Differential Equations for Moving Hyperplane Arrangements

joint work with Anna-Laura Sattelberger

Mainz, 22nd September 2025

Anaëlle Pfister

Combinatorial Correlators

Generalized Euler Integral

$$\phi(c_1, \dots, c_m) = \int_{\Gamma} (\ell_1(x) - c_1)^{s_1} \dots (\ell_m(x) - c_m)^{s_m} x_1^{\nu_1} \dots x_n^{\nu_n} \frac{dx_1}{x_1} \wedge \dots \wedge \frac{dx_n}{x_n}$$

where Γ is a twisted n-cycle of X, and $s\in (\mathbb{C}\setminus\{0\})^m,\, \nu\in (\mathbb{C}\setminus\{1\})^n$ and $\ell_1(x)=a_1^{(1)}x_1+\cdots+a_n^{(1)}x_n,\ldots,\ell_m(x)=a_1^{(m)}x_1+\cdots+a_n^{(m)}x_n$ are linear forms.

Combinatorial Correlators

Generalized Euler Integral

$$\phi(c_1, \dots, c_m) = \int_{\Gamma} (\ell_1(x) - c_1)^{s_1} \dots (\ell_m(x) - c_m)^{s_m} x_1^{\nu_1} \dots x_n^{\nu_n} \frac{dx_1}{x_1} \wedge \dots \wedge \frac{dx_n}{x_n}$$

where Γ is a twisted n-cycle of X, and $s\in (\mathbb{C}\setminus\{0\})^m$, $\nu\in (\mathbb{C}\setminus\{1\})^n$ and $\ell_1(x)=a_1^{(1)}x_1+\cdots+a_n^{(1)}x_n,\ldots,\ell_m(x)=a_1^{(m)}x_1+\cdots+a_n^{(m)}x_n$ are linear forms.

Two-Site Cosmological Correlators

$$\phi(c_1, c_2, c_3) = \int_{\Gamma} \frac{1}{(x_1 + c_1)(x_2 + c_2)(x_1 + x_2 + c_3)} x_1^{\varepsilon} x_2^{\varepsilon} \frac{dx_1}{x_1} \wedge \frac{dx_2}{x_2}$$

Combinatorial Correlators

Generalized Euler Integral

$$\phi(c_1, \dots, c_m) = \int_{\Gamma} (\ell_1(x) - c_1)^{s_1} \dots (\ell_m(x) - c_m)^{s_m} x_1^{\nu_1} \dots x_n^{\nu_n} \frac{dx_1}{x_1} \wedge \dots \wedge \frac{dx_n}{x_n}$$

where Γ is a twisted n-cycle of X, and $s\in (\mathbb{C}\setminus\{0\})^m,\, \nu\in (\mathbb{C}\setminus\{1\})^n$ and $\ell_1(x)=a_1^{(1)}x_1+\cdots+a_n^{(1)}x_n,\ldots,\ell_m(x)=a_1^{(m)}x_1+\cdots+a_n^{(m)}x_n$ are linear forms.

Two-Site Cosmological Correlators

$$\phi(c_1, c_2, c_3) = \int_{\Gamma} \frac{1}{(x_1 + c_1)(x_2 + c_2)(x_1 + x_2 + c_3)} x_1^{\varepsilon} x_2^{\varepsilon} \frac{dx_1}{x_1} \wedge \frac{dx_2}{x_2}$$

Goal of this Paper

For ϕ a combinatorial correlator, we would like to construct combinatorially a $D\text{-}\mathrm{ideal}$ I annihilating $\phi.$

Weil algebra

- ▶ Weil Algebra $D_m = \mathbb{C}[c_1,\dots,c_m]\langle \partial_{c_1},\dots,\partial_{c_m}\rangle$. Non-commutative but the generators satisfy Leibniz's rule: $\partial_{c_i}c_i c_i\partial_{c_i} = 1$
- ▶ Rational Weil algebra: $R_m = \mathbb{C}(c_1, \ldots, c_m) \langle \partial_{c_1}, \ldots, \partial_{c_m} \rangle$.

Weil algebra

- ▶ Weil Algebra $D_m = \mathbb{C}[c_1,\ldots,c_m]\langle \partial_{c_1},\ldots,\partial_{c_m} \rangle$. Non-commutative but the generators satisfy Leibniz's rule: $\partial_{c_i}c_i c_i\partial_{c_i} = 1$
- ▶ Rational Weil algebra: $R_m = \mathbb{C}(c_1, \ldots, c_m) \langle \partial_{c_1}, \ldots, \partial_{c_m} \rangle$.

Holonomic Rank

Let I be a left-ideal of $D_m.$ The holonomic rank of I is the dimension of R_m/R_mI as a $\mathbb{C}(c_1,\dots,c_m)\text{-vector space}.$

Weil algebra

- ▶ Weil Algebra $D_m = \mathbb{C}[c_1,\ldots,c_m]\langle \partial_{c_1},\ldots,\partial_{c_m} \rangle$. Non-commutative but the generators satisfy Leibniz's rule: $\partial_{c_i}c_i-c_i\partial_{c_i}=1$
- ▶ Rational Weil algebra: $R_m = \mathbb{C}(c_1, \ldots, c_m) \langle \partial_{c_1}, \ldots, \partial_{c_m} \rangle$.

Holonomic Rank

Let I be a left-ideal of $D_m.$ The holonomic rank of I is the dimension of R_m/R_mI as a $\mathbb{C}(c_1,\dots,c_m)\text{-vector space}.$

Annihilator of a Function

 $\operatorname{Ann}_D(f) := \{P \in D_m \mid P \bullet f = 0\} \text{ is a } D_m\text{-ideal}.$

We call f holonomic if there exists an ideal $I\subseteq Ann_D(f)$ such that I has finite holonomic rank.

Weil algebra

- ▶ Weil Algebra $D_m = \mathbb{C}[c_1,\ldots,c_m]\langle \partial_{c_1},\ldots,\partial_{c_m} \rangle$. Non-commutative but the generators satisfy Leibniz's rule: $\partial_{c_i}c_i-c_i\partial_{c_i}=1$
- ▶ Rational Weil algebra: $R_m = \mathbb{C}(c_1, \ldots, c_m) \langle \partial_{c_1}, \ldots, \partial_{c_m} \rangle$.

Holonomic Rank

Let I be a left-ideal of $D_m.$ The holonomic rank of I is the dimension of R_m/R_mI as a $\mathbb{C}(c_1,\dots,c_m)\text{-vector space}.$

Annihilator of a Function

 $\operatorname{Ann}_D(f) := \{ P \in D_m \mid P \bullet f = 0 \} \text{ is a } D_m \text{-ideal.}$

We call f holonomic if there exists an ideal $I \subseteq Ann_D(f)$ such that I has finite holonomic rank.

Shift Algebra

 $S_n=\mathbb{C}[
u_1,\dots,
u_n]\langle\sigma^{\pm 1}_{
u_1},\dots,\sigma^{\pm 1}_{
u_n}
angle$. Non-commutative, but the generators satisfy

$$\sigma_{\nu_i}^{\pm 1} \nu_i = (\nu_i \pm 1) \sigma_{\nu_i}^{\pm 1}.$$

First Replacement Rule

$$\frac{\partial}{\partial c_i}\phi(c_1,\ldots,c_m) = -s_i \cdot \int_{\Gamma} \frac{\prod_{j=1}^m (\ell_j - c_j)^{s_j}}{(\ell_i - c_i)} x_1^{\nu_1} \cdots x_n^{\nu_n} \frac{dx_1}{x_1} \wedge \cdots \frac{dx_n}{x_n}$$

We can rewrite this as

$$\partial_{c_i} \bullet \phi = -s_i \sigma_{s_i}^{-1} \bullet \phi,$$

and more generally

$$\partial_{c_{i_1}} \cdots \partial_{c_{i_k}} \bullet \phi = (-1)^k s_{i_1} \cdots s_{i_k} \sigma_{s_{i_1}}^{-1} \cdots \sigma_{s_{i_k}}^{-1} \bullet \phi.$$

First Replacement Rule

$$\frac{\partial}{\partial c_i}\phi(c_1,\ldots,c_m) = -s_i \cdot \int_{\Gamma} \frac{\prod_{j=1}^m (\ell_j - c_j)^{s_j}}{(\ell_i - c_i)} x_1^{\nu_1} \cdots x_n^{\nu_n} \frac{dx_1}{x_1} \wedge \cdots \frac{dx_n}{x_n}$$

We can rewrite this as

$$\partial_{c_i} \bullet \phi = -s_i \sigma_{s_i}^{-1} \bullet \phi,$$

and more generally

$$\partial_{c_{i_1}} \cdots \partial_{c_{i_k}} \bullet \phi = (-1)^k s_{i_1} \cdots s_{i_k} \sigma_{s_{i_1}}^{-1} \cdots \sigma_{s_{i_k}}^{-1} \bullet \phi.$$

Second Replacement Rule

The integration by parts gives

$$-\sum_{i=1}^{m} a_j^{(i)} \partial_{c_i} \bullet \phi = \int_{\Gamma} \left(\partial_{x_j} \bullet \prod_{i=1}^{m} (\ell_i - c_i)^{s_i} \right) x_1^{\nu_1} \cdots x_n^{\nu_n} \frac{dx_1}{x_1} \wedge \cdots \wedge \frac{dx_n}{x_n}$$

$$\stackrel{\mathsf{IBP}}{=} -(\nu_j - 1) \int_{\Gamma} \prod_{i=1}^m (\ell_i - c_i)^{s_i} x_1^{\nu_1} \cdots x_j^{\nu_j - 1} \cdots x_n^{\nu_n} \frac{dx_1}{x_1} \wedge \cdots \wedge \frac{dx_n}{x_n}$$

It implies the replacement rules: $(\nu_j-1)\sigma_{\nu_j}^{-1}\bullet\phi=\sum_{i=1}^m a_j^{(i)}\partial_{c_i}\bullet\phi$

Homogeneity Operator

 $\phi(c_1,\ldots,c_m)$ is homogeneous, i.e.,

$$\phi(\lambda c_1, \dots, \lambda c_m) = \lambda^{s_1 + \dots + s_m + \nu_1 + \dots + \nu_n} \phi(c_1, \dots, c_m).$$

This implies that

$$H := c_1 \partial_{c_1} + \ldots + c_m \partial_{c_m} - (\sum_{i=1}^m \nu_i + \sum_{j=1}^m s_j) \in \operatorname{Ann}_{D(s,\nu)}(\phi).$$

Homogeneity Operator

 $\phi(c_1,\ldots,c_m)$ is homogeneous, i.e.,

$$\phi(\lambda c_1, \dots, \lambda c_m) = \lambda^{s_1 + \dots + s_m + \nu_1 + \dots + \nu_n} \phi(c_1, \dots, c_m).$$

This implies that

$$H := c_1 \partial_{c_1} + \ldots + c_m \partial_{c_m} - (\sum_{i=1}^n \nu_i + \sum_{j=1}^m s_j) \in \operatorname{Ann}_{D(s,\nu)}(\phi).$$

Operators from the Hyperplanes

With $\eta = (\prod_{i=1}^m (\ell_i - c_i)^{s_i}) x^{\nu} \frac{dx}{x}$, the relation

$$\int_{\Gamma} a_1^{(i)} x_1 \eta + \dots + \int_{\Gamma} a_n^{(i)} x_n \eta - \int_{\Gamma} c_i \eta = \int_{\Gamma} (\ell_i - c_i) \eta$$

can be rewritten in terms of shift operators:

$$\left[a_1^{(i)}\sigma_{\nu_1} + \dots + a_n^{(i)}\sigma_{\nu_n} - c_i\right] \bullet \phi = \sigma_{s_i} \bullet \phi.$$

Operators from Circuits and Syzygies

If we can find $\{i_1,\ldots,i_k\}\subseteq [m]$ and k polynomials $p_1,\ldots,p_k\in\mathbb{C}[c_1,\ldots,c_m]$ and $q\in\mathbb{C}[c_1,\ldots,c_m]$, such that

$$p_1(\ell_{i_1} - c_{i_1}) + \dots + p_k(\ell_{i_k} - c_{i_k}) = q,$$

we have

$$\begin{split} \sum_{j=1}^k p_j s_{i_j} \partial_{\hat{i}_j} \bullet \phi &= \int_{\Gamma} \sum_{j=1}^k p_j s_{i_j} \frac{\prod_{l=1}^m (\ell_l - c_l)^{s_j}}{\prod_{j \neq l=1}^m (\ell_{i_l} - c_{i_l})} x_1^{\nu_1} \cdots x_n^{\nu_n} \frac{dx_1}{x_1} \wedge \cdots \frac{dx_n}{x_n} \\ &= \int_{\Gamma} \sum_{j=1}^k p_i s_{i_1} (\ell_{i_j} - c_{i_j}) \frac{\prod_{l=1}^m (\ell_l - c_l)^{s_j}}{\prod_{l=1}^m (\ell_{i_l} - c_{i_l})} x_1^{\nu_1} \cdots x_n^{\nu_n} \frac{dx_1}{x_1} \wedge \cdots \frac{dx_n}{x_n} \\ &= q \partial_{c_{i_1}} \cdots \partial_{c_{i_k}} \bullet \phi. \end{split}$$

This implies that

$$p_1 s_{i_1} \partial_{\hat{i}_1} + \dots + p_k s_{i_k} \partial_{\hat{i}_k} - q \, \partial_{c_{i_1}} \dots \, \partial_{c_{i_k}} \in \operatorname{Ann}_{D(s,\nu)}(\phi).$$

Operators from Circuits

Let

$$A = \begin{bmatrix} a_1^{(1)} & a_1^{(2)} & \cdots & a_1^{(m)} \\ \vdots & \vdots & & \vdots \\ a_n^{(1)} & a_n^{(2)} & \cdots & a_n^{(m)} \end{bmatrix}$$

be the matrix of coefficients of the hyperplane arrangement, $C = \{i_1, \dots, i_k\} \subset [m]$ be a circuit of A and $A_C=\left[a^{(i_1)}|a^{(i_2)}|\cdots|a^{(i_k)}
ight]$ the corresponding submatrix. Let

$$\begin{bmatrix} p_1 \\ \vdots \\ p_n \end{bmatrix}$$

be a column of $\ker(A_C)$ and let $q=c_{i_1}p_1+\cdots+c_{i_k}p_k.$ Then,

$$p_1(\ell_{i_1}-c_{i_1})+\cdots+p_k(\ell_{i_k}-c_{i_k})=q.$$

Operators from Circuits

Let

$$A = \begin{bmatrix} a_1^{(1)} & a_1^{(2)} & \cdots & a_1^{(m)} \\ \vdots & \vdots & & \vdots \\ a_n^{(1)} & a_n^{(2)} & \cdots & a_n^{(m)} \end{bmatrix}$$

be the matrix of coefficients of the hyperplane arrangement, $C=\{i_1,\ldots,i_k\}\subset [m]$ be a circuit of A and $A_C=\left\lceil a^{(i_1)}|a^{(i_2)}|\cdots|a^{(i_k)}\right\rceil$ the corresponding submatrix. Let

$$\begin{bmatrix} p_1 \\ \vdots \\ p_k \end{bmatrix} \text{ be a column of } \ker(A_C) \text{ and let } q = c_{i_1}p_1 + \dots + c_{i_k}p_k. \text{ Then,}$$

$$p_1(\ell_{i_1}-c_{i_1})+\cdots+p_k(\ell_{i_k}-c_{i_k})=q.$$

Operators from Syzygies

Let A be the matrix of coefficients of the hyperplane arrangement as before. After performing a syzygy computation, we obtain k polynomials p_1,\ldots,p_k such that

$$p_1(\ell_{i_1}-c_{i_1})+\cdots+p_k(\ell_{i_k}-c_{i_k})=0.$$

Example of the Two-Site

Homogeneity Operator

$$H = c_1 \partial_{c_1} + \ldots + c_m \partial_{c_m} - (2\varepsilon - 3).$$

Operators from the Hyperplanes

$$L_{1} = \frac{1}{(\varepsilon - 1)^{2}} \cdot \left[c_{1} \partial_{c_{1}}^{3} + c_{1} \partial_{c_{1}}^{2} \partial_{c_{2}} + c_{1} \partial_{c_{1}}^{2} \partial_{c_{3}} + c_{1} \partial_{c_{1}} \partial_{c_{2}} \partial_{c_{3}} \right.$$

$$\left. - (2\varepsilon - 3) \partial_{c_{1}}^{2} - (\varepsilon - 2) \partial_{c_{1}} \partial_{c_{2}} - (\varepsilon - 2) \partial_{c_{1}} \partial_{c_{3}} + \partial_{c_{2}} \partial_{c_{3}} \right],$$

$$L_{2} = \frac{1}{\varepsilon - 1} \left(c_{2} \partial_{c_{1}} \partial_{c_{2}} + c_{2} \partial_{c_{2}}^{2} + \partial_{c_{1}} - (\varepsilon - 2) \partial_{c_{2}} \right),$$

$$L_{3} = \frac{1}{\varepsilon - 1} \left(c_{3} \partial_{c_{1}} \partial_{c_{3}} + c_{3} \partial_{c_{3}}^{2} + \partial_{c_{1}} - (\varepsilon - 2) \partial_{c_{3}} \right).$$

Operators from Circuits

$$P = (c_1 - c_2 - c_3)\partial_{c_1}\partial_{c_2}\partial_{c_3} + (\partial_{c_2}\partial_{c_3} - \partial_{c_1}\partial_{c_3} - \partial_{c_1}\partial_{c_2})$$

Example of the Two-Site

Homogeneity Operator

$$H = c_1 \partial_{c_1} + \ldots + c_m \partial_{c_m} - (2\varepsilon - 3).$$

Operators from the Hyperplanes

$$L_{1} = \frac{1}{(\varepsilon - 1)^{2}} \cdot \left[c_{1} \partial_{c_{1}}^{3} + c_{1} \partial_{c_{1}}^{2} \partial_{c_{2}} + c_{1} \partial_{c_{1}}^{2} \partial_{c_{3}} + c_{1} \partial_{c_{1}} \partial_{c_{2}} \partial_{c_{3}} \right.$$

$$\left. - (2\varepsilon - 3) \partial_{c_{1}}^{2} - (\varepsilon - 2) \partial_{c_{1}} \partial_{c_{2}} - (\varepsilon - 2) \partial_{c_{1}} \partial_{c_{3}} + \partial_{c_{2}} \partial_{c_{3}} \right],$$

$$L_{2} = \frac{1}{\varepsilon - 1} \left(c_{2} \partial_{c_{1}} \partial_{c_{2}} + c_{2} \partial_{c_{2}}^{2} + \partial_{c_{1}} - (\varepsilon - 2) \partial_{c_{2}} \right),$$

$$L_{3} = \frac{1}{\varepsilon - 1} \left(c_{3} \partial_{c_{1}} \partial_{c_{3}} + c_{3} \partial_{c_{3}}^{2} + \partial_{c_{1}} - (\varepsilon - 2) \partial_{c_{3}} \right).$$

Operators from Circuits

$$P = (c_1 - c_2 - c_3)\partial_{c_1}\partial_{c_2}\partial_{c_3} + (\partial_{c_2}\partial_{c_3} - \partial_{c_1}\partial_{c_3} - \partial_{c_1}\partial_{c_2})$$

Proposition

The holonomic rank of this ideal I generated by H, L_1, L_2, L_3 and P is 4. Moreover, I is the restricted GKZ-ideal.

Results and Conjectures

Proposition

If n=1, the combinatorial correlator is holonomic and its holonomic rank at most m.

Proposition

If n=1 or n=2, the singular locus of the ${\cal D}_m$ -ideal I is contained in the discriminantal arrangement of A.

Conjecture

The D_m -ideal I has finite holonomic rank and its singular locus is contained in the discriminantal arrangement of A.

Conjecture

The D_m -ideal I is the restricted GKZ-ideal.