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The dilogarithm
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Period function of a certain relative cohomology

Volume of hyperbolic knots

Faddeev’s guantum dilogarithm
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Motivation: quantum invariants of hyperbolic knots

Quantization

Hyperbolic Volume = *  Kashaev invariants [Kashaev 95]

K = 41 Asymptotics

Volume Conjecture

Topological invariants as divergent power series / Topological invariants as analytic functions

SL,(C) Chern-Simons on S?\K [Witten 10]

E Localization
o L ¢
Dimo te',G“m“ “ |d|s Invariants < . Andersen-Kashaev state integral: partition
asymptotics expansion to all orders of the Asymptotics function of a 3D Teichmiiller TQET

Kashaev invariant (volume is the leading order) AK volume conjecture



Perturbative Topological invariants of hyperbolic knots

Dimofte-Garoufalidis perturbative invarianats [Dimofte-Garoufalidis 13, Garoufalidis-Strozer-Wheeler 22]

YK(T) = J‘i’(z; 7)? e<%zzr> dz
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4,:A=1,B=2) 5,:(A=2,B=3)

~ 4 i L1 = B
Bein) = pye et e( <2 S exp( - Liyet@) - 2, @~ iy (62 1)

Exponential term Factorally divergent seriesin 1/7

Y . . . . . . A 9) Li,(e(z))
The formal series Y x(7) is defined by formal Gaussian integration at the critical points of V(z) = —z“+ B

P (27i)>



A class of formal integrals

Je—ff@ [g’bo(z)  2® %(Z) -...| dz
T T

f: X --> Cis a multivalued map from a complex n-dimensional variety X

@{(z) are analytic functions of z € X

0(Z (7
+ technical assumptions on e ~%/® Po(z) 7(2) | P2 ...

T 72

Examples: perturbative invariants of hyperbolic knots [DG 13, GSW 22], fermionic traces from toric Calabi-Yau 3-folds [Kashaev-

Marifio 15], hemisphere partition functions in GLSM for hypersurfaces in PV [Knapp-Romo-Scheidegger 16], exact WKB [Aoki-Kawai-
Takei O1],...



Exponential integrals

J e~ (z) dz
€

f: X — Cis aproper algebraic map from a complex n-dimensional algebraic variety X
@(z) is an analytic functionofz € X

€ defines a class in the relative homology H (X, f)

Example: the Airy function z plane

Ai(z) = J e~ (579 ¢
%,



The Andersen-Kashaev state integrals

Partition function of a 3D Teichmuller TQFT that conjecturally describes SL,(C) Chern-Simons theory on S3\K

[ (1) = J D(z ; T)Bl...CD(zn 7 7)5 e(ztAz T)dZ,
S

A e Mat . (Z2),B e Z"the so-called Neumann-Zagier data given by a triangulation of S3\K

nxn

®(z; 7) the Faddeev's quantum dilogarithm, which is a meromorphic function of z € C and analyticint € C~R_

Example: the 4, knot(A = 1,B = 2)

- m 7T

|
141(1') = pge ores J D(z7;7)° e<EZ(ZT + 7+ 1)>dZ
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Goal

« Borel resum divergent asymptotic series and investigate the effectiveness of Borel summation

Y (7) analytic

A 7 plane

asymptotics

3

asymptotics

Y(T) c (]:[[T_l]] : > YS(T) analytic for 7 in a given sector &g

Borel resum




Goal

« Borel resum divergent asymptotic series and investigate the effectiveness of Borel summation

Y (7) analytic

A 7 plane

asymptotics

)

asymptotics

Y(T) c (]:[[T_l]] : > Yg(f) analytic for 7 in a given sector & g

Borel resum

« Describe the Stokes phenomenon

Y, () - Y,(r) = S;,Y,(z) whent € &, NS, forsomeS,, € C

and the constant 8, describing the jump is called the Stokes constant




Airy function

« Exponential integrals along thimbles are the Borel sum of their asymptotics (in 1-dimension [VF-Fenyes 24])

A1(7) analytic

asymptcy \

_ asymptotics
Y(z) € C[[z7'] *

> Yg(f) analytic

Borel resum

« The Stokes phenomenon can be described geometrically, and the Stokes constants can be computed via Picard-

Lefschetz formulas
z plane Z plane
After choosing a basis of H{(X, f) and
7 9. the orientation of the thimbles, we find
2

S R y |
— €1 = 6]

% 1
\ - % ¢, =¢,-1-¢]
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Airy function

« Exponential integrals along thimbles are the Borel sum of their asymptotics (in 1-dimension [VF-Fenyes 24])

A1(7) analytic

asymptcy \

_ asymptotics
Y(z) € C[[z7'] *

> Yg(f) analytic

Borel resum

« The Stokes phenomenon can be described geometrically, and the Stokes constants can be computed via Picard-
Lefschetz formulas

| \ |
z plane ; z plane / After choosing a basis of Hl(X,f) and

dy  the orientation of the thimbles, we find

// -f T °
— ' — _ oot
2 6 _%1
— _ oot +
- % _%2@%1

Intersection number of thimbles

G
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Airy function

« Exponential integrals along thimbles are the Borel sum of their asymptotics (in 1-dimension [VF-Fenyes 24])

A1(7) analytic

asymptot.c/

Y(7) e C[[z7!] *

X

asymptotics

Borel resum

> Yg(f) analytic

« The Stokes phenomenon can be described geometrically, and the Stokes constants can be computed via Picard-

Lefschetz formulas
z plane
1)
G

Z plane

12

7 plane

After choosing a basis of H{(X, f) and the
orientation of the thimbles, we find

A

€T = 67 Yi(z) = Y(2)

)

€I-1-¢7 Y700 =Yi(0-1-Y{(7)




The Andersen-Kashaev state integrals

. Conjecture [Garoufalidis-Gu-Marifio 21] Borel resummation of the perturbative invariants Y g is a linear combination of the

Andersen-Kashaev integral I and its descendants g, »

I (7) analytic

asymptotics Not always!

asymptotics

Y (7) € Cllz7l] < > YK,&(T) analytic

Borel resum

r.
miB  mBt

A
where I, A7) := ,uége_lzfe 2 DO((z—70)r; T)BB<EZ(ZT T+ 1) mzr)dz, withm =0,....,A—1,¢ € Z and
ujf,’[

IK,O,O — IK
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The Andersen-Kashaev state integrals

. Conjecture [Garoufalidis-Gu-Marifio 21] Borel resummation of the perturbative invariants Y g is a linear combination of the

Andersen-Kashaev integral I and its descendants g, »

Perturbative invariants Andersen-Kashaev state integrals

- - A A
Y (7) := J‘P(z; el —z°t ) dz Iy 1 (T) = J O((z— ;1) el —z(zz + 7+ 1) + mzz )dz,
K ( 2 ) Km.¢ . < 2 )

withm=0,....A—letf € ”Z

~ Borel sum
Y(z;7) < > D(z;7)

asymptotics

Borel summation does not always commute with integration on the parameter space
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Main result

Theorem [VF-Wheeler 24] Borel resummation of the perturbative invariants Y g is a linear combination of the Andersen-

Kashaev integral and its descendants I ,, » for K =4, and 3,
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Main result

Theorem [VF-Wheeler 24] Borel resummation of the perturbative invariants Y g is a linear combination of the Andersen-

Kashaev integral and its descendants I ,, » for K =4, and 3,

. The functions I, ,are not thimble integrals; indeed, the contours f , _ are not of steepest descent for the function

Li(e(z) B A
omp Top vyt

V() =B

- However, they form a basis for a relative homology with coefficients

. Hence, the steepest descent contours can be written in terms of the £, _, allowing us to compute the Stokes constants
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Main result

Theorem [VF-Wheeler 24] Borel resummation of the perturbative invariants Y g is a linear combination of the Andersen-

Kashaev integral and its descendants I ,, » for K =4, and 3,

. The functions I, ,are not thimble integrals; indeed, the contours ¥ , _ are not of steepest descent for the function

Li,(e(z)) B A

F—z(z+ 1) V is multivalued

=B Tt

The system of coefficients is given by
- However, they form a basis for a relative homology with coefficients the Stokes phenomenon of the
Faddeev’'s dilogarithm

. Hence, the steepest descent contours can be written in terms of the £ , _, allowing us to compute the Stokes constants
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An homology theory for state integral contours
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An homology theory for state integral contours

e The Riemann surfaceof V T  z

« Fix a branch of Li,(e(z)) and restrict the function V to the Riemann surface X § § § §

Lixe(z,) B
Qri)2 24 2
Liye(-z.)) B B( 1>2 A

| z —— ) +—z(z + D)+mz +n,
—(27i)? 12 2 2 2 ( )

V(z,,m,n) =B 7. (z, + D+mz+n,

AN(z_,m,n) =B

wherem =0,...,A — landn € Z
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An homology theory for state integral contours

e The Riemann surface of V T L § § 4 § §

« Fix a branch of Li,(e(z)) and restrict the function V to the Riemann surface X § § § §

Lixe(z,) B
Qri2 24 2

Li-(e(— B B 1 A
li(fz(ni;)) "1 2<Z— >2 Foyle

2z + DAmzy,

wherem =0,...,A — 1

. Critical points of the function V : £ — C/Z are solutions of an algebraic equation (—=x)* = (1 — x)® and x = e(z)

20



An homology theory for state integral contours
o Arelative homologyforV: 2 — C/Z

A—B
.For z large enough, the function V (resp. A) is dominated by the Gaussian term [ (z) = A 2 (resp. ()= ( ) 72

)

« For generic directions 3 € [0,2x), the steepest descent contours of V (resp. A) are e-bounded away from the branch points

« Define the surface XM,G C 2 by gluing different coordinate charts

A i

S=HHAP &
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An homology theory for state integral contours
o Arelative homologyforV: 2> — C/Z

(A — B)2

.For z large enough, the function V (resp. A) is dominated by the Gaussian term [ (z) = A 2 (resp. ()= )

« For generic directions 3 € [0,2x), the steepest descent contours of V (resp. A) are e-bounded away from the branch points

« Define the surface XM,G C 2 by gluing different coordinate charts

A i

B i -

Proposition [VF-Wheeler 24] The relative homology H, (X, ., f) is finite-dimensional, and a basis is given by the state integrals

contours £ , . with arg(z) =

22



An homology theory for state integral contours

e The system of coefficients

« The integral defining the formal series YK depends on 7 both in the exponential term e(7 V(z)) and the 1-form

0 B
exp( — Li,(e(z)) — kz_‘; (2ni)k—1k—’!‘Liz_k(e(z)) Tl—k) dz € Q'O

.« The Faddeev's dilogarithm ®(z; 7) jumps crossing these green lines, Vel

which represents the Stokes lines for the Borel sum of ‘i’(z; 7)

» Build a sheaf 77 — 2 that includes these contributions (sheaf of resurgent structure), and define the sheaf homology
H 1 (2, 7") lin progress Andersen-VF-Kontsevich-Wheeler]
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The algorithm

The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of YK) in a given direction & in the basis of
state integrals I, ,

. Consider the steepest descent contour Cigp,& through the critical point p

%p,lg
A
Stokes rays
II ‘ I
< % x* >
II7 IV p
9
41
3
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The algorithm

The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of YK) in a given direction & in the basis of
state integrals I, ,

. When Cgp o intersects the green lines, the function V (resp. A) changes, so we need to flow again and consider a new

steepest descent contour @, g

A
II ‘ I < - - . X—’j 13 >
1171 IV 0
41
v
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The algorithm

The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of YK) in a given direction & in the basis of
state integrals I, ,

. When Cgp o intersects the green lines, the function V (resp. A) changes, so we need to flow again and consider a new

steepest descent contour @, g

- Only the contours intersecting the reals contribute to the decomposition

A
1 /74 4 = xS X ?
II7 IV g
4
1 f:—l Lﬂ:O
.
Yo=/yg | =1y + 1
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The algorithm

The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of YK) in a given direction & in the basis of
state integrals I, ,

. When %”p o intersects the green lines, the function V (resp. A) changes, so we need to flow again and consider a new

steepest descent contour @, g

- Only the contours intersecting the reals contribute to the decomposition

AN
TN VR %, X )
II7 IV

q
41
h
Theorem [VF-Wheeler 24] The algorithm ends after finitely many steps
Yy = =lyp+ 1
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The algorithm

The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of YK) in a given direction & in the basis of
state integrals I, ,

- If 9 agrees with the direction of a Stokes ray, there is a saddle connection between two critical points p , p’

. Observe also that ‘@, ; can end in a branch point

A
/|
II ‘ I AR P |
) < % - X >
117 i IV P \
41
~r
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The algorithm

The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of YK) in a given direction & in the basis of
state integrals I, ,

AN
11 I
4,
v
Y& — - = Io,o - 1—1,0
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The algorithm

The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of YK) in a given direction & in the basis of
state integrals I, ,

IT I

II7 IV

Yo=—lyg+ 1) — 6]412,—2+261211,—1 + 2q211,_1—4q10,0
- = Io,o - 1—1,0 — 96110,0
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The algorithm

The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of YK) in a given direction & in the basis of
state integrals I, ,

II7 IV

Yo=—lyo+ 1y — 44]2,—24‘2@211,—1 + 2q211,—1—46110,0
- = Io,o - 1—1,0 — 9410,0
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The Stokes phenomenon

Comparing the Borel sum in two different sectors separated by a Stokes line, we compute the Stokes constants

Va\

« The thimble integral from the other critical point p 1S equal to fo

o A
| Yo =—lo—Lp

I ! I

. 4 -

111 v
o
‘ Yy =ho+ 1

Y, 90, = Ypo =31 Y,0 =Y, =—-9q,

« C. Wheeler also checked the computation using Picard-Lefschetz formulas
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Conclusions
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Conclusions

Perturbative topological invariants of the hyperbolic knots 4, and 5, are described by one-dimensional integrals Y

. Their Borel sum Y g ¢ is an exponential integral along a steepest descent contour for the multivalued function V

. The steepest descent contours for V give classes in a relative homology theory with coefficients

- The Stokes data of the Faddeev’s guantum dilogarithm define the sheaf of coefficients

. A basis for the homology is given by the Andersen-Kashaev state integrals Io,o and their descendants Im,f

Our construction is somehow “ad hoc” for Faddeev's dilogarithm, but the same idea can be generalized to the study of other
exponential integrals, which is part of our joint project with Andersen and Kontsevich
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