

Pfaffian Systems and Gröbner Bases

From ideals to Pfaffian systems

arXiv:2504.01362

w/ Görlach, Koefler, Sattelberger, Sayrafi, Schroeder, and Zaffalon

Nicolas Weiss September 23rd, 2025

MathemAmplitudes 2025, Mainz

Table of contents

- 1. Introduction
- 2. Weyl Algebras and Gröbner Bases
- 3. Pfaffian Systems via Gröbner Bases
- 4. Going backwards

Introduction

Feynman Integrals Are Holonomic Functions

Key object of interest:

$$I(m, p; \nu) = \int_{\{\alpha_i > 0\}} \frac{(\alpha_1)^{\nu_1} \dots (\alpha_m)^{\nu_m}}{(\mathcal{G}(\alpha; m, p))^{D/2}} \frac{d\alpha_1}{\alpha_1} \dots \frac{d\alpha_m}{\alpha_m}, \qquad \mathcal{G} \in \mathbb{C}[\alpha, m_i, p_{ij}]$$

Abstractly:

· Restriction of GKZ systems are holonomic.

Concretely:

• Systematic (/ brute force) way via IBP to find family $\mathbb{C}(x)\{I_1,...,I_r\}$ (master integrals), s.th. closed under d.

(Pfaffian System:)
$$d(I, I_2, ..., I_r)^t = A(x)(I, I_2, ..., I_r)^t$$

- Minimal number of master integrals determined by $\mathcal{G}(\alpha; m, p)$.
 - Decomposition of I into basis by intersection theory.

D-ideal approach

Can also directly study the differential equations for I:

$$P_i(x, \partial_x) \bullet I(x) = 0, \qquad i = 1, \dots, N$$

- Encode properties of I(x), i.e. symmetries (scaling)
- Direct study of I(x) (e.g. banana family)
- · D-module theory...

Implementation in Macaulay2:

Systematically constructing "connection matrices" from *D*-ideal with Gröbner bases, based on [Saito, Sturmfels, Takayama '00]:

$$\langle P_i(x, \partial_x) \mid i = 1, \dots, N \rangle$$

Collection of differential operators

$$d\vec{l} = A(x)\vec{l}$$
Pfaffian System

Weyl Algebras and Gröbner Bases

Weyl algebras and their ideals

Weyl Algebra of linear differential operators

$$\mbox{Weyl Algebra} \qquad \mbox{$\mathsf{D}_n:=\mathbb{C}[x_1,...,x_n]\langle\partial_1,...,\partial_n\rangle\subset \mathsf{End}_{\mathbb{C}}(\mathbb{C}[\mathbf{x}])$} \\ \mbox{Rational Weyl Algebra} \qquad \mbox{$\mathsf{R}_n:=\mathbb{C}(x_1,...,x_n)\langle\partial_1,...,\partial_n\rangle\subset \mathsf{End}_{\mathbb{C}}(\mathbb{C}(\mathbf{x}))$} \\ \end{array}$$

Left Ideals in D_n (resp. R_n)

A system of **linear** differential equations with **polynomial** / rational coefficients:

$$P_1 \bullet f = \ldots = P_r \bullet f = 0, \qquad P_i \in D_n \text{ (resp. } R_n\text{)}.$$

Left ideal has the same solutions

$$\forall P \in \mathbf{D}_n \langle P_1, ..., P_k \rangle, \quad P \bullet f = 0$$

$$\mathbf{D}_n \langle P_1, ..., P_k \rangle := \{ Q_1 \cdot P_1 + ... + Q_k \cdot P_k \mid Q_i \in \mathbf{D}_n \}$$

4

D-modules to study properties of solutions to $I \bullet f = 0$

Study D/I to study properties of solutions to $I \bullet f = 0$

· Regularity, local basis expansions,...

Algebraization of solutions:

$$Sol(I) = \operatorname{Hom}_{\mathbb{D}}(\mathbb{D}/I, \mathcal{O})$$

$$I \bullet f = 0 \quad \longleftrightarrow \quad \varphi : [1] \mapsto f \quad \text{D-linear}$$

Theorem (Cauchy-Kovalevskaya-Kashiwara)

For a holonomic D-ideal I, and on a nhd away from the singular locus

$$\dim_{\mathbb{C}}(\operatorname{Sol}(I)) = \dim_{\mathbb{C}(x)} \frac{R_n}{R_n I}.$$

5

Pfaffian systems for finite holonomic rank ideals

Assume $\dim_{\mathbb{C}(X_1,...,X_n)} R_n/R_nI < \infty$, and $s_1,...,s_r \in R_n$ form a basis:

Definition (Pfaffian System)

For a D_n ideal I of finite holonomic rank r, the **Pfaffian system** of I associated to the basis $s_1, ..., s_r$ is

(Diff. Eqs.):
$$\partial_{i} \bullet \begin{pmatrix} S_{1} \bullet y \\ \vdots \\ S_{r} \bullet y \end{pmatrix} = \underbrace{\begin{pmatrix} a_{11}^{(i)} & \dots & a_{1r}^{(i)} \\ \vdots & \ddots & \vdots \\ a_{r1}^{(i)} & \dots & a_{rr}^{(i)} \end{pmatrix}}_{A_{i} \in Mat(\mathbb{C}(x_{1},\dots,x_{n}))} \begin{pmatrix} S_{1} \bullet y \\ \vdots \\ S_{r} \bullet y \end{pmatrix} \qquad i = 1,\dots,n$$

such that the **connection matrices** A_i satisfy

$$(\mathbf{R}_n \text{ module}): \qquad \partial_i \cdot \begin{pmatrix} \mathbf{S}_1 \\ \vdots \\ \mathbf{S}_r \end{pmatrix} = \begin{pmatrix} a_{11}^{(i)} & \dots & a_{1r}^{(i)} \\ \vdots & \ddots & \vdots \\ a_{r1}^{(i)} & \dots & a_{rr}^{(i)} \end{pmatrix} \begin{pmatrix} \mathbf{S}_1 \\ \vdots \\ \mathbf{S}_r \end{pmatrix} \quad \text{mod} \quad \mathbf{R}_n \mathbf{I}$$

6

(1)

Pfaffian systems for finite holonomic rank ideals (in short)

Assume $\dim_{\mathbb{C}(X_1,...,X_n)} R_n/R_n I < \infty$, and $s_1,...,s_r \in R_n$ form a basis:

Definition (Pfaffian System)

For a D_n ideal I of finite holonomic rank r, the **Pfaffian system** of I associated to the basis $s_1, ..., s_r$ is

(Diff. Eqs.):
$$d\vec{y} = A\vec{y}, \qquad A = \sum A_i \cdot dx_i$$
 (3)

such that the **connection matrices** A_i satisfy

$$(\mathbf{R}_n \; \mathbf{module}): \qquad \partial_i \cdot \vec{s} = A_i \vec{s} \quad \mathbf{mod} \quad \mathbf{R}_n \mathbf{I}$$
 (4)

Question: Are there examples for master integrals where we cannot write $\vec{l} = (P_1 \bullet l, ..., P_r \bullet l)$?

7

Pfaffian Systems via Gröbner

Bases

Excourse Gröbner Bases

Ubiquitous in (computational) algebraic geometry, study $\mathbb{C}[x_1,...,x_n]/\langle f_1,...,f_k\rangle$

- Images of algebraic morphisms $\varphi(V(I))$ (elimination)
- Complements of varieties $V(I)\setminus V(J)$ (ideal quotient)
- ..

Definition

For \prec a monomial (term) order on $\{x_1^{\alpha_1} \dots x_n^{\alpha_n}\}$

- Initial Ideal: $in_{\prec}(I) := \langle It_{\prec}(f) \mid f \in I \rangle$, example...
- Gröbner Basis: A collection g_1, \ldots, g_N , such that

$$I = \langle g_1, \dots, g_N \rangle$$
 and $\operatorname{in}_{\prec}(I) = \langle \operatorname{lt}_{\prec}(g_1), \dots, \operatorname{lt}_{\prec}(g_N) \rangle$.

Immediate: Standard monomials $s_i \in \{x_1^{\alpha_1} \dots x_n^{\alpha_n}\} \setminus \text{in}_{\prec}(I)$ provide a \mathbb{C} -basis of

$$\mathbb{C}[\mathbf{x}]/\mathbb{C}[\mathbf{x}]I := \frac{\mathbb{C}[x_1, \dots, x_n]}{\langle f_1, \dots, f_n \rangle}.$$

Gröbner Bases for D_n and R_n

Gröbner bases exist in some non-commutative settings, too:

$$\begin{array}{ll} \mathsf{D}_n & \mathsf{R}_n \\ \left\{ x_1^{\alpha_1} \dots x_n^{\alpha_n} \partial_1^{\beta_1} \dots \partial_n^{\beta_n} \right\} & \left\{ \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n} \right\} \\ \\ \mathbb{C}\text{-coefficients} & \mathbb{C}(x_1, \dots, x_n)\text{-coefficients} \\ \left\{ g_1, \dots, g_k \right\} \text{ is GB w.r.t.} & \Rightarrow & \left\{ g_1, \dots, g_k \right\} \text{ is GB w.r.t.} \prec |_{\partial^{\alpha}} \\ \\ \text{an elimination order} \prec & \end{array}$$

Immediate: Standard monomials $s_i \in \{\partial_1^{\alpha_1} \dots x_n^{\alpha_n}\} \setminus \operatorname{in}_{\prec}(R_n I)$ provide a $\mathbb{C}(x_1, ..., x_n)$ -basis of

$$R_n/R_nI:=\frac{\mathbb{C}(x_1,\ldots,x_n)\langle\partial_1,...,\partial_n\rangle}{\langle P_1,...,P_k\rangle}.$$

Normal Form via Gröbner Basis

Goal: Choose a 'good' representative for $[P] \in \mathbf{R}_n/\mathbf{R}_n I$. \Rightarrow e.g. of $[\partial s_j]$ in terms of $[s_1], \dots, [s_r]$.

Lemma

Fix R_nI and \prec . For all $[P] \in R_n/I$, there exists a unique normal form $R \in R_n$, such that

$$P = R \mod R_n I$$
, and monomials $(R) \cap \operatorname{in}_{\prec}(R_n I) = \emptyset$.

• Normal form algorithm for \mathbf{D}_n described in [Saito, Sturmfels, Takayama; '00]. Extends to \mathbf{R}_n .

Consequence: normalForm_{I, \prec}(P) decomposes as a $\mathbb{C}(\mathbf{x})$ -linear combination of the standard monomials.

Connection matrices for standard monomials

Compute connection matrices via normal form:

$$\begin{split} \text{normalForm}_I(\partial_i s_1) &= a_{11}(x) s_1 + \ldots + a_{1r}(x) s_r \\ \text{normalForm}_I(\partial_i s_2) &= a_{21}(x) s_1 + \ldots + a_{2r}(x) s_r \\ &\vdots \\ \text{normalForm}_I(\partial_i s_r) &= a_{r1}(x) s_1 + \ldots + a_{rr}(x) s_r \end{split}$$

$$\Rightarrow A_i = (a_{kl}(x))_{kl=1,...,r}$$

Computation for other bases via gauge transform.

ConnectionMatrices in Macaulay2

Grayson, Daniel R. and Stillman, Michael E.

Macaulay2, a software system for research in algebraic geometry.

Available at http://www2.macaulay2.com

Görlach, Koefler, Sattelberger, Sayrafi, Schroeder, W, and Zaffalon.

Connection Matrices in Macaulay2.

arXiv:2504.01362

Some of the **implemented methods** for $R_n I$:

normalForm standardMonomials connectionMatrices gaugeMatrix gaugeTransform ...

Going backwards

Going back?

$$\partial_{i} \bullet \begin{pmatrix} S_{1} \bullet y \\ \vdots \\ S_{r} \bullet y \end{pmatrix} = \underbrace{\begin{pmatrix} a_{11}^{(i)} & \dots & a_{1r}^{(i)} \\ \vdots & \ddots & \vdots \\ a_{r1}^{(i)} & \dots & a_{rr}^{(i)} \end{pmatrix}}_{A_{i} \in Mat(\mathbb{C}(x_{1}, \dots, x_{n}))} \begin{pmatrix} S_{1} \bullet y \\ \vdots \\ S_{r} \bullet y \end{pmatrix}, \quad \forall i$$

Each row, is a differential eq./operator annihilating y:

$$\left(\partial_i s_j - \left(a_{j1}^{(i)} s_1 + \dots + a_{jr}^{(i)} s_j\right)\right) \bullet y = 0$$

How much of $D_n I$ (rather $R_n I$) can we recover? Ongoing work by Sattelberger and Rodriguez

Thank you for listening! Questions?