = Mf1 +Mf2 Mf1 f2 = Mf1 Mf2 = Mf2 Mf1 Mfinv = M
−1

f

f(x, y) = (0, · · · , 0, 1) ·Mf(x,y) ·m
T mod I

Remainder can be recovered as:

Strategy: Build        and        and you can reduce anything with just matrix multiplication!  Mx My

[Sturmfels, 2002]
[Buchberger, 1985]

[Cox, Little O’Shea, 2015]
[Telen, 2020]

[Brunello, Chestnov, Mastrolia, 2024]
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Companion Matrices (2/3)
Examples

I = ⟨xy − x, xy − y⟩ m = {y, 1}

Mx :

1 · x = y + 1 mod I

y · x = y + 1 mod I
Mx =

[

1 1

1 1

]

My :
1 · y = y mod I

y · y = 1 mod I
My =

[

0 1

1 0

]

f(x, y) = xy2

Can now consider any function and build it with companion matrices

Mf(x,y) = Mx ·M
2
y =

[

1 1

1 1

]

r(x, y) = (0, 1) ·

[

1 1
1 1

] [

y

1

]

= y + 1

Can immediately write down the answer for much more complicated expressions!

g(x, y) = a+
x

y100 − 3x+ 2
Mg(x,y) = 1 a+Mx

(

M
100
y − 3Mx + 2 1

)

−1
=

[

1
3 (3a− 1) −

1
3

−

1
3

1
3 (3a− 1)

]

g(x, y) =
1

3
(3a− 1)−

y

3
mod I
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Companion Matrices (3/3)
Variable Elimination
Often one is interested in projecting/eliminating an equation system down onto one variable “slices”

I = ⟨xy − x, xy − y − 1⟩ {x∗
= 0 , y

∗
= −1} ∪ {x∗

= 2 , y
∗
= 1}
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Often one is interested in projecting/eliminating an equation system down onto one variable “slices”

I = ⟨xy − x, xy − y − 1⟩ {x∗
= 0 , y

∗
= −1} ∪ {x∗

= 2 , y
∗
= 1}

x

y

Elimx(I) = ⟨y2 − 1⟩

Elimy(I) = ⟨x(x− 2)⟩

The eigenvalues of companion matrices encode the roots of the polynomial system. Can be conveniently 
accessed by computing characteristic polynomials

Elimx(I) = det(My − y ) = det

[

−y 1
1 −y

]

= y2 − 1

Elimy(I) = det(Mx − x ) = det

[

1− x 1
1 1− x

]

= x(x− 2)



13

SPQR Summary
A (Mathematica) package that performs polynomial division and reconstruction over finite fields

1
1

1

ideal I f(z)

Mz

Mf(z)

monomial
order

Seeder

FFAlgNodeSparseSolver

Check irreducible
monomials

FFAlgTake

Parser

f(z) mod Icharacteristic
polynomial



13

SPQR Summary
A (Mathematica) package that performs polynomial division and reconstruction over finite fields

Can handle polynomials or 
multivariate rational functions as input 
to arbitrary nested depth 

1
1

1

ideal I f(z)

Mz

Mf(z)

monomial
order

Seeder

FFAlgNodeSparseSolver

Check irreducible
monomials

FFAlgTake

Parser

f(z) mod Icharacteristic
polynomial



13

SPQR Summary
A (Mathematica) package that performs polynomial division and reconstruction over finite fields

Can handle polynomials or 
multivariate rational functions as input 
to arbitrary nested depth 

1
1

1

ideal I f(z)

Mz

Mf(z)

monomial
order

Seeder

FFAlgNodeSparseSolver

Check irreducible
monomials

FFAlgTake

Parser

f(z) mod Icharacteristic
polynomial

No intermediate reconstructions 
required ensuring the numerical 
cancellations of complex intermediate 
stages 



13

SPQR Summary
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stages 

Mk A cn�k�1

Mk+1

cn�k

characteristic
polynomial

FFAlgMatMul

FFAlgAdd

FFAlgTakeAndAdd

Characteristic polynomial also 
built inside FiniteFlow with the 
Faddeev–LeVerrier algorithm
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Advantages and Disadvantages (1/3)
Complexity of polynomial ideals

R = Q[a1 · · · an][x1 · · ·xn]

parameters variables

“Parameter complexity” : How complicated are the coefficients of the Groebner Basis polynomials

“Variable complexity” : How many equations are needed for finding a Groebner Basis

Groebner Basis algorithms have fine tuned procedures for keeping this down to a minimum    
Our approach (currently) relies on a much coarser and overcomplete system of equations

Groebner Basis algorithms suffer from complicated symbolic processing at intermediate stages
Reconstruction over finite fields completely avoids this problem as cancellations happen numerically!
Can speed up computations by orders of magnitude
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Advantages and Disadvantages (2/3)

“Variable Complexity”

“Parameter Complexity”

SPQR Approach

CAS Approach

many (physics motivated) problems lie here!
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Advantages and Disadvantages (3/3)
Resultant Benchmarking (Preliminary)

R = Q(a, b, c, d)[x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Resultant Singular Macaulay 2 Mathematica (+ tricks) SPQR

R(3, 5, 7, d)

R(3, 5, c, d)

R(3, b, c, d)

R(a, b, c, d)

The Finite Fields approach is solving a less refined set of equations, but isn’t slowed down by intermediate 
cancellations

Task: Eliminate R(a, b, c, d){x, y, z}

≈ 0.06s

≈ 12.40s

≈ 0.01s

≈ 53.29s

≈ 0.03s

≈ 5.03s

> 7d

≈ 0.18s

≈ 0.20s

≈ 0.46s

≈ 1.89s

9 MB degree 34 polynomial

≈ 4h 39m> 7d> 7d

? ?



17

Physics Motivated Examples (1/3)
Landau Singularities of Feynman (Euler) Integrals
Feynman integrals are Euler/Twisted Period integrals

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn [Lee, 2013]

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power
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The Landau Variety can be defined as the values of                for which the Euler characteristic drops in value   {sij ,m}

Euler/Twisted Period representations allow us to associate an Euler characteristic    to a given Feynman integral χ

[Mizera, Fevola, Telen, 2023/24][Chestnov, Matsubara-Heo, Munch, Takayama, 2023]
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∧ · · · ∧
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xn [Lee, 2013]

[Landau, 1960]
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[Abreu, Berghoff, Bourjaily, Britto, Correia, Duhr, 
Fevola, Gardi, Giroux, Hannesdottir, Helmer, 
Lippestreu, Matsubara-Heo, McLeod, Mizera, 
Panzer, Papathanasiou, Polackova, Schwartz, 

Tellander, Telen, Vergu, Wiesmann 2017-2025]

The Landau Variety can be defined as the values of                for which the Euler characteristic drops in value   {sij ,m}

Euler/Twisted Period representations allow us to associate an Euler characteristic    to a given Feynman integral χ

[Mizera, Fevola, Telen, 2023/24][Chestnov, Matsubara-Heo, Munch, Takayama, 2023]

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

Landau Analysis: where are the branch points of                 located?I(sij ,m)

χ can be computed by solving systems of polynomial equations 
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Physics Motivated Examples (2/3)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing    :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

[Mastrolia, Mizera 2018]
[Lee, 2013]
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= 0

∂1G = 0
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∂nG = 0

1− x0G = 0

system of polynomial equations!

x0

x1, · · · , xn

solutions to ω = 0 (χ = 4)

as the degenerate configuration is 
approached some solutions fly off to 
infinity  

can be detected by checking coefficients of the 
remaining one variable polynomial 

[Mastrolia, Mizera 2018]
[Lee, 2013]
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Physics Motivated Examples (3/3)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

[Correia, Sever, Zhibodeov, 2021]

m
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Conclusions and Outlook

Future development directions: A way to generate a smaller set of equations for the row reduction would allow 
for the tackling of even more complicated problems — perhaps possible to build equation systems based on the 
steps carried out by Groebner Basis algorithms/interface to current Groebner basis tools?

A reconstruction algorithm that factors expressions could save many sample points for sparse rational function 
outputs

SPQR is a new open-source Mathematica package for performing polynomial division. It leverages finite field 
sampling and reconstruction to process Macaulay matrices from complex polynomial systems with high 
efficiency.

This approach avoids heavy symbolic cancellations, often leading to significant speedups compared to 
traditional Groebner basis approaches.

The companion matrix formalism helps contain the Macaulay system size, making it possible to handle 
larger and more complicated problems
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(Beta) version is available now at github.com/giu989/spqr

Paper coming soon!
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Thank you for listening!
(Beta) version is available now at github.com/giu989/spqr
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