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Introduction



Feynman Integrals Are Holonomic Functions

Key object of interest:

(1) .. (am)" dan  dam

lm’ ' - A Nh , cC .M, Dii
m-pi) /{a,>0} (G(a; m, p))P/2 am G € Cla, m;, pi]

Abstractly:
- Restriction of GKZ systems are holonomic.
Concretely:

- Systematic (/ brute force) way via IBP to find family
C(X){h, ..., I;} (master integrals), s.th. closed under d.

(Pfaffian System:)  d(/,l,..., 1) = AX)(I, 12y ..., 1)

- Minimal number of master integrals determined by G(«; m, p).
- Decomposition of I into basis by intersection theory.



D-ideal approach

Can also directly study the differential equations for I

Pi(x,0x) @ I(x) = 0, I=1...,N

- Encode properties of I(x), i.e. symmetries (scaling)
- Direct study of I(x) (e.g. banana family)

- D-module theory...

Implementation in Macaulay?2:
Systematically constructing “connection matrices” from D-ideal with
GrObnel’ baseS, based ON [saito, Sturmfels, Takayama ‘0]

<P,'(X, ax) ‘ =1 ... : /\/> connectionMatrices dT: A(X)T

Collection of differential operators Pfaffian System




Weyl Algebras and Grobner Bases




Weyl algebras and their ideals

Weyl Algebra of linear differential operators

Weyl Algebra D, := Clxq, ..., Xn](D, ..., On) C Endc(C[X])
Rational Weyl Algebra Ry = C(Xq, ..., Xn) {1, ..., On) C Endc(C(X))

Left Ideals in D, (resp. Ry)
A system of linear differential equations with polynomial /
rational coefficients:

Pief=...=P,ef=0, P; € D, (resp. Ry).
Left ideal has the same solutions

VP € Dy(Pr,.sPr), Pef=0
Dn<P1,..., Pk> = {Q1 P+ ...+ Q- Py ‘ Q,‘ € Dn}



D-modules to study properties of solutionsto/ef =0

Study D/I to study properties of solutionsto [ef=0
- Regularity, local basis expansions,...

Algebraization of solutions:
Sol(l) = Homp(D/I, O)
lef=0 +— ¢:[1]—f D-linear

Theorem (Cauchy-Kovalevskaya-Kashiwara)
For a holonomic D-ideal I, and on a nhd away from the singular

locus
R

dime(Sol(l)) = dimey R—”l.
n



Pfaffian systems for finite holonomic rank ideals

Assume dimgx,,.. x,) Rn/Rnl < o0, and sy, ..., s, € R, form a basis:

Definition (Pfaffian System)

For a D, ideal | of finite holonomic rank r, the Pfaffian system of |
associated to the basis sy, ..., S, is

(0) ()

Siey a3 a;, Siey
(Diff. Egs.): 9| | =] : .. : i=1...,n
soy)  \d® . a®) \sey
AEMat(C(x,... Xn))
(1)
such that the connection matrices A; satisfy
S1 aﬁ? aﬁ? S1
(R, module): 9|+ [=|: -~ : mod Ryl
s/ \a® ... ) \s



Pfaffian systems for finite holonomic rank ideals (in short)

Assume dimgy,,.. x,) Rn/Rnl < o0, and sy, ..., s, € R, form a basis:

Definition (Pfaffian System)
For a D, ideal | of finite holonomic rank r, the Pfaffian system of |
associated to the basis sq,...,s, IS

(Diff. Egs.:  dy=Ay, A=) A-dx (3)
such that the connection matrices A; satisfy

(R, module): 0,-S=AS mod Ryl (4)

Question: Are there examples for master integrals where we cannot

write | = (P el,...,P el)?



Pfaffian Systems via Grobner
Bases




Excourse Grobner Bases

Ubiquitous in (computational) algebraic geometry, study
ClX1y ey Xnl /{f1s ooy fR)

- Images of algebraic morphisms (V(1)) (elimination)
- Complements of varieties V(1)\V(J) (ideal quotient)

Definition
For < a monomial (term) order on {x{"...x3"}

- Initial Ideal: in(1) := (It<(f) | f € /), example...
- Grobner Basis: A collection g, ..., gy, such that
I=(g1,.--,9n) and in< (1) = (It<(g1), - - ., lt<(gn))-

Immediate: Standard monomials s; € {x{"...x5"}\in<(/) provide a

C-basis of
Clx1y ..+, Xn]

C[x]/C[x]! := TR AR 2



Grobner Bases for D, and R,

Grobner bases exist in some non-commutative settings, too:

D, Rn
{xgxw...xgﬂa{’m..aﬁ"} {8 ... 00}
C-coefficients C(xa, ..., Xxn)-coefficients
{g1,...,9k} is GB w.rt. = {g1,...,gr} IS GBW.IL < |ga

an elimination order <

Immediate: Standard monomials s; € {9 ...xy"}\ in<(Ral) provide
a C(xq,...,xp)-basis of
C(Xj’ e ,Xn)<a17 ...,(’9n)

(P, ..., P '

R, /Ryl =



Normal Form via Grobner Basis

Goal: Choose a 'good’ representative for [P] € Ry /Ryl
= e.g of [0s]] in terms of [s1],...,[s/].

Lemma

Fix Ryl and <. For all [P] € R,/I, there exists a unique normal form
R € Ry, such that

P=R mod Ry, and monomials(R) Nin<(Rnl) = 0.

- Normal form algorithm for D, described in saio, sturmfets, rakayame; ‘o1,
Extends to Ry.

Consequence: normalForm; <(P) decomposes as a C(x)-linear
combination of the standard monomials.



Connection matrices for standard monomials

Compute connection matrices via normal form:
normaIForm,(a,Sq) = a11(X)S1 + ...+ a1r(X)Sr
normalForm;(9;S;) = ax1(X)s1 + ... + azr(X)S/

normalForm;(9;s;) = an(X)s1 + ... + ar(X)s,

= Ai = (X)) pi=1,.

Computation for other bases via gauge transform.

1



ConnectionMatrices in Macaulay2

[@ Grayson, Daniel R. and Stillman, Michael E.
Macaulay2, a software system for research in algebraic geometry.

Available at http://www2.macaulay2.com

@ Gorlach, Koefler, Sattelberger, Sayrafi, Schroeder, W, and Zaffalon.
Connection Matrices in Macaulay2.

arxXiv:2504.01362

Some of the implemented methods for R,/

normalForm standardMonomials connectionMatrices
gaugeMatrix gaugeTransform


http://www2.macaulay2.com

Going backwards




Going back?

se [(a . a\ fsey
D c = : : , Vi

Srey aﬁ? aﬁ? Srey

AieMat(C(Xq,...,Xn))
Each row, is a differential eq./operator annihilating y:

<(9,'Sj = (0}1(.)51 P ooo P aj(r/)sj)) oy=0

HOW mUCh Of Dnl (rather Rnl) can we reCOVGI’7 Ongoing work by Sattelberger and Rodriguez



Thank you for listening!
Questions?
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