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Combinatorial Correlators

Generalized Euler Integral

v dx dx
d(c1y. .. em) = /(Zl(:c) —c1)®t .. (bm(z) —cm)’m et .. .w,,”ln—l AN
r T Torp
where T is a twisted n-cycle of X, and s € (C\ {0})™, v € (C\ {1})" and
4 (z) = agl)zl + 4 a%l)zn, 200 o (@) = agm)xl + -+ an" x, are linear forms.
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Combinatorial Correlators

Generalized Euler Integral

v dx dx
o(c1,y. .y Cm) = /(Zl(x) —c1)’l ... (bm(z) —cm)’mayt . apn LA A
r T B
where T is a twisted n-cycle of X, and s € (C\ {0})™, v € (C\ {1})" and
4 (z) = agl)ml 44 ag)zn, 200 o (@) = agm)axl 4+ anm)xn are linear forms.

Two-Site Cosmological Correlators

1 dx1 dxo
¢(c1,c,c3) = xS —— N —=
( ) /1" (z1 + c1)(z2 + c2)(z1 + 22 + ¢3) 2 T9

Goal of this Paper

For ¢ a combinatorial correlator, we would like to construct combinatorially a D-ideal
I annihilating ¢.



Definitions

Weil algebra

» Weil Algebra Dy, = Clet, ..., ¢m]{0c;,- - -, 0Oc,, ). Non-commutative but the
generators satisfy Leibniz's rule: Oc;¢; — ¢;0¢; =1

» Rational Weil algebra: Ry = C(c1,-.-,¢m){0cqy-- -5 0cm)-
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Definitions

Weil algebra

» Weil Algebra Dy, = Clet, ..., ¢m]{0c;,- - -, 0Oc,, ). Non-commutative but the
generators satisfy Leibniz's rule: Oc;¢; — ¢;0¢; =1

» Rational Weil algebra: Ry, = C(c1,...,¢m){Ocys---30cm)-

» Y Cm

Holonomic Rank

Let I be a left-ideal of Dy,. The holonomic rank of I is the dimension of Ry, /R I as
a C(e1, . .., cm)-vector space.

Annihilator of a Function

Annp(f) :={P € Dy | Pe f =0} is a Dp,-ideal.
We call f holonomic if there exists an ideal I C Annp(f) such that I has finite
holonomic rank.

Shift Algebra

Sn =Clvg, ..., l/n]<o'il, A cri}). Non-commutative, but the generators satisfy

oy = (v + 1)0511.

Wi
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Construction of the ideal
First Replacement Rule

o
dc;

¢(Cla~~~7cm =

We can rewrite this as

and more generally

/H Z—cz o

-1
Oc; 0= —sio," @

Bei) ++ O 0= (—



Construction of the ideal

First Replacement Rule

1o} (e o) = H 5 L R R L RS dxzy
(967; 1’~~~7m - Z—CZ 1 n 1
We can rewrite this as
Oc;, P = —sia;l o,
and more generally
Oeyy + Oy, o= (—1)s; 54, 0; U‘;i ° .
Second Replacement Rule
The integration by parts gives
m m
= E PI) o¢>—/ 0] OH(E'fc)Si gt g =2
j s - zj 7 7 1 n
- r @il
=1

a=1
m

IBP ) = dx
= —(l/]'—1)/H(€i—ci)s7‘l‘lfl...x;J 1$$Ln 71/\
r

x1
=1

It implies the replacement rules: (v; — o,,] ep=> " J

dxn
Tn
dxn
Tn
dxn
Tn
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Construction of the ideal
Homogeneity Operator
¢(c1,...,cm) is homogeneous, i.e.,
d(ACL, .y Aem) = AStT o Fsmtvitedvn ey e,

This implies that

n

m
H:=c¢10¢; + ...+ cm0e,, — (Z v; + Z s;) € AnnD(s’y)(d))A

=1 =1
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Construction of the ideal

Homogeneity Operator

¢(c1,...,cm) is homogeneous, i.e.,
d(ACL, .y Aem) = AStT o Fsmtvitedvn ey e,

This implies that

n m
H:=c18c; + ...+ cm0e,, — (Z vi + Z sj) € Annp (s ().

=1 =1

Operators from the Hyperplanes

With n = (Hzl(& — cl-)si):c”df, the relation

/agi)xlﬁ'ﬁ*“"i‘/agf)lnn—/Cm = /(fz‘—cz‘)ﬂ
r r r r

can be rewritten in terms of shift operators:
|:agl>0—u1 TP oo qF agzz)o'un - Ci:| °op =05,00.
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Construction of the ideal

Operators from Circuits and Syzygies

If we can find {i1,...,%} C [m] and k polynomials p1,...,px € Cle1,...,cm] and
g € Clet, . . ., em], such that

p1(li; —ciy) + -+ oe(liy, —cip) = g,

we have

k k .
HZI(ZL — )% 70 vy, A%1 dxy
ijsija;j°¢: ZP]’S%WIIH Ty ?/\T
=1 rio Hj;él:l i — Cig 1 n

[LZ G — i) ' 1 Zn

k m .
H =) dxq dz
= / Zpisil(‘ei]‘ - Cij)lilixul ) mzni ASEN =
i

:qacil 80¢k ° .
This implies that

P18y 0y + -+ Prsi, 0;,

- qacil co 8Cik € AnnD(s,u)(¢)’
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Construction of the ideal

Operators from Circuits

Let
agl) a§2> L agm)
A= : : :
a%l) a512> L aglm)
be the matrix of coefficients of the hyperplane arrangement, C' = {i1,...,i} C [m]
be a circuit of A and A¢c = [a(i1)|a(i2)| e |a(ik)] the corresponding submatrix. Let
P1
be a column of ker(A¢) and let ¢ = ¢;;p1 + - - - + ¢4, pr. Then,
Pk

p1(lsy —cig) + -+ pr(ls, —ci) = a.
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Construction of the ideal

Operators from Circuits

Let
agn agz) o a5m>
A= : : :
a%l) af) L aglm)
be the matrix of coefficients of the hyperplane arrangement, C' = {i1,...,i} C [m]
be a circuit of A and A¢c = [a(i1)|a(i2)| e |a(ik)] the corresponding submatrix. Let
P1
be a column of ker(A¢) and let ¢ = ¢;;p1 + - - - + ¢4, pr. Then,
Pk

p1(liy —ciy) + - +or(ly, —cip) = q.

Operators from Syzygies

Let A be the matrix of coefficients of the hyperplane arrangement as before. After
performing a syzygy computation, we obtain k& polynomials p1, ..., pr such that

p1(li; —ciy)+ - +pp(ls, —ciy,) = 0.
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Example of the Two-Site
Homogeneity Operator

H=c10c + ...+ cm0c,, — (26 — 3).

Operators from the Hyperplanes

Ly = ﬁ ] [01821 + 01831 Ocy + clagl Oes + C10c; Oey Oy
— (2e - 3)321 — (6 —2)0c; 0cy — (€ — 2)8cq Ocy + 802803] :

Ly = i 1 (02381% + 202, + ey — (e — 2)662) ,

Ls = 2 i 1 (c30e1 ey + €302, + Bey — (€ — 2)0ecs) -

Operators from Circuits

P= (cl —C2 — C3)a¢31 acg 803 P (8{;26¢3 — Bcl 863 = 801 8c2)
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Example of the Two-Site
Homogeneity Operator

H=c10c + ...+ cm0c,, — (26 — 3).
Operators from the Hyperplanes

1
Ly = e [c183, + €182, Bc, + €102, By + €181 8 Bcs

— (26 = 8)82, — (€ — 2)Bc1 8 — (€ — 2)8e; Beg + ey Bes |

1
Ly = —— (€200 0cn + 202, + 0y — (6 = D0es) ,

1
Ly = —— (306, 0y + 302, + Oe; — (¢ — 2)0c3) -
e—1

Operators from Circuits

P = (cl —C2 — C3)ac1 acg 803 -+ (8{;26¢3 = Bcl 8,;3 = 801 8c2)

Proposition

The holonomic rank of this ideal I generated by H, L1, L2, L3 and P is 4. Moreover,
I is the restricted GKZ-ideal.
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Results and Conjectures

Proposition

If n = 1, the combinatorial correlator is holonomic and its holonomic rank at most m.

Proposition

If n =1 or n = 2, the singular locus of the D,,-ideal I is contained in the
discriminantal arrangement of A.

Conjecture

The D,,-ideal I has finite holonomic rank and its singular locus is contained in the
discriminantal arrangement of A.

Conjecture
The D,,-ideal I is the restricted GKZ-ideal.
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