
SPQR: A new Package for Polynomial Division and
Elimination Theory via Finite Fields

Giulio Crisanti

Based on upcoming work with

Vsevolod Chestnov

MathemAmplitudes, Mainz, 23/09/25

2

Introduction and Motivation (1/2)
Talk Outline and Goal

Explore technology behind SPQR as well as various applications

2

Introduction and Motivation (1/2)
Talk Outline and Goal

Explore technology behind SPQR as well as various applications

General overview of polynomial division

New methods/implementation: finite fields

2

Introduction and Motivation (1/2)
Talk Outline and Goal

Explore technology behind SPQR as well as various applications

General overview of polynomial division

New methods/implementation: finite fields

Landau Analysis
Elimination Theory

3

Super Quick Review of Polynomial Division
Univariate Polynomial Division

Polynomial division allows us to decompose functions as

f(x) = q(x)p(x) + r(x)

f(x) = r(x) mod p(x)

3

Super Quick Review of Polynomial Division
Univariate Polynomial Division

Polynomial division allows us to decompose functions as

f(x) = q(x)p(x) + r(x)

deg(r) < deg(p)

f(x) = r(x) mod p(x)

3

Super Quick Review of Polynomial Division
Univariate Polynomial Division

Polynomial division allows us to decompose functions as

f(x) = q(x)p(x) + r(x)

deg(r) < deg(p)

f(x) = r(x) mod p(x)

Can always be done — best seen by example!

f(x) = x3 + ax2
− (4 + 2a)x+ 1 p(x) = x

2
− 2x− 1 x

2 = p(x) + 2x+ 1

3

Super Quick Review of Polynomial Division
Univariate Polynomial Division

Polynomial division allows us to decompose functions as

f(x) = q(x)p(x) + r(x)

deg(r) < deg(p)

f(x) = r(x) mod p(x)

Can always be done — best seen by example!

f(x) = x3 + ax2
− (4 + 2a)x+ 1 p(x) = x

2
− 2x− 1 x

2 = p(x) + 2x+ 1

f(x) = x (p(x) + 2x+ 1) + a (p(x) + 2x+ 1)− (4 + 2a)x+ 1

= p(x)(x+ a) + 2x2 + a− 3x+ 1

= p(x)(x+ a) + 2(p(x) + 2x+ 1) + a− 3x+ 1

= p(x)(x+ a+ 2) + x+ a+ 3

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can reformulate polynomial division as a row reduction problem

p(x) = 0 mod p(x) x
n
p(x) = 0 mod p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can reformulate polynomial division as a row reduction problem

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

p(x) = 0 mod p(x) x
n
p(x) = 0 mod p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can reformulate polynomial division as a row reduction problem

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

f(x)− x3
− ax2 + (5 + 2a)x+ 1 = 0 mod p(x)

p(x) = 0 mod p(x) x
n
p(x) = 0 mod p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can reformulate polynomial division as a row reduction problem

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

f(x)− x3
− ax2 + (5 + 2a)x+ 1 = 0 mod p(x)

⎡

⎢

⎢

⎣

−1 1 a −(4 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

Cast in (Macaulay) matrix form:

p(x) = 0 mod p(x) x
n
p(x) = 0 mod p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can reformulate polynomial division as a row reduction problem

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

f(x)− x3
− ax2 + (5 + 2a)x+ 1 = 0 mod p(x)

⎡

⎢

⎢

⎣

−1 1 a −(4 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

Cast in (Macaulay) matrix form:
⎡

⎢

⎢

⎣

1 0 0 −1 −3− a

0 1 0 −5 −2

0 0 1 −2 −1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

RowRed

p(x) = 0 mod p(x) x
n
p(x) = 0 mod p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can reformulate polynomial division as a row reduction problem

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

f(x)− x3
− ax2 + (5 + 2a)x+ 1 = 0 mod p(x)

⎡

⎢

⎢

⎣

−1 1 a −(4 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

Cast in (Macaulay) matrix form:
⎡

⎢

⎢

⎣

1 0 0 −1 −3− a

0 1 0 −5 −2

0 0 1 −2 −1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

RowRed

f(x)− 3− a− x = 0 mod p(x)

p(x) = 0 mod p(x) x
n
p(x) = 0 mod p(x)

5

Towards Finite Fields
Polynomial division as row reduction
If all we care about is the remainder, we can reformulate polynomial division as a row reduction problem

x
2
− 2x− 1 = 0 mod p(x)

x
3
− 2x2

− x = 0 mod p(x)

...

Can generate a linear system of equations this way

f(x)− x3
− ax2 + (5 + 2a)x+ 1 = 0 mod p(x)

⎡

⎢

⎢

⎣

−1 1 a −(4 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

Cast in (Macaulay) matrix form:
⎡

⎢

⎢

⎣

1 0 0 −1 −3− a

0 1 0 −5 −2

0 0 1 −2 −1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

RowRed

Useful because there exist very quick ways to do row reduction: Sample over finite fields and reconstruct output

f(x)− 3− a− x = 0 mod p(x)

p(x) = 0 mod p(x) x
n
p(x) = 0 mod p(x)

6

Finite Field Reconstruction
Operations on Matrices M(a1, · · · , an)

6

Finite Field Reconstruction
Operations on Matrices M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

6

Finite Field Reconstruction
Operations on Matrices M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

Algebraic post processing simplification — can become very intensive!

6

Finite Field Reconstruction
Operations on Matrices M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

Algebraic post processing simplification — can become very intensive!

Finite Fields Approach
Substitute numerical
values for parameters

Perform all operations
numerically mod primes

Reconstruct functional output
from numerical sampling

6

Finite Field Reconstruction
Operations on Matrices M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

Algebraic post processing simplification — can become very intensive!

Finite Fields Approach
Substitute numerical
values for parameters

Perform all operations
numerically mod primes

Reconstruct functional output
from numerical sampling

[FiniteFlow, Peraro, 2019]

Complicated cancellations will happen numerically — final reconstructed output already “simplified”

All operations over finite fields handled by the C++/Mathematica package FiniteFlow

6

Finite Field Reconstruction
Operations on Matrices M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

Algebraic post processing simplification — can become very intensive!

Finite Fields Approach
Substitute numerical
values for parameters

Perform all operations
numerically mod primes

Reconstruct functional output
from numerical sampling

[FiniteFlow, Peraro, 2019]

Complicated cancellations will happen numerically — final reconstructed output already “simplified”

⎡

⎢

⎢

⎣

−1 1 a −(4 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

What is reconstructed?

f(x) = x3 + ax2
− (5 + 2a)x+ 1

p(x) = x
2
− 2x− 1

All operations over finite fields handled by the C++/Mathematica package FiniteFlow

6

Finite Field Reconstruction
Operations on Matrices M(a1, · · · , an)

M1 +M2 M1 ·M2 M
−1

RowReduce(M)

Algebraic post processing simplification — can become very intensive!

Finite Fields Approach
Substitute numerical
values for parameters

Perform all operations
numerically mod primes

Reconstruct functional output
from numerical sampling

[FiniteFlow, Peraro, 2019]

Complicated cancellations will happen numerically — final reconstructed output already “simplified”

⎡

⎢

⎢

⎣

−1 1 a −(4 + 2a) 1

0 −1 2 1 0

0 0 −1 2 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)

x3

x2

x

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0

What is reconstructed?

f(x) = x3 + ax2
− (5 + 2a)x+ 1

p(x) = x
2
− 2x− 1

parameters

variables

Only need to
reconstruct
parameters!

R = Q(a)[x]

All operations over finite fields handled by the C++/Mathematica package FiniteFlow

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

Lexicographic: · · · > x
2
> xy

∞
> xy > x > y

∞
> · · · > y > 1

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

Lexicographic: · · · > x
2
> xy

∞
> xy > x > y

∞
> · · · > y > 1

Degree Lexicographic: · · · > y
3
> x

2
> xy > y

2
> x > y > 1

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

Lexicographic: · · · > x
2
> xy

∞
> xy > x > y

∞
> · · · > y > 1

Degree Lexicographic: · · · > y
3
> x

2
> xy > y

2
> x > y > 1

Is the division unique?
Unfortunately, this is not enough to uniquely determine a multivariate polynomial division

I = ⟨xy − x, xy − y − 1⟩Consider . What is x y = ? mod I

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

Lexicographic: · · · > x
2
> xy

∞
> xy > x > y

∞
> · · · > y > 1

Degree Lexicographic: · · · > y
3
> x

2
> xy > y

2
> x > y > 1

Is the division unique?
Unfortunately, this is not enough to uniquely determine a multivariate polynomial division

I = ⟨xy − x, xy − y − 1⟩Consider . What is x y = ? mod I

xy = x mod I

7

Multivariate Polynomial Division (1/3)
Monomial Orderings
For one variable, sorting the monomials from “worst” to “best” is unambiguous

x
n
> x

n−1
> · · · > x

3
> x

2
> x > 1

For more than one variable there are multiple choices one can take

x > y

Lexicographic: · · · > x
2
> xy

∞
> xy > x > y

∞
> · · · > y > 1

Degree Lexicographic: · · · > y
3
> x

2
> xy > y

2
> x > y > 1

Is the division unique?
Unfortunately, this is not enough to uniquely determine a multivariate polynomial division

I = ⟨xy − x, xy − y − 1⟩Consider . What is x y = ? mod I

xy = x mod I xy = y + 1 mod I

Problem normally fixed by introducing Groebner Bases
[Buchberger, 1965]

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of generators for the ideal that has many nice propertiesG I

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of generators for the ideal that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of generators for the ideal that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

I = ⟨xy − x, xy − y − 1⟩ G = ⟨y2 − 1, x− y − 1⟩ (Lexicograhpic)

Any possible combination of the elements of will result in the same polynomial remainderG

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of generators for the ideal that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

I = ⟨xy − x, xy − y − 1⟩ G = ⟨y2 − 1, x− y − 1⟩ (Lexicograhpic)

Any possible combination of the elements of will result in the same polynomial remainderG

xy = (y + 1)y = y + y2 = y + 1 mod G
2 1

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of generators for the ideal that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

I = ⟨xy − x, xy − y − 1⟩ G = ⟨y2 − 1, x− y − 1⟩ (Lexicograhpic)

Any possible combination of the elements of will result in the same polynomial remainderG

xy = (y + 1)y = y + y2 = y + 1 mod G
2 1 xy

2
= x = y + 1

xy
2 = (y + 1)y2 = y + 1

mod G

1

12

2

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of generators for the ideal that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

I = ⟨xy − x, xy − y − 1⟩ G = ⟨y2 − 1, x− y − 1⟩ (Lexicograhpic)

Any possible combination of the elements of will result in the same polynomial remainderG

xy = (y + 1)y = y + y2 = y + 1 mod G
2 1 xy

2
= x = y + 1

xy
2 = (y + 1)y2 = y + 1

mod G

Groebner bases can be very difficult to calculate and are often computational bottlenecks!

1

12

2

8

Multivariate Polynomial Division (2/3)
Groebner Bases
A Groebner basis is a set of generators for the ideal that has many nice propertiesG I

For this talk: Roots of are the same as , and polynomial division ambiguities fixed G = 0 I = 0

I = ⟨xy − x, xy − y − 1⟩ G = ⟨y2 − 1, x− y − 1⟩ (Lexicograhpic)

Any possible combination of the elements of will result in the same polynomial remainderG

xy = (y + 1)y = y + y2 = y + 1 mod G
2 1 xy

2
= x = y + 1

xy
2 = (y + 1)y2 = y + 1

mod G

Groebner bases can be very difficult to calculate and are often computational bottlenecks!

Claim: We can explicitly avoid computing a Groebner basis, and still obtain the correct result from
polynomial division, using row reduction

Allows us to compute polynomial divisions without needing to reconstruct the “intermediate” Groebner Basis

1

12

2

[Faugére, 1999] [Buchberger, 1985]

Avoiding Groebner Bases

9

Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2I = ⟨xy − x, xy − y − 1⟩

9

Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2

Seed a linear system by multiplying by I x
n
y
m

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

I = ⟨xy − x, xy − y − 1⟩

9

Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2

Seed a linear system by multiplying by I x
n
y
m

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 0 0 −2 −2
0 0 1 0 0 0 0 0 −2 −2
0 0 0 1 0 0 0 0 −2 −2
0 0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 1 0 0 −1 −1
0 0 0 0 0 0 1 0 −1 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

RowRed

I = ⟨xy − x, xy − y − 1⟩

9

Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2

Seed a linear system by multiplying by I x
n
y
m

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 0 0 −2 −2
0 0 1 0 0 0 0 0 −2 −2
0 0 0 1 0 0 0 0 −2 −2
0 0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 1 0 0 −1 −1
0 0 0 0 0 0 1 0 −1 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

RowRed

Irreducible monomialsRead off from top row: f(x, y) = y + 1 mod I No explicit Groebner Basis required!

I = ⟨xy − x, xy − y − 1⟩

9

Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2

Seed a linear system by multiplying by I x
n
y
m

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 0 0 −2 −2
0 0 1 0 0 0 0 0 −2 −2
0 0 0 1 0 0 0 0 −2 −2
0 0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 1 0 0 −1 −1
0 0 0 0 0 0 1 0 −1 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

RowRed

Irreducible monomialsRead off from top row: f(x, y) = y + 1 mod I No explicit Groebner Basis required!

I = ⟨xy − x, xy − y − 1⟩

Important to note: this approach does not escape the complexity of computing Groebner Bases

9

Multivariate Polynomial Division (3/3)
Row Reduction Again
We consider again and let f(x, y) = xy2

Seed a linear system by multiplying by I x
n
y
m

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 −1 0 0 0 0 0
0 1 0 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 0 −1 −1
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 0 0 −2 −2
0 0 1 0 0 0 0 0 −2 −2
0 0 0 1 0 0 0 0 −2 −2
0 0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 1 0 0 −1 −1
0 0 0 0 0 0 1 0 −1 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f(x)
x2y2

x2y
x2

xy2

xy
x
y2

y
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

RowRed

Irreducible monomialsRead off from top row: f(x, y) = y + 1 mod I No explicit Groebner Basis required!

I = ⟨xy − x, xy − y − 1⟩

Important to note: this approach does not escape the complexity of computing Groebner Bases

For example: the size of the system one needs to generate is unclear a priori and can be very large
[Buchberger, 1985]

10

Companion Matrices (1/3)
Avoiding Large Systems
If we want to reduce polynomials with large monomial powers, the system to row reduce can become very
large very quickly. Solution to this problem: Companion Matrices

[Sturmfels, 2002]
[Buchberger, 1985]

[Cox, Little O’Shea, 2015]
[Telen, 2020]

[Brunello, Chestnov, Mastrolia, 2024]

10

Companion Matrices (1/3)
Avoiding Large Systems
If we want to reduce polynomials with large monomial powers, the system to row reduce can become very
large very quickly. Solution to this problem: Companion Matrices

Companion matrices are built from taking polynomial divisions of a given function.
[Sturmfels, 2002]

[Buchberger, 1985]

[Cox, Little O’Shea, 2015]
[Telen, 2020]

[Brunello, Chestnov, Mastrolia, 2024]

10

Companion Matrices (1/3)
Avoiding Large Systems
If we want to reduce polynomials with large monomial powers, the system to row reduce can become very
large very quickly. Solution to this problem: Companion Matrices

Companion matrices are built from taking polynomial divisions of a given function.

m = {· · · y, 1}Let be the irreducible monomials of a polynomial system.

[Sturmfels, 2002]
[Buchberger, 1985]

[Cox, Little O’Shea, 2015]
[Telen, 2020]

[Brunello, Chestnov, Mastrolia, 2024]

10

Companion Matrices (1/3)
Avoiding Large Systems
If we want to reduce polynomials with large monomial powers, the system to row reduce can become very
large very quickly. Solution to this problem: Companion Matrices

Companion matrices are built from taking polynomial divisions of a given function.

m = {· · · y, 1}Let be the irreducible monomials of a polynomial system.

m1 · f(x, y) = c11m1 + c12m2 + · · ·

m2 · f(x, y) = c21m1 + c22m2 + · · ·

.

.

.

Mf(x,y) : mod I(x, y)

[Sturmfels, 2002]
[Buchberger, 1985]

[Cox, Little O’Shea, 2015]
[Telen, 2020]

[Brunello, Chestnov, Mastrolia, 2024]

10

Companion Matrices (1/3)
Avoiding Large Systems
If we want to reduce polynomials with large monomial powers, the system to row reduce can become very
large very quickly. Solution to this problem: Companion Matrices

Companion matrices are built from taking polynomial divisions of a given function.

m = {· · · y, 1}Let be the irreducible monomials of a polynomial system.

m1 · f(x, y) = c11m1 + c12m2 + · · ·

m2 · f(x, y) = c21m1 + c22m2 + · · ·

.

.

.

Mf(x,y) : mod I(x, y) Mf(x,y) =

⎡

⎢

⎣

c11 c12 · · ·

c21 c22 · · ·

.

.

.

.

.

.

.
.
.

⎤

⎥

⎦

[Sturmfels, 2002]
[Buchberger, 1985]

[Cox, Little O’Shea, 2015]
[Telen, 2020]

[Brunello, Chestnov, Mastrolia, 2024]

10

Companion Matrices (1/3)
Avoiding Large Systems
If we want to reduce polynomials with large monomial powers, the system to row reduce can become very
large very quickly. Solution to this problem: Companion Matrices

Companion matrices are built from taking polynomial divisions of a given function.

m = {· · · y, 1}Let be the irreducible monomials of a polynomial system.

m1 · f(x, y) = c11m1 + c12m2 + · · ·

m2 · f(x, y) = c21m1 + c22m2 + · · ·

.

.

.

Mf(x,y) : mod I(x, y) Mf(x,y) =

⎡

⎢

⎣

c11 c12 · · ·

c21 c22 · · ·

.

.

.

.

.

.

.
.
.

⎤

⎥

⎦

Key properties of companion matrices:

Mf1+f2 = Mf1 +Mf2 Mf1 f2 = Mf1 Mf2 = Mf2 Mf1 Mfinv = M
−1

f

[Sturmfels, 2002]
[Buchberger, 1985]

[Cox, Little O’Shea, 2015]
[Telen, 2020]

[Brunello, Chestnov, Mastrolia, 2024]

10

Companion Matrices (1/3)
Avoiding Large Systems
If we want to reduce polynomials with large monomial powers, the system to row reduce can become very
large very quickly. Solution to this problem: Companion Matrices

Companion matrices are built from taking polynomial divisions of a given function.

m = {· · · y, 1}Let be the irreducible monomials of a polynomial system.

m1 · f(x, y) = c11m1 + c12m2 + · · ·

m2 · f(x, y) = c21m1 + c22m2 + · · ·

.

.

.

Mf(x,y) : mod I(x, y) Mf(x,y) =

⎡

⎢

⎣

c11 c12 · · ·

c21 c22 · · ·

.

.

.

.

.

.

.
.
.

⎤

⎥

⎦

Key properties of companion matrices:

Mf1+f2 = Mf1 +Mf2 Mf1 f2 = Mf1 Mf2 = Mf2 Mf1 Mfinv = M
−1

f

f(x, y) = (0, · · · , 0, 1) ·Mf(x,y) ·m
T mod I

Remainder can be recovered as:

[Sturmfels, 2002]
[Buchberger, 1985]

[Cox, Little O’Shea, 2015]
[Telen, 2020]

[Brunello, Chestnov, Mastrolia, 2024]

10

Companion Matrices (1/3)
Avoiding Large Systems
If we want to reduce polynomials with large monomial powers, the system to row reduce can become very
large very quickly. Solution to this problem: Companion Matrices

Companion matrices are built from taking polynomial divisions of a given function.

m = {· · · y, 1}Let be the irreducible monomials of a polynomial system.

m1 · f(x, y) = c11m1 + c12m2 + · · ·

m2 · f(x, y) = c21m1 + c22m2 + · · ·

.

.

.

Mf(x,y) : mod I(x, y) Mf(x,y) =

⎡

⎢

⎣

c11 c12 · · ·

c21 c22 · · ·

.

.

.

.

.

.

.
.
.

⎤

⎥

⎦

Key properties of companion matrices:

Mf1+f2 = Mf1 +Mf2 Mf1 f2 = Mf1 Mf2 = Mf2 Mf1 Mfinv = M
−1

f

f(x, y) = (0, · · · , 0, 1) ·Mf(x,y) ·m
T mod I

Remainder can be recovered as:

Strategy: Build and and you can reduce anything with just matrix multiplication! Mx My

[Sturmfels, 2002]
[Buchberger, 1985]

[Cox, Little O’Shea, 2015]
[Telen, 2020]

[Brunello, Chestnov, Mastrolia, 2024]

11

Companion Matrices (2/3)
Examples

I = ⟨xy − x, xy − y⟩ m = {y, 1}

11

Companion Matrices (2/3)
Examples

I = ⟨xy − x, xy − y⟩ m = {y, 1}

Mx :

1 · x = y + 1 mod I

y · x = y + 1 mod I
Mx =

[

1 1

1 1

]

11

Companion Matrices (2/3)
Examples

I = ⟨xy − x, xy − y⟩ m = {y, 1}

Mx :

1 · x = y + 1 mod I

y · x = y + 1 mod I
Mx =

[

1 1

1 1

]

My :
1 · y = y mod I

y · y = 1 mod I
My =

[

0 1

1 0

]

11

Companion Matrices (2/3)
Examples

I = ⟨xy − x, xy − y⟩ m = {y, 1}

Mx :

1 · x = y + 1 mod I

y · x = y + 1 mod I
Mx =

[

1 1

1 1

]

My :
1 · y = y mod I

y · y = 1 mod I
My =

[

0 1

1 0

]

f(x, y) = xy2

Can now consider any function and build it with companion matrices

Mf(x,y) = Mx ·M
2
y =

[

1 1

1 1

]

11

Companion Matrices (2/3)
Examples

I = ⟨xy − x, xy − y⟩ m = {y, 1}

Mx :

1 · x = y + 1 mod I

y · x = y + 1 mod I
Mx =

[

1 1

1 1

]

My :
1 · y = y mod I

y · y = 1 mod I
My =

[

0 1

1 0

]

f(x, y) = xy2

Can now consider any function and build it with companion matrices

Mf(x,y) = Mx ·M
2
y =

[

1 1

1 1

]

r(x, y) = (0, 1) ·

[

1 1
1 1

] [

y

1

]

= y + 1

11

Companion Matrices (2/3)
Examples

I = ⟨xy − x, xy − y⟩ m = {y, 1}

Mx :

1 · x = y + 1 mod I

y · x = y + 1 mod I
Mx =

[

1 1

1 1

]

My :
1 · y = y mod I

y · y = 1 mod I
My =

[

0 1

1 0

]

f(x, y) = xy2

Can now consider any function and build it with companion matrices

Mf(x,y) = Mx ·M
2
y =

[

1 1

1 1

]

r(x, y) = (0, 1) ·

[

1 1
1 1

] [

y

1

]

= y + 1

Can immediately write down the answer for much more complicated expressions!

g(x, y) = a+
x

y100 − 3x+ 2
Mg(x,y) = 1 a+Mx

(

M
100
y − 3Mx + 2 1

)

−1
=

[

1
3 (3a− 1) −

1
3

−

1
3

1
3 (3a− 1)

]

g(x, y) =
1

3
(3a− 1)−

y

3
mod I

12

Companion Matrices (3/3)
Variable Elimination
Often one is interested in projecting/eliminating an equation system down onto one variable “slices”

I = ⟨xy − x, xy − y − 1⟩ {x∗
= 0 , y

∗
= −1} ∪ {x∗

= 2 , y
∗
= 1}

12

Companion Matrices (3/3)
Variable Elimination
Often one is interested in projecting/eliminating an equation system down onto one variable “slices”

I = ⟨xy − x, xy − y − 1⟩ {x∗
= 0 , y

∗
= −1} ∪ {x∗

= 2 , y
∗
= 1}

x

y

12

Companion Matrices (3/3)
Variable Elimination
Often one is interested in projecting/eliminating an equation system down onto one variable “slices”

I = ⟨xy − x, xy − y − 1⟩ {x∗
= 0 , y

∗
= −1} ∪ {x∗

= 2 , y
∗
= 1}

x

y

Elimy(I) = ⟨x(x− 2)⟩

12

Companion Matrices (3/3)
Variable Elimination
Often one is interested in projecting/eliminating an equation system down onto one variable “slices”

I = ⟨xy − x, xy − y − 1⟩ {x∗
= 0 , y

∗
= −1} ∪ {x∗

= 2 , y
∗
= 1}

x

y

Elimx(I) = ⟨y2 − 1⟩

Elimy(I) = ⟨x(x− 2)⟩

12

Companion Matrices (3/3)
Variable Elimination
Often one is interested in projecting/eliminating an equation system down onto one variable “slices”

I = ⟨xy − x, xy − y − 1⟩ {x∗
= 0 , y

∗
= −1} ∪ {x∗

= 2 , y
∗
= 1}

x

y

Elimx(I) = ⟨y2 − 1⟩

Elimy(I) = ⟨x(x− 2)⟩

The eigenvalues of companion matrices encode the roots of the polynomial system. Can be conveniently
accessed by computing characteristic polynomials

12

Companion Matrices (3/3)
Variable Elimination
Often one is interested in projecting/eliminating an equation system down onto one variable “slices”

I = ⟨xy − x, xy − y − 1⟩ {x∗
= 0 , y

∗
= −1} ∪ {x∗

= 2 , y
∗
= 1}

x

y

Elimx(I) = ⟨y2 − 1⟩

Elimy(I) = ⟨x(x− 2)⟩

The eigenvalues of companion matrices encode the roots of the polynomial system. Can be conveniently
accessed by computing characteristic polynomials

Elimx(I) = det(My − y) = det

[

−y 1
1 −y

]

= y2 − 1

Elimy(I) = det(Mx − x) = det

[

1− x 1
1 1− x

]

= x(x− 2)

13

SPQR Summary
A (Mathematica) package that performs polynomial division and reconstruction over finite fields

1
1

1

ideal I f(z)

Mz

Mf(z)

monomial
order

Seeder

FFAlgNodeSparseSolver

Check irreducible
monomials

FFAlgTake

Parser

f(z) mod Icharacteristic
polynomial

13

SPQR Summary
A (Mathematica) package that performs polynomial division and reconstruction over finite fields

Can handle polynomials or
multivariate rational functions as input
to arbitrary nested depth

1
1

1

ideal I f(z)

Mz

Mf(z)

monomial
order

Seeder

FFAlgNodeSparseSolver

Check irreducible
monomials

FFAlgTake

Parser

f(z) mod Icharacteristic
polynomial

13

SPQR Summary
A (Mathematica) package that performs polynomial division and reconstruction over finite fields

Can handle polynomials or
multivariate rational functions as input
to arbitrary nested depth

1
1

1

ideal I f(z)

Mz

Mf(z)

monomial
order

Seeder

FFAlgNodeSparseSolver

Check irreducible
monomials

FFAlgTake

Parser

f(z) mod Icharacteristic
polynomial

No intermediate reconstructions
required ensuring the numerical
cancellations of complex intermediate
stages

13

SPQR Summary
A (Mathematica) package that performs polynomial division and reconstruction over finite fields

Can handle polynomials or
multivariate rational functions as input
to arbitrary nested depth

1
1

1

ideal I f(z)

Mz

Mf(z)

monomial
order

Seeder

FFAlgNodeSparseSolver

Check irreducible
monomials

FFAlgTake

Parser

f(z) mod Icharacteristic
polynomial

No intermediate reconstructions
required ensuring the numerical
cancellations of complex intermediate
stages

Mk A cn�k�1

Mk+1

cn�k

characteristic
polynomial

FFAlgMatMul

FFAlgAdd

FFAlgTakeAndAdd

Characteristic polynomial also
built inside FiniteFlow with the
Faddeev–LeVerrier algorithm

14

Advantages and Disadvantages (1/3)
Complexity of polynomial ideals

R = Q[a1 · · · an][x1 · · ·xn]

parameters variables

14

Advantages and Disadvantages (1/3)
Complexity of polynomial ideals

R = Q[a1 · · · an][x1 · · ·xn]

parameters variables

“Variable complexity” : How many equations are needed for finding a Groebner Basis

Groebner Basis algorithms have fine tuned procedures for keeping this down to a minimum
Our approach (currently) relies on a much coarser and overcomplete system of equations

14

Advantages and Disadvantages (1/3)
Complexity of polynomial ideals

R = Q[a1 · · · an][x1 · · ·xn]

parameters variables

“Parameter complexity” : How complicated are the coefficients of the Groebner Basis polynomials

“Variable complexity” : How many equations are needed for finding a Groebner Basis

Groebner Basis algorithms have fine tuned procedures for keeping this down to a minimum
Our approach (currently) relies on a much coarser and overcomplete system of equations

Groebner Basis algorithms suffer from complicated symbolic processing at intermediate stages
Reconstruction over finite fields completely avoids this problem as cancellations happen numerically!
Can speed up computations by orders of magnitude

15

Advantages and Disadvantages (2/3)

“Variable Complexity”

“Parameter Complexity”

SPQR Approach

CAS Approach

many (physics motivated) problems lie here!

16

Advantages and Disadvantages (3/3)
Resultant Benchmarking (Preliminary)

R = Q(a, b, c, d)[x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Task: Eliminate R(a, b, c, d){x, y, z}

16

Advantages and Disadvantages (3/3)
Resultant Benchmarking (Preliminary)

R = Q(a, b, c, d)[x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Resultant Singular Macaulay 2 Mathematica (+ tricks) SPQR

R(3, 5, 7, d)

R(3, 5, c, d)

R(3, b, c, d)

R(a, b, c, d)

Task: Eliminate R(a, b, c, d){x, y, z}

16

Advantages and Disadvantages (3/3)
Resultant Benchmarking (Preliminary)

R = Q(a, b, c, d)[x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Resultant Singular Macaulay 2 Mathematica (+ tricks) SPQR

R(3, 5, 7, d)

R(3, 5, c, d)

R(3, b, c, d)

R(a, b, c, d)

Task: Eliminate R(a, b, c, d){x, y, z}

≈ 0.06s≈ 0.01s ≈ 0.03s ≈ 0.18s

16

Advantages and Disadvantages (3/3)
Resultant Benchmarking (Preliminary)

R = Q(a, b, c, d)[x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Resultant Singular Macaulay 2 Mathematica (+ tricks) SPQR

R(3, 5, 7, d)

R(3, 5, c, d)

R(3, b, c, d)

R(a, b, c, d)

Task: Eliminate R(a, b, c, d){x, y, z}

≈ 0.06s

≈ 12.40s

≈ 0.01s

≈ 53.29s

≈ 0.03s

≈ 5.03s

≈ 0.18s

≈ 0.20s

16

Advantages and Disadvantages (3/3)
Resultant Benchmarking (Preliminary)

R = Q(a, b, c, d)[x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Resultant Singular Macaulay 2 Mathematica (+ tricks) SPQR

R(3, 5, 7, d)

R(3, 5, c, d)

R(3, b, c, d)

R(a, b, c, d)

Task: Eliminate R(a, b, c, d){x, y, z}

≈ 0.06s

≈ 12.40s

≈ 0.01s

≈ 53.29s

≈ 0.03s

≈ 5.03s

≈ 0.18s

≈ 0.20s

≈ 0.46s≈ 4h 39m> 7d> 7d

16

Advantages and Disadvantages (3/3)
Resultant Benchmarking (Preliminary)

R = Q(a, b, c, d)[x, y, z]

I = ⟨a+ x2y2 + y3 + z − 1, ax+ cxy2 + cy + z2 − 2, a+ bxy2 + b+ x2y2,−c+ dxz + xyz + 1⟩

Resultant Singular Macaulay 2 Mathematica (+ tricks) SPQR

R(3, 5, 7, d)

R(3, 5, c, d)

R(3, b, c, d)

R(a, b, c, d)

The Finite Fields approach is solving a less refined set of equations, but isn’t slowed down by intermediate
cancellations

Task: Eliminate R(a, b, c, d){x, y, z}

≈ 0.06s

≈ 12.40s

≈ 0.01s

≈ 53.29s

≈ 0.03s

≈ 5.03s

> 7d

≈ 0.18s

≈ 0.20s

≈ 0.46s

≈ 1.89s

9 MB degree 34 polynomial

≈ 4h 39m> 7d> 7d

? ?

17

Physics Motivated Examples (1/3)
Landau Singularities of Feynman (Euler) Integrals
Feynman integrals are Euler/Twisted Period integrals

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn [Lee, 2013]

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

17

Physics Motivated Examples (1/3)
Landau Singularities of Feynman (Euler) Integrals
Feynman integrals are Euler/Twisted Period integrals

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn [Lee, 2013]

[Landau, 1960]
[Cutkosky, 1960]

[Abreu, Berghoff, Bourjaily, Britto, Correia, Duhr,
Fevola, Gardi, Giroux, Hannesdottir, Helmer,
Lippestreu, Matsubara-Heo, McLeod, Mizera,
Panzer, Papathanasiou, Polackova, Schwartz,

Tellander, Telen, Vergu, Wiesmann 2017-2025]

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

Landau Analysis: where are the branch points of located?I(sij ,m)

17

Physics Motivated Examples (1/3)
Landau Singularities of Feynman (Euler) Integrals
Feynman integrals are Euler/Twisted Period integrals

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn [Lee, 2013]

[Landau, 1960]
[Cutkosky, 1960]

[Abreu, Berghoff, Bourjaily, Britto, Correia, Duhr,
Fevola, Gardi, Giroux, Hannesdottir, Helmer,
Lippestreu, Matsubara-Heo, McLeod, Mizera,
Panzer, Papathanasiou, Polackova, Schwartz,

Tellander, Telen, Vergu, Wiesmann 2017-2025]

Euler/Twisted Period representations allow us to associate an Euler characteristic to a given Feynman integral χ

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

Landau Analysis: where are the branch points of located?I(sij ,m)

17

Physics Motivated Examples (1/3)
Landau Singularities of Feynman (Euler) Integrals
Feynman integrals are Euler/Twisted Period integrals

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn [Lee, 2013]

[Landau, 1960]
[Cutkosky, 1960]

[Abreu, Berghoff, Bourjaily, Britto, Correia, Duhr,
Fevola, Gardi, Giroux, Hannesdottir, Helmer,
Lippestreu, Matsubara-Heo, McLeod, Mizera,
Panzer, Papathanasiou, Polackova, Schwartz,

Tellander, Telen, Vergu, Wiesmann 2017-2025]

The Landau Variety can be defined as the values of for which the Euler characteristic drops in value {sij ,m}

Euler/Twisted Period representations allow us to associate an Euler characteristic to a given Feynman integral χ

[Mizera, Fevola, Telen, 2023/24][Chestnov, Matsubara-Heo, Munch, Takayama, 2023]

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

Landau Analysis: where are the branch points of located?I(sij ,m)

17

Physics Motivated Examples (1/3)
Landau Singularities of Feynman (Euler) Integrals
Feynman integrals are Euler/Twisted Period integrals

I(sij ,m) =

∫
∞

0

G(x, sij ,m)−d/2 dx1

x1

∧ · · · ∧
dxn

xn [Lee, 2013]

[Landau, 1960]
[Cutkosky, 1960]

[Abreu, Berghoff, Bourjaily, Britto, Correia, Duhr,
Fevola, Gardi, Giroux, Hannesdottir, Helmer,
Lippestreu, Matsubara-Heo, McLeod, Mizera,
Panzer, Papathanasiou, Polackova, Schwartz,

Tellander, Telen, Vergu, Wiesmann 2017-2025]

The Landau Variety can be defined as the values of for which the Euler characteristic drops in value {sij ,m}

Euler/Twisted Period representations allow us to associate an Euler characteristic to a given Feynman integral χ

[Mizera, Fevola, Telen, 2023/24][Chestnov, Matsubara-Heo, Munch, Takayama, 2023]

Parameters (Mandelstam variables) Integration variables

Twist: polynomial raised to a non integer (generic) power

Landau Analysis: where are the branch points of located?I(sij ,m)

χ can be computed by solving systems of polynomial equations

18

Physics Motivated Examples (2/3)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

[Mastrolia, Mizera 2018]
[Lee, 2013]

18

Physics Motivated Examples (2/3)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

ω = 0

∂1G

G
= 0

.

.

.

∂nG

G
= 0

[Mastrolia, Mizera 2018]
[Lee, 2013]

18

Physics Motivated Examples (2/3)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

ω = 0

∂1G

G
= 0

.

.

.

∂nG

G
= 0

∂1G = 0

.

.

.

∂nG = 0

1− x0G = 0

system of polynomial equations!

[Mastrolia, Mizera 2018]
[Lee, 2013]

18

Physics Motivated Examples (2/3)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

ω = 0

∂1G

G
= 0

.

.

.

∂nG

G
= 0

∂1G = 0

.

.

.

∂nG = 0

1− x0G = 0

system of polynomial equations!

x0

x1, · · · , xn

solutions to ω = 0 (χ = 4)

[Mastrolia, Mizera 2018]
[Lee, 2013]

18

Physics Motivated Examples (2/3)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

ω = 0

∂1G

G
= 0

.

.

.

∂nG

G
= 0

∂1G = 0

.

.

.

∂nG = 0

1− x0G = 0

system of polynomial equations!

x0

x1, · · · , xn

solutions to ω = 0 (χ = 4)

as the degenerate configuration is
approached some solutions fly off to
infinity

[Mastrolia, Mizera 2018]
[Lee, 2013]

18

Physics Motivated Examples (2/3)
Computing Euler Characteristics for Landau Analysis

ω = d log
(

G(z)−d/2
)

Computing :χ ω = −

d

2

(

∂1G

G
dx1 + · · ·+

∂nG

G
dxn

)

χ = # solutions to ω = 0

ω = 0

∂1G

G
= 0

.

.

.

∂nG

G
= 0

∂1G = 0

.

.

.

∂nG = 0

1− x0G = 0

system of polynomial equations!

x0

x1, · · · , xn

solutions to ω = 0 (χ = 4)

as the degenerate configuration is
approached some solutions fly off to
infinity

can be detected by checking coefficients of the
remaining one variable polynomial

[Mastrolia, Mizera 2018]
[Lee, 2013]

19

Physics Motivated Examples (3/3)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

[Correia, Sever, Zhibodeov, 2021]

m

19

Physics Motivated Examples (3/3)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral: in the top (max cut) sector alone χ = 60(!)

[Correia, Sever, Zhibodeov, 2021]

m

19

Physics Motivated Examples (3/3)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral: in the top (max cut) sector alone χ = 60(!)

PLD/SOFIA most complicated letter found: 27(m2)3 + 4s2t+ 4st2

[Correia, Sever, Zhibodeov, 2021] [Correia, Giroux, Mizera, 2025]
[Fevola, Mizera, Telen, 2023]

m

19

Physics Motivated Examples (3/3)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral: in the top (max cut) sector alone χ = 60(!)

PLD/SOFIA most complicated letter found: 27(m2)3 + 4s2t+ 4st2

Two new simple letters:

Euler characteristic strategy
{s2 + st+ t2,m2s2 +m2st+ s2t+m2t2 + st2}

[Correia, Sever, Zhibodeov, 2021] [Correia, Giroux, Mizera, 2025]
[Fevola, Mizera, Telen, 2023]

m

19

Physics Motivated Examples (3/3)
Computing Euler Characteristics for Landau Analysis: Three loop envelope (preliminary)

Horrendous integral: in the top (max cut) sector alone χ = 60(!)

PLD/SOFIA most complicated letter found: 27(m2)3 + 4s2t+ 4st2

Two new simple letters:

Euler characteristic strategy

Four new complicated letters:

{s2 + st+ t2,m2s2 +m2st+ s2t+m2t2 + st2}

[Correia, Sever, Zhibodeov, 2021] [Correia, Giroux, Mizera, 2025]
[Fevola, Mizera, Telen, 2023]

m

20

Conclusions and Outlook

Future development directions: A way to generate a smaller set of equations for the row reduction would allow
for the tackling of even more complicated problems — perhaps possible to build equation systems based on the
steps carried out by Groebner Basis algorithms/interface to current Groebner basis tools?

A reconstruction algorithm that factors expressions could save many sample points for sparse rational function
outputs

SPQR is a new open-source Mathematica package for performing polynomial division. It leverages finite field
sampling and reconstruction to process Macaulay matrices from complex polynomial systems with high
efficiency.

This approach avoids heavy symbolic cancellations, often leading to significant speedups compared to
traditional Groebner basis approaches.

The companion matrix formalism helps contain the Macaulay system size, making it possible to handle
larger and more complicated problems

21

(Beta) version is available now at github.com/giu989/spqr

Paper coming soon!

21

Thank you for listening!
(Beta) version is available now at github.com/giu989/spqr

Paper coming soon!

