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Period function of a certain relative cohomology 

Volume of hyperbolic knots 

Faddeev’s quantum dilogarithm 

 as 

𝖫𝗂2(z) = ∫
1

0
dt1 ∫

1

0
dt2

z
1 − zt1t2

, z ∈ ℂ∖[1,∞)

Φ(zτ; τ) ∼ exp( Li2(e(z))
2π𝗂

τ) ⋅ […] τ → 𝗂∞
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The dilogarithm
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Dimofte-Garoufalidis invariants  
asymptotics expansion to all orders of the 
Kashaev invariant (volume is the leading order)

 Chern-Simons on  [Witten 10]𝖲𝖫2(ℂ) S3∖K

Andersen-Kashaev state integral: partition 
function of a  3D Teichmüller TQFT

Localization

AK volume conjecture

Hyperbolic Volume Kashaev invariants [Kashaev 95] 
Asymptotics

Quantization

Volume Conjecture

Motivation: quantum invariants of hyperbolic knots

Asymptotics

Topological invariants as divergent power series / Topological invariants as analytic functions

K = 41

K = 52



Dimofte-Garoufalidis perturbative invarianats [Dimofte-Garoufalidis 13, Garoufalidis-Strozer-Wheeler 22] 

 

 

Υ̃K(τ) := ∫ Ψ̃(z; τ)B e( A
2

z2τ) dz

Ψ̃(z; τ) = μ8 e− π𝗂
12τ e

π𝗂τ
12 e( Li2(e(z))

(2π𝗂)2
τ) exp( − Li1(e(z)) −

∞

∑
k=2

(2πi)k−1 Bk

k!
Li2−k(e(z)) τ1−k)

Perturbative Topological invariants of hyperbolic knots
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41 : (A = 1 , B = 2) 52 : (A = 2 , B = 3)

Factorally divergent series in 1/τExponential term

The formal series  is defined by formal Gaussian integration at the critical points of  Υ̃K(τ) V(z) =
A
2

z2 + B
Li2(e(z))

(2π𝗂)2



  

 is a multivalued map from a complex n-dimensional variety    

 are analytic functions of   

+ technical assumptions on  

Examples: perturbative invariants of hyperbolic knots [DG 13, GSW 22], fermionic traces from toric Calabi-Yau 3-folds [Kashaev-

Mariño 15], hemisphere partition functions in GLSM for hypersurfaces in  [Knapp-Romo-Scheidegger 16], exact WKB [Aoki-Kawai-
Takei 01],…

∫ e−τ f(z) [φ̃0(z) +
φ̃1(z)

τ
+

φ̃2(z)
τ2

+ …] dz

f : X ⤏ ℂ X

φ̃j(z) z ∈ X

e−τ f(z) [φ̃0(z) +
φ̃1(z)

τ
+

φ̃2(z)
τ2

+ …]

ℙN

A class of formal integrals
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 is a proper algebraic map from a complex n-dimensional algebraic variety    

 is an analytic function of  

 defines a class in the relative homology  

Example: the Airy function  

                                                                  

∫𝒞
e−τ f(z) φ(z) dz

f : X → ℂ X

φ(z) z ∈ X

𝒞 Hn(X, f )

Ai(τ) = ∫𝒞1

e−τ ( z3
3 −z) dz

Exponential integrals

6

𝒞1

 planez

−f



Partition function of a 3D Teichmüller TQFT that conjecturally describes  Chern-Simons theory on   

 

 the so-called Neumann-Zagier data given by a triangulation of  

 the Faddeev’s quantum dilogarithm, which is a meromorphic function of  and analytic in   

Example: the  knot  

SL2(ℂ) S3∖K

IK(τ) = ∫𝒥τ

Φ(z1 τ; τ)B1…Φ(zn τ; τ)Bn e(ztAz τ)dz ,

A ∈ Matn×n(ℤ) , B ∈ ℤn S3∖K

Φ(z; τ) z ∈ ℂ τ ∈ ℂ ∖ ℝ≤0

41 (A = 1 , B = 2)

I41
(τ) = μ2

8 e− π𝗂
6τ e

π𝗂τ
6 ∫𝒥τ

Φ(z τ; τ)2 e( 1
2

z(zτ + τ + 1))dz

The Andersen-Kashaev state integrals
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𝒥0,τ𝒥τ



• Borel resum divergent asymptotic series and investigate the effectiveness of Borel summation 

                                                                                   analytic  

                               analytic for  in a given sector  

• Describe the Stokes phenomenon  

   when  for some  

and the constant  describing the jump is called the Stokes constant

Υ(τ)

Υ̃(τ) ∈ ℂ[[τ−1]] Υ̂ϑ(τ) τ 𝒮ϑ

Υ̂1(τ) − Υ̂2(τ) = S12Υ̂2(τ) τ ∈ 𝒮1 ∩ 𝒮2 S12 ∈ ℂ

S12

Goal
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𝒮ϑ

Borel resum

asymptotics

 planeτ

asymptotics ?
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𝒮ϑ

𝒮1

𝒮2

Borel resum

 planeτ

asymptotics ?

asymptotics



• Exponential integrals along thimbles are the Borel sum of their asymptotics (in 1-dimension [VF-Fenyes 24]) 

 analytic 

                               analytic 

• The Stokes phenomenon can be described geometrically, and the Stokes constants can be computed via Picard-
Lefschetz formulas

Ai(τ)

Υ̃(τ) ∈ ℂ[[τ−1]] Υ̂ϑ(τ)

Airy function
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asymptotics

Borel resum

✓

𝒞+
1

𝒞+
2

𝒞−
1

𝒞−
2

 planez  planez

asymptotics

−f

ϑ+

ϑ−

After choosing a basis of  and 
the orientation of the thimbles, we find

H1(X, f )

        𝒞−
2 = 𝒞+

2 − 1 ⋅ 𝒞+
1 Υ̂−

2 (τ) = Υ̂+
2 (τ) + 1 ⋅ Υ̂+

1 (τ)

                         𝒞−
1 = 𝒞+

1 Υ̂−
1 (τ) = Υ̂+

1 (τ)
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The Andersen-Kashaev state integrals
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• Conjecture [Garoufalidis-Gu-Mariño 21] Borel resummation of the perturbative invariants  is a linear combination of the 

Andersen-Kashaev integral  and its descendants   

 analytic 

                               analytic 

where  with  and 

Υ̃K
IK IK,m,ℓ

IK(τ)

Υ̃K(τ) ∈ ℂ[[τ−1]] Υ̂K,ϑ(τ)

IK,m,ℓ(τ) := μB
8 e− π𝗂B

12τ e
π𝗂Bτ
12 ∫𝒥ℓ,τ

Φ((z−ℓ)τ; τ)B e( A
2

z(zτ + τ + 1)+mzτ)dz , m = 0,…, A − 1 , ℓ ∈ ℤ

IK,0,0 = IK

Borel resum

asymptotics Not always! 

asymptotics



The Andersen-Kashaev state integrals
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• Conjecture [Garoufalidis-Gu-Mariño 21] Borel resummation of the perturbative invariants  is a linear combination of the 

Andersen-Kashaev integral  and its descendants   

Borel summation does not always commute with integration on the parameter space

Υ̃K
IK IK,m,ℓ

Andersen-Kashaev state integrals 

 

with  et 

IK,m,ℓ(τ) := ∫𝒥ℓ,τ

Φ((z − ℓ)τ; τ)B e( A
2

z(zτ + τ + 1) + mzτ)dz ,

m = 0,…, A − 1 ℓ ∈ ℤ

Borel sum
                                            Ψ̃(z; τ) Φ(z; τ)

asymptotics 

Perturbative invariants 

Υ̃K(τ) := ∫ Ψ̃(z; τ)B e( A
2

z2τ) dz



Main result
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Theorem [VF-Wheeler 24] Borel resummation of the perturbative invariants  is a linear combination of the Andersen-

Kashaev integral and its descendants  for  

• The functions  are not thimble integrals; indeed, the contours  are not of steepest descent for the functions 

 for  

• However, they form a basis for a relative homology with coefficients  

• Hence, the steepest descent contours can be written in terms of the  , allowing us to compute the Stokes constants    

Υ̃K
IK,m,ℓ K = 41  and 52

IK,m,ℓ 𝒥ℓ,τ

V(z, m) = B
Li2(e(z))

(2πi)2
+

B
24

+
A
2

z(z + 1) + mz , m = 0,…, A − 1

𝒥ℓ,τ
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• However, they form a basis for a relative homology with coefficients  

• Hence, the steepest descent contours can be written in terms of the  , allowing us to compute the Stokes constants    

Υ̃K
IK,m,ℓ K = 41  and 52

IK,m,ℓ 𝒥ℓ,τ

V(z) = B
Li2(e(z))

(2πi)2
+

B
24

+
A
2

z(z + 1)

𝒥ℓ,τ

The system of coefficients is given by 
the Stokes phenomenon of the 
Faddeev’s dilogarithm

Main result
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  is multivaluedV
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An homology theory for state integral contours



An homology theory for state integral contours
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• The Riemann surface of   

• Fix a branch of  and restrict the function  to the Riemann surface   

                                         

where and  

• Critical points of the function  are solutions of an algebraic equation  [ADD]

V

Li2(e(z)) V Σ

V(z+, m, n) = B
Li2(e(z+))

(2πi)2
+

B
24

+
A
2

z+(z+ + 1)+m z ++n ,

Λ(z−, m, n) = B
Li2(e(−z−))

−(2πi)2
+

B
12

−
B
2 (z− −

1
2 )2 +

A
2

z−(z− + 1)+m z−+n ,

m = 0,…, A − 1 n ∈ ℤ

V : Σ → ℂ/ℤ

z+

z−



An homology theory for state integral contours
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• The Riemann surface of   

• Fix a branch of  and restrict the function  to the Riemann surface   

                                         

where  

• Critical points of the function  are solutions of an algebraic equation   and 

V

Li2(e(z)) V Σ

V(z+, m) = B
Li2(e(z+))

(2πi)2
+

B
24

+
A
2

z+(z+ + 1)+m z + ,

Λ(z−, m) = B
Li2(e(−z−))

−(2πi)2
+

B
12

−
B
2 (z− −

1
2 )2 +

A
2

z−(z− + 1)+m z− ,

m = 0,…, A − 1

V : Σ → ℂ/ℤ (−x)A = (1 − x)B x = e(z)

z+

z−



• A relative homology for  

•For  large enough, the function  (resp. ) is dominated by the Gaussian term   (resp.   ) 

•For generic directions , the steepest descent contours of  (resp. ) are -bounded away from the branch points 

•Define the surface  by gluing different coordinate charts     

Proposition [VF-Wheeler 24] The relative homology  is finite-dimensional, and a basis is given by the state integrals 

contours  with 

V : Σ → ℂ/ℤ

z V Λ f+(z) = A
2 z2 f−(z) = (A − B)

2 z2

ϑ ∈ [0,2π) V Λ ϵ

XM,ϵ ⊂ Σ

H1(XM,ϵ , f )
𝒥ℓ,τ arg(τ) = ϑ

An homology theory for state integral contours

21

z−

𝗑𝗑𝗑 𝗑 𝗑 𝗑 𝗑
z+

𝗑𝗑𝗑 𝗑 𝗑 𝗑 𝗑
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An homology theory for state integral contours
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z−

𝗑𝗑𝗑 𝗑 𝗑 𝗑 𝗑
z+

𝗑𝗑𝗑 𝗑 𝗑 𝗑 𝗑

−𝖨𝗆(we−𝗂ϑ) > L

f+ f−



An homology theory for state integral contours
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• The system of coefficients 

• The integral defining the formal series  depends on  both in the exponential term  and the 1-form

   

• The Faddeev’s dilogarithm  jumps crossing these green lines,  

• Build a sheaf  that includes these contributions (sheaf of resurgent structure), and define the sheaf homology 
 [in progress Andersen-VF-Kontsevich-Wheeler] 

Υ̃K τ e(τ V(z))

exp( − Li1(e(z)) −
∞

∑
k=2

(2πi)k−1 Bk

k!
Li2−k(e(z)) τ1−k) dz ∈ Ω1(Σ)[[τ−1]]

Φ(z; τ)

𝒱 → Σ
H1(Σ , 𝒱)

θ = arg(−1/τ)

z+

𝗑𝗑𝗑 𝗑 𝗑 𝗑 𝗑which represents the Stokes lines for the Borel sum of Ψ̃(z; τ)



The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of ) in a given direction  in the basis of 
state integrals  

• Consider the steepest descent contour  through the critical point 

Υ̃K ϑ
IK,m,ℓ

𝒞p,ϑ p

24

The algorithm

41

𝒞p,ϑ

ϑ

Stokes rays

p



The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of ) in a given direction  in the basis of 
state integrals  

• When  intersects the green lines, the function  (resp. ) changes, so we need to flow again and consider a new 

steepest descent contour  

• Only the contours intersecting the reals will contribute to the decomposition  

Υ̃K ϑ
IK,m,ℓ

𝒞p,ϑ V Λ
𝒞q,ϑ
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The algorithm

41

p
q
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The algorithm

41

Υ̂ϑ = I0,0 + q2I2,−1 = I0,0 + I1,0

p
q

ℓ = 0ℓ = − 1



The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of ) in a given direction  in the basis of 
state integrals  

• When  intersects the green lines, the function  (resp. ) changes, so we need to flow again and consider a new 
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• Only the contours intersecting the reals contribute to the decomposition 
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The algorithm

41

Υ̂ϑ = I0,0 + q2I2,−1 = I0,0 + I1,0

p
q

Theorem [VF-Wheeler 24] The algorithm ends after finitely many steps



The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of ) in a given direction  in the basis of 
state integrals  

• If  agrees with the direction of a Stokes ray, there is a saddle connection between two critical points  

• Observe also that  can end in a branch point 

                                                                                                      

                                                                                                   

Υ̃K ϑ
IK,m,ℓ

ϑ p , p′￼

𝒞p,ϑ

28

The algorithm

41

p

p′￼
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The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of ) in a given direction  in the basis of 
state integrals 

Υ̃K ϑ
IK,m,ℓ

Υ̂ϑ = −I0,0 + I0,−1 = − I0,0 − I−1,0

The algorithm

41
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The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of ) in a given direction  in the basis of 
state integrals 

Υ̃K ϑ
IK,m,ℓ

                                                             Υ̂ϑ = −I0,0 + I0,−1 − q4I2,−2+2q2I1,−1 + 2q2I1,−1−4qI0,0
= − I0,0 − I−1,0 − 9qI0,0

The algorithm

41
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The algorithm to compute the decomposition of thimble integrals (i.e. the Borel sum of ) in a given direction  in the basis of 
state integrals 

Υ̃K ϑ
IK,m,ℓ

41

                                                             Υ̂ϑ = −I0,0 + I0,−1 − q4I2,−2+2q2I1,−1 + 2q2I1,−1−4qI0,0
= − I0,0 − I−1,0 − 9qI0,0

The algorithm



The Stokes phenomenon

32

Comparing the Borel sum in two different sectors separated by a Stokes line, we compute the Stokes constants 

• The thimble integral from the other critical point  is equal to  

• C. Wheeler also checked the computation using Picard-Lefschetz formulas  

Υ̂p′￼,ϑ I0,0

Υ̂ϑ+
= − I0,0 − I−1,0

Υ̂ϑ−
= I0,0 + I1,0

Υ̂ϑ−
= − I0,0 − I−1,0

Υ̂ϑ+
= − I0,0 − I−1,0 − 9qI0,0

Υ̂p,ϑ+
− Υ̂p,ϑ−

= 3 I0,0 Υ̂p,ϑ+
− Υ̂p,ϑ−

= − 9q I0,0
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Conclusions



Conclusions
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Perturbative topological invariants of the hyperbolic knots  and  are described by one-dimensional integrals  

• Their Borel sum  is an exponential integral along a steepest descent contour for the multivalued function  

• The steepest descent contours for  give classes in a relative homology theory with coefficients 

• The Stokes data of the Faddeev’s quantum dilogarithm define the sheaf of coefficients  

• A basis for the homology is given by the Andersen-Kashaev state integrals  and their descendants  

Our construction is somehow “ad hoc” for Faddeev’s dilogarithm, but the same idea can be generalized to the study of other 
exponential integrals, which is part of our joint project with Andersen and Kontsevich 

41 52 Υ̃K

Υ̂K,ϑ V

V

I0,0 Im,ℓ
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Thank you for your attention


