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Super Quick Review of Polynomial Division

Univariate Polynomial Division

Polynomial division allows us to decompose functions as
f(@) = q(z)p(z) + r(z)
\deg(r) < deg(p)

Can always be done — best seen by example!
flx)=2°+ax® — (44 2a)x + 1 plz)=2"-2x -1 — 2" =p(r)+2v+1

z(p(x)+2x+1)+a(plx)+2x+1) — (4+2a)z+1
p(x)(z+a)+22° +a—3z+1
=p@)(xr+a)+2p(z)+2x+1)+a—3x+1
px)(r+a+2)+x+a+3

f(x)
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Towards Finite Fields

Polynomial division as row reduction

If all we care about is the remainder, we can reformulate polynomial division as a row reduction problem

p(r) =0 mod p(x) » 2""p(x) =0 mod p(x)
Can generate a linear system of equations this way
7 —2x—1=0 mod p(x)

3 — 222 —x =0 mod p(x)

f(z) —2" —a2® + (54 2a)z +1=0 mod p(x) f(x) =3 —a—x=0 mod p(x)

Cast in (Macaulay) matrix form: § i / L
] | f(=) i | f(@)
—1 1 a —(4+2a) 1] | ,3 (1 0 0 —1 —3—al| | ,3
RowRed
0 -1 2 1 of | z2 | =0 >0 1 0 -5 =2 22 | =0
0 0 -1 2 1| = 001 -2 -1 ||*
- 1 — - 1 —

Useful because there exist very quick ways to do row reduction: Sample over finite fields and reconstruct output
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Finite Field Reconstruction

Operations on Matrices M(as, -

_— \\

M, + M, M - My

RowReduce(M)

\/‘&/‘&/‘

Algebraic post processing simplification — can become very intensive!

Finite Fields Approach

Substitute numerical , Perform all operations

_ Reconstruct functional output

values for parameters numerically mod primes from numerical sampling

Complicated cancellations will happen numerically — final reconstructed output already “simplified”

All operations over finite fields handled by the C++/Mathematica package FiniteFlow

What is reconstructed?

[ f(x
-1 1 a (4 + 2a) 3
— 3 2 x
f(z) = a:2 +ax® — (5+2a)xr + 1 L , ol | e
plz) =2" =2z -1 0 0 -1 2 1| @
1

'/parameters\ on ;
nly need to
=0 R = Q(a)[z] reconstruct
\ / parameters!
- variables 6
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Multivariate Polynomial Division (1/3)

Monomial Orderings

For one variable, sorting the monomials from “worst” to “best” is unambiguous

1

2>t s o> s> > 1

For more than one variable there are multiple choices one can take

Lexicographic: > sy >ay>c>yC > o>y >1
w>y<

Degree Lexicographic: >y ssay>yt > >y >1

Is the division unique?
Unfortunately, this is not enough to uniquely determine a multivariate polynomial division

Consider I = (zxy —z,zy —y—1). Whatis xy = 7 mod [

/

ry =2 mod [ xy=y+1 mod [

Problem normally fixed by introducing Groebner Bases
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Groebner Bases

A Groebner basis G is a set of generators for the ideal I that has many nice properties

For this talk: Roots of G = 0 are the same as I = 0, and polynomial division ambiguities fixed
I = (@y—z,2y—y—1)—— G = <y2 —lLr—y— 1> (Lexicograhpic)
Any possible combination of the elements of G will result in the same polynomial remainder

2
zy " =x=y+1
ry=@wW+y=y+y°=y+1 modG , , mod G
vy =+ y" =y +1
Groebner bases can be very difficult to calculate and are often computational bottlenecks!

Avoiding Groebner Bases

Claim: We can explicitly avoid computing a Groebner basis, and still obtain the correct result from
polynomial division, using row reduction

Allows us to compute polynomial divisions without needing to reconstruct the “intermediate” Groebner Basis



Multivariate Polynomial Division (3/3)

Row Reduction Again

We consider again I = (xy — z,2y —y — 1) and let f(z,y) = zy°



Multivariate Polynomial Division (3/3)

Row Reduction Again

We consider again I = (xy — z,2y —y — 1) and let f(z,y) = zy°

Seed a linear system by multiplying I by z"y™

10 0 0 -1 0 0O O O O /()
01 0 0 -1 -1 0 0 0 0 vy
00 1 0 0 -1 -1 0 0 0 vy
00 0 O 1 0 0 -1 -1 0 v
o0 0 0 O 1 0 0 -1 -1 Y
01 -1 0 0 0 0 0 0 0 Y
00 1 -1 0 0 0 0 0 0 g
00 0 0O 1 -1 0 0 0 0 4
00 0 0 0 1 -1 0 0 0 !y




(3/3)

IVISION

Multivariate Polynomial D

Row Reduction Again

We consider again I = (xy — z,2y —y — 1) and let f(z,y) = zy°

Seed a linear system by multiplying I by z"y™

8 D ™
| o ) >
e T T
L
I
— AN AN AN ™~ o
I R O O R
— AN AN AN —~ —
I A B
OO OO OO o HACO
O o O oo o —H OO
O oo oo - O oo
OO OO - OO OO
OO O —H O OO oo
OO —H O O OO oo
O — OO OO O oo
— O O OO O o oo
L
A
©
Q
S
(@)
o
N
$y2y22yy$2
S v
e N T
L
]

i
0000_0000
—
000_ _OOOO
(el
000_00000
™ —{
OO_OOOOO_
- A

—
__0100010
!
OOOOOO_OO
—
00100_100
O — OO O - O OO
— O O OO OO oo




Multivariate Polynomial Division (3/3)

Row Reduction Again

We consider again I = (xy — z,2y —y — 1) and let f(z,y) = zy°

Seed a linear system by multiplying I by z"y™

100 0 -1 0 0o 0o o o71]/®
01 0 0 -1 -1 0 0 0 0 vy
00 1 0 0 -1 -1 0 0 0 vy
00 0 O 1 0 0 -1 -1 0 v
o0 0 0 O 1 0 0 -1 -1 Y
01 -1 0 0 0 0 0 0 0 Y
00 1 -1 0 0 0 0 0 0 g
00 0 0O 1 -1 0 0 0 0 4
(000 0o 0 1 -1 0 0o o[

RowRed

\ 4

SO OO oo O -

SO OO OO oo

SO OO OO+ OO

SO OO OoOoO OO O

SO OO, OO OO

S OO OO O OO

Read off from top row: f(z,y) =y +1 mod I No explicit Groebner Basis required!

SO R OO oo O

SO HRH OO OO o oo

Irreducible monomials



Multivariate Polynomial Division (3/3)

Row Reduction Again

We consider again I = (xy — z,2y —y — 1) and let f(z,y) = zy°

Seed a linear system by multiplying I by z"y™

SO OO OO oo O -

S OO R OO OO

S OO O OO

—1
—1

SR OO O+~ OoO

0
—1
—1

0

0
0
—1

SO O OO

0
0

S OO OO

S O OO

Y2
Y
1

RowRed

\ 4

SO OO oo O -

SO OO OO oo

SO OO OO+ OO

SO OO OoOoO OO O

SO OO, OO OO

S OO OO O OO

Read off from top row: f(z,y) =y +1 mod I No explicit Groebner Basis required!

Important to note: this approach does not escape the complexity of computing Groebner Bases

SO R OO oo O

SO HRH OO OO o oo

Irreducible monomials



Multivariate Polynomial Division (3/3)

Row Reduction Again
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For example: the size of the system one needs to generate is unclear a priori and can be very large

Irreducible monomials
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Avoiding Large Systems

If we want to reduce polynomials with large monomial powers, the system to row reduce can become very
large very quickly. Solution to this problem: Companion Matrices

Companion matrices are built from taking polynomial divisions of a given function.

Let m={---y,1} be the irreducible monomials of a polynomial system.

C11 C12
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Companion Matrices (1/3)

Avoiding Large Systems

If we want to reduce polynomials with large monomial powers, the system to row reduce can become very
large very quickly. Solution to this problem: Companion Matrices

Companion matrices are built from taking polynomial divisions of a given function.

Let m={---y,1} be the irreducible monomials of a polynomial system.

C11 C12

my - f(x,y) = c11mq + crama + - - - ; c

]\4f(m y) . mod I(ZE,y) B> Mf(w,y) = 21 22
’ me - f(x,y) = ca1mq + coameo + - - - : :

/N

Key properties of companion matrices:

Mf1+f2 — Mfl T Mf2 Mfl fo — Mfl Mf2 — Mf2 Mfl Mfinv — Mf_l

Remainder can be recovered as:
f(x,y) =(0,---,0,1) - Mz ) -m% mod I

Strategy: Build M, and M, and you can reduce anything with just matrix multiplication! 10
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Examples
I = (zy—=z,2y —y) »m = {y,1}
y-x=y+1 mod /[ 1 1 y-y=1 modI
M, : — M, = 1 1 vy 1.y = drI
l-x=y+1 mod ]I Y=Yy 1mo

Can now consider any function and build it with companion matrices

11
flz,y) =2y® —— Mf(w,y):Mw'Mf‘JQ:[l 1]

> M,

— O

O =
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Examples
I = (xzy —z,2y — y) »m ={y, 1}
D — y-y=1 mod I 1
M. y-r=y+1 mod]I M, — 1 1 I M, — 0

Can now consider any function and build it with companion matrices

|

1 1 11
flz,y) =ay* —— Mf(w,y):Mw'Mf‘JQ:[l 1]—'7“(93,31):(0,1)‘[1 1 z{]:wl
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Examples
I = (xzy —z,2y — y) »m ={y, 1}
Cop — y-y=1 mod I 1
M. y-r=y+1 mod]I M, — 1 1 I M, — 0

Can now consider any function and build it with companion matrices

1 1 1 1
flz,y) =2y* —— Mf(w,y):Mw'M?S:[l 1]_’7“(9:,31):(0,1)‘[1 1”3“1/]:y+1

Can immediately write down the answer for much more complicated expressions!

X _
= > M —1a+ M, (M —3M,+21) =
g(xa y) a + y100 — 3 +2 g(z,y) a+ ( Y 3 + )

1
g(z,y) = §(3a —1)— % mod [

11
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Often one is interested in projecting/eliminating an equation system down onto one variable “slices”
I ={xy—zoy—y—1) —— {2"=0,y"=-1} U {z"=2,y" =1}
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Often one is interested in projecting/eliminating an equation system down onto one variable “slices”
I ={xy—zoy—y—1) —— {2"=0,y"=-1} U {z"=2,y" =1}
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The eigenvalues of companion matrices encode the roots of the polynomial system. Can be conveniently
accessed by computing characteristic polynomials
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Companion Matrices (3/3)

Variable Elimination

Often one is interested in projecting/eliminating an equation system down onto one variable “slices”
I ={xy—zoy—y—1) —— {2"=0,y"=-1} U {z"=2,y" =1}

S Elim, () = (z(z — 2))
T Elim,(Z) = (y* — 1)
The eigenvalues of companion matrices encode the roots of the polynomial system. Can be conveniently
accessed by computing characteristic polynomials

I —y
1 —x 1]

Elim, (Z) = det(M, — y1) = det { A ] =9 -1

1 1l —=x

12
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SPQR Summary

A (Mathematica) package that performs polynomial division and reconstruction over finite fields
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order
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y ]
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13



SPQR Summary
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SPQR Summary

A (Mathematica) package that performs polynomial division and reconstruction over finite fields

Coe™) @D
\ Can handle polynomials or
multivariate rational functions as input
to arbitrary nested depth

A I
FFAlgNodeSparseSolver
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d@) required ensuring the numerical
)\ cancellations of complex intermediate
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Advantages and Disadvantages (1/3)

Complexity of polynomial ideals
R=Qla--an][x1 -z

N\

parameters variables

14



Advantages and Disadvantages (1/3)

Complexity of polynomial ideals
R=Q[ay - an|[x1 - zy)]

N\

parameters variables

“Variable complexity” : How many equations are needed for finding a Groebner Basis
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Groebner Basis algorithms have fine tuned procedures for keeping this down to a minimum
Our approach (currently) relies on a much coarser and overcomplete system of equations
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Advantages and Disadvantages (1/3)

Complexity of polynomial ideals
R=Q[ay - an|[x1 - zy)]

N\

parameters variables

“Variable complexity” : How many equations are needed for finding a Groebner Basis

\‘ Groebner Basis algorithms have fine tuned procedures for keeping this down to a minimum
Our approach (currently) relies on a much coarser and overcomplete system of equations

“Parameter complexity” : How complicated are the coefficients of the Groebner Basis polynomials

\ Groebner Basis algorithms suffer from complicated symbolic processing at intermediate stages
Reconstruction over finite fields completely avoids this problem as cancellations happen numerically!
Can speed up computations by orders of magnitude
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Advantages and Disadvantages (2/3)

SPQR Approach

many (physics motivated) problems lie here!

“Parameter Complexity”

CAS Approach

“Variable Complexity”

15



Advantages and Disadvantages (3/3)

Resultant Benchmarking (Preliminary)
R =Q(a,b,c,d)[z,y, z]

I=(a+2*y* +9y° +2—1lax +cay’ +cy+ 2° —2,a + bay® + b+ 2%y*, —c+ drz + zyz + 1)

Task: Eliminate {x,y, z} R(a,b,c,d)

16



Advantages and Disadvantages (3/3)

Resultant Benchmarking (Preliminary)

R =Q(a,b,c,d)[z,y, z]
I=(a+2*y* +9y° +2—1lax +cay’ +cy+ 2° —2,a + bay® + b+ 2%y*, —c+ drz + zyz + 1)

Task: Eliminate {x,y, 2z} R(a,b,c,d)
Resultant Singular Macaulay 2 Mathematica (+ tricks) SPQR
R(3,5,7,d)
R(3,5,¢c,d)



Advantages and Disadvantages (3/3)

Resultant Benchmarking (Preliminary)

R =Q(a,b,c,d)[z,y, z]
I=(a+2*y* +9y° +2—1lax +cay’ +cy+ 2° —2,a + bay® + b+ 2%y*, —c+ drz + zyz + 1)

Task: Eliminate {x,y, 2z} R(a,b,c,d)
Resultant Singular Macaulay 2 Mathematica (+ tricks) SPQR
R(3,5,7,d) ~ 0.01s ~ 0.06s ~ 0.03s ~ 0.18s
R(3,5,¢,d)



Advantages and Disadvantages (3/3)

Resultant Benchmarking (Preliminary)

R =Q(a,b,c,d)[z,y, z]
I=(a+2*y* +9y° +2—1lax +cay’ +cy+ 2° —2,a + bay® + b+ 2%y*, —c+ drz + zyz + 1)

Task: Eliminate {x,y, 2z} R(a,b,c,d)
Resultant Singular Macaulay 2 Mathematica (+ tricks) SPQR
R(3,5,7,d) ~ 0.01s ~ 0.06s ~ 0.03s ~ 0.18s
R(3,5,¢,d) ~ 53.29s ~ 12.40s ~ 5.03s ~ 0.20s

16



Advantages and Disadvantages (3/3)

Resultant Benchmarking (Preliminary)

R =Q(a,b,c,d)[z,y, z]

I=(a+2*y* +9y° +2—1lax +cay’ +cy+ 2° —2,a + bay® + b+ 2%y*, —c+ drz + zyz + 1)

Task: Eliminate {x,y, z}

Resultant Singular Macaulay 2
R(3,5,7,d) ~ 0.01s ~ 0.06s
R(3,5,¢c,d) ~ 53.29s ~ 12.40s

> Td > Td

R(a,b,c,d)

Mathematica (+ tricks)
~ 0.03s
~ 5.03s
~ 4h 39m

SPQR
~ (0.18s

~ 0.20s
~ (0.46s
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Advantages and Disadvantages (3/3)

Resultant Benchmarking (Preliminary)
R =Q(a,b,c,d)[z,y, z]

I=(a+2*y* +9y° +2—1lax +cay’ +cy+ 2° —2,a + bay® + b+ 2%y*, —c+ drz + zyz + 1)

Task: Eliminate {x,y, 2z} R(a,b,c,d)
Resultant Singular Macaulay 2 Mathematica (+ tricks) SPQR
R(3,5,7,d) ~ 0.01s ~ 0.065 ~ 0.03s ~ 0.18s
R(3,5,¢,d) ~ 53.29s ~ 12.40s ~ 5.035 ~ 0.205
R(3,b,¢,d) > 7d > Td ~ 4h 39m ~ 0.46s
R(a,b,c,d) 7 ? > 7d ~ 1.89s

9 MB degree 34 polynomial

The Finite Fields approach is solving a less refined set of equations, but isn’t slowed down by intermediate
cancellations



Physics Motivated Examples (1/3)

Landau Singularities of Feynman (Euler) Integrals

Feynman integrals are Euler/Twisted Period integrals

Twist: polynomial raised to a non integer (generic) power
I(sij,m) = G(x,si5,m)" 5 —N--- N —

Parameters (Mandelstam variables) Integration variables
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Feynman integrals are Euler/Twisted Period integrals
Twist: polynomial raised to a non integer (generic) power
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Parameters (Mandelstam variables) Integration variables

—d/2 @ A-- A d,

Landau Analysis: where are the branch points of I(s;;, m) located?
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Feynman integrals are Euler/Twisted Period integrals

Twist: polynomial raised to a non integer (generic) power

—d/2 % A A dxy,

o0
I(sij,m):/ G(x,sij,m) cee N ——
Parameters (Mandelstam variables) Integration variables

Landau Analysis: where are the branch points of I(s;;, m) located?

Euler/Twisted Period representations allow us to associate an Euler characteristic X to a given Feynman integral

The Landau Variety can be defined as the values of {s;;, m}for which the Euler characteristic drops in value

X can be computed by solving systems of polynomial equations
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Physics Motivated Examples (2/3)

Computing Euler Characteristics for Landau Analysis

d (01G 0,G
Computing X: w =dlog (G(z)_d/2) w=—= (1—d:c1 + -+ dmn)

2 G Q X = # solutions to w =0

[Lee, 2013]
[Mastrolia, Mizera 2018]
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d (0G OnG
: : _ —d/2 — (= L
Computing X: w dlog(G(z) ) w Q(Gd:c1+ t—a
Xl
<
w=0——— ;
onG

dmn)

X = # solutions to w =0

[Lee, 2013]
[Mastrolia, Mizera 2018]
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Physics Motivated Examples (2/3)

Computing Euler Characteristics for Landau Analysis

d (011G 0, G :
Computing X: w =dlog (G(z)_d/2) w=—3 (%dml +--- 4+ e dmn) X = # solutions to w =0
[Lee, 2013]
81_(} —0 61G —0 — [Mastrolia, Mizera 2018]
G
w =10 ' : ' ' ~ system of polynomial equations!
5 G 0,G =0
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Physics Motivated Examples (2/3)

Computing Euler Characteristics for Landau Analysis

d (011G 0, G :
Computing X: w =dlog (G(z)_d/2) w=—3 (%dml +- 4 e dmn) X = # solutions to w =0
G
w =70 : ' ' ~ system of polynomial equations!
5 G 0,G =0
g 1 —2oG =0 o
as the degenerate configuration is

approached some solutions fly off to
infinity

solutionstow =0 (x =4)

3317”’ 7:17”

o
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Physics Motivated Examples (2/3)

Computing Euler Characteristics for Landau Analysis

d (OG 0, G :
Computing X: w =dlog (G(z)_d/2) w=—3 (%dml + -+ e dmn) X = 7 solutions to w =0
G
w =70 ' ' ~ system of polynomial equations!
PWe 0,G =0
G =0 1 — a?()G =0 —
as the degenerate configuration is
approached some solutions fly off to
solutionstow =0 (x = 4) infinity
— |
1 |
L1y 3 n : :
I | I
I | |
I | |
1 I 1 |
1 I 1 |
o | - :
1 1 | ! 1
MK KX .

o \ can be detected by checking coefficients of the

remaining one variable polynomial
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Physics Motivated Examples (3/3)

Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

[Correia, Sever, Zhibodeov, 2021]
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[Correia, Sever, Zhibodeov, 2021]
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Physics Motivated Examples (3/3)

Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral: x = 60(!) in the top (max cut) sector alone

PLD/SOFIA most complicated letter found: 27(m?)? 4 4s*t 4 45t

[Fevola, Mizera, Telen, 2023]

[Correia, Sever, Zhibodeov, 2021] [Correia, Giroux, Mizera, 2025]

Euler characteristic strategy

Two new simple letters: {s® 4 st 4 t*, m?s* + m?st + s*t + m*t* 4 st*}
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Physics Motivated Examples (3/3)

Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral: x = 60(!) in the top (max cut) sector alone

PLD/SOFIA most complicated letter found: 27(m?)? 4 4s*t 4 45t

Euler characteristic strategy

Two new simple letters: {s® 4 st 4 t*, m?s* + m?st + s*t + m*t* 4 st*}

Four new complicated letters:

{27m2% s? + 108 m2* s t + 162 m2% s? t + 54m2” s> t+ 4m2s” t+ 108 m2* % + 162 m2° s t* + 45m2” s t¥ -
em2s>t?-s*t?-18m2?std-20m2s?td-2s3t3-om2?t*-10m2st?-s?t?, 108m2*s?-9m2?s*+108m2*st+162m23s?t-
182> &'t = Iom2 8% 6+ 27m2" 2« 162:i2° s&° «45:m27 5% = 20i2is? 2 = Y5+ 54m2* s 7= 6NZiss v =28 Pl fidisa® 824",
27m2* &% = 54m2? 56+ 162m2° §%t=54m2% 57 & + 4 n2. 8%+ 2Tm2? t2« 162 m2° st? = 117m22.8% ¥+ 22m2 s % =s* 2= 54 m2° s £¥ '« 22m2s®%° =287 ¢ vaAm2 s t*= s> t4,
65536 m212 + 270336 m21° s2 + 33024 m28 s* + 1024 m2° s + 270336 m2° st - 458752 m2% s? t + 66048 m28 s3> t - 1276416 m27 s* t + 3072m28 s® t - 137472 m2° s® t -
4096 m23 s® t+270336m2° t2 - 458752m2° s t2+ 99072 m28 s? t2-2552832m27 s3 t2 - 3427584 m2% s* t2 - 412416 m2° s° t2 + 149472 m2* s® t2 - 16384 m23 s” t% +
768 m22s® t2 + 66048 m28 s t3-2552832m2" s2 3 - 6860288 m2°% s3 t3 - 687360 m2° s* t3 + 448416 m2* s5 t3-49888m23s®t3+3072m22s” t3-48m2s8 3+
33024m28 t* - 1276416 m2" s t* - 3427584 m2° s? t* - 687360 m2° s® t* + 597888 m2* s* t* - 92320 m23 s® t* + 6144 m22s® t* - 192m2s” t* + sttt 4+
3072m2% s t° - 412416 m2° s? t° + 448416 m2* s> t° - 92320 m23 s* t° + 7680 m22 s t° -336m2s® 7+ 45T t° + 1024 m2° t® - 137472 m2° s t% + 149472 m2% s? t° -

49888 m23s3t%+6144m22s*t5-336m2s°t®+6s8t6-16384m23s?2t’ +3072m22s3t"-192m2s*t’+4s°t -4096m23st®+768m2%2s?t® -48m2s3 8+t ts} 19



Conclusions and Outlook

SPQR is a new open-source Mathematica package for performing polynomial division. It leverages finite field
sampling and reconstruction to process Macaulay matrices from complex polynomial systems with high
efficiency.

This approach avoids heavy symbolic cancellations, often leading to significant speedups compared to
traditional Groebner basis approaches.

The companion matrix formalism helps contain the Macaulay system size, making it possible to handle
larger and more complicated problems

Future development directions: A way to generate a smaller set of equations for the row reduction would allow
for the tackling of even more complicated problems — perhaps possible to build equation systems based on the
steps carried out by Groebner Basis algorithms/interface to current Groebner basis tools?

A reconstruction algorithm that factors expressions could save many sample points for sparse rational function

outputs
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(Beta) version is available now at github.com/giu989/spqr
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» ResourceFunction["GitHubInstall"]1["giu989","SPQR"];

Paper coming soon! 21
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