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One Particle

¥ universe +

In physics, particles are represented by momentum vectors p
in Minkowski space R1T9, with Lorentzian inner product

pP-4q = poqo — p1q1 — -+ — Pdqd-
The universal speed limit states that p - p > 0 for each particle.
A particle is massless if the equality p - p = 0 holds.

MaSS|eSSZ th|nk photon Positive Geometry in Particle Physics and Cosmology

Massive: think proton
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The Lightcone
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Several Particles
Consider n particles, with momenta p(1), p( .. p(n) ¢ R1+9

The Lorentz group SO(1, d) acts on such configurations.
Kinematic data are invariant under this action.

The Mandelstam invariants are the entries in the symmetric matrix

Si1 S12 cc* Sin - P

) 41 0 .- 0 | | |
Sz %2 et o LA ot 0 T (T (m\T
= : S (P (PPN -+ (p')

St Sm c Sun *p(")* 0 0 - -1 | | |
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Several Particles
Consider n particles, with momenta p(1), p( .. p(n) ¢ R1+9

The Lorentz group SO(1, d) acts on such configurations.
Kinematic data are invariant under this action.

The Mandelstam invariants are the entries in the symmetric matrix

S11 S12 -ttt Sip S T
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= : ™)) (p)

St Som o Sum *p(")* 0 0 - -1 | | |

The Mandelstam region M, , is the semi-algebraic set of these

. ] . N
matrices, for fixed rank r < 1+d. It has codimension ("7;7%) in RU2 ).

We examine the stratification of M, , by the signs of the s;;.
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Being Lorentzian

The Mandelstam region M, , consists of matrices S that satisfy:
» the n diagonal entries s; of S are non-negative, and

» S has one positive eigenvalue and r — 1 negative eigenvalues.

The Lorentzian region is the subset of nonnegative matrices

£n,r = Mn,r N (RZO)(H;I)-
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Being Lorentzian

The Mandelstam region M, , consists of matrices S that satisfy:
» the n diagonal entries s; of S are non-negative, and

» S has one positive eigenvalue and r — 1 negative eigenvalues.

The Lorentzian region is the subset of nonnegative matrices
n+1
ﬁn,r = Mn,r N (RZO)( 2 )

Points in £, <, =U!_,L,, are Lorentzian polynomials of degree two.

Petter Brandén and June Huh: Lorentzian polynomials, Ann. Math. (2020)

Branden proved that £, <, is a topological ball of dimension ("}*).

P. Brandén: Spaces of Lorentzian and real stable polynomials are Euclidean balls, Forum Math. Sigma (2021)

Thus, M, <, = U"_; M, is a disjoint union of 2"~ such balls.

QOur stratifications match those in

M. Baker, J. Huh, M. Kummer, O. Lorscheid: Lorentzian polynomials and matroids over triangular hyperfields
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Principal Minors

Lemma
S € M, if and only if the principal minors have alternating signs:

(=)L det(S;)) > 0 forall 1CIn].

For minors of size 2 and 3,
e < G2 d  2sis.s: iGic,, > 6ic2 . 2
SiiSjj >~ S an SijSikSjk + SiiSjjSkk = SiiSjk + SjjSik + SkkSjj-

This implies
SijSik Sjk > 0.

Proposition
If S € M,,, has nonzero entries then there exists o € {—,+}"
such that sgn(sj) = ojo; forall i,j.
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Causality

Corollary

The region M, , is the union of the on-1 signed Mandelstam
regions M o r. Their relative interiors are pairwise disjoint:

Mn,r = UMn,U,r-
o

The sign vector o distinguishes the future from the past.

The Lorentzian region L, , is the closure of the region M, ,
with o = (+, +, ... ,—I—). Everything lies in the future, or in the past.

7/20



Massless Particles
From now on, all particles are massless:
S11 = S = -+ = Sy = 0.
Principal 4 x 4 minors of S € M?,,, satisfy det(Sgijn) =
s,-?s,%, + s,-2k5j2, - 5,-2,51-2k — 2-(sijsikSjiski + sijsusjkSwi + siksisiksj) < 0.

If we set pjj = \/5jj,..., P = /S, then this factors:

det(Sgijiny) = (Pipwi + pixpji + PitPik)(—PiPxi — PikPji + PilPjk)
(—pPijpki + pikpji — PitPjk)(PiiPxi — PikPji — PilPjk)-

Think: Pliicker, Schouten, e

H. Friedman: Likelihood geometry of the squared Grassmannian, Proceedings AMS (2025+)

This guides us to . In this talk, all matroids have rank two.
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Matroids

A matroid is a partition P = P, U P, LI--- U Py, of a subset
of [n] ={1,...,n}. The bases of P are pairs {u, v} where
u € P;and v € P; for i # j. Elements in [n]\P are loops.

The matroid P has m > 2 parts and / = n — | P| loops.

Example

The uniform matroid U, is the partition
of P =[n] into n singletons P; = {i}.
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Matroids

A matroid is a partition P = P, U P, LI--- U Py, of a subset
of [n] ={1,...,n}. The bases of P are pairs {u, v} where
u € P;and v € P; for i # j. Elements in [n]\P are loops.

The matroid P has m > 2 parts and / = n — | P| loops.

Example

The uniform matroid U, is the partition
of P =[n] into n singletons P; = {i}.

For o € {—,+}F, the pair (P, o) is a signed matroid.
Definition
The stratum M%U’r is the subset of the

massless Mandelstam region M(,),,, defined by

sign(sj) = ojo; if {i,j} is a basis of P, and s; = 0 otherwise.
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Stratification

Theorem
Fix r > 1. The massless Mandelstam region equals

Mg,r - |_| MPa,r'

(P,o)

The disjoint union is over all signed matroids (P, o) on [n].

The kinematic stratum M9 s non-empty if and only if
3<r<morr=m=2. lf th/s holds, then its dimension is

dim(Mp,,) = m(r—2)+n—1—(5).

The matroid P has m > 2 parts and | = n — |P| loops.
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Enumerative Combinatorics
We write {”;/} for the Stirling number of second kind. This is
the number of partitions of the set [n — /] into exactly m parts.
Corollary

The number of kinematic strata M% _ of dimension d
in the Mandelstam region M2 , is given, for a fixed sign

n,r
vector o or for all possible sign vectors, respectively, by

SO e 2O

m>r m>r

11/20



Enumerative Combinatorics

We write {”;/} for the Stirling number of second kind. This is
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Posets of Matroids

The strata of E?,,, form a poset: P < P’ if every loop of P’
is a loop in P, and the partition P’ refines the partition P.
Same as containment of matroid polytopes.

For n=4,r = 3, there are 11 =1 + 6 + 4 strata.
The top stratum L’%4 3 has three connected components:

1,2,3 1,2,4

1,2,34

1,2,3,4

2,3,4 1234 134

The strata M%’U,r of M), form a poset:
(P,o) < (P',o") if P< P and o = ¢ for all non-loops of P.
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Inclusions and Topology

Our kinematic stratifications are nice: if a stratum intersects
the closure of another stratum, then containment holds.

But, the topology of strata is quite interesting:

Proposition
./\/l(,){a’3 has (m — 1)!/2 connected components.
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Inclusions and Topology

Our kinematic stratifications are nice: if a stratum intersects
the closure of another stratum, then containment holds.

But, the topology of strata is quite interesting:

Proposition
M(l)D,a,3 has (m — 1)!/2 connected components.

Theorem
The kinematic stratum M%,U, ~, is homotopic to the configuration
space F(S=2,m)/SO(r — 1) for m points on the sphere S"~2.

Corollary

The stratum M, _ _, is homotopic to the moduli space Mg m(C),
and hence to the complement of the affine braid arrangement.

E. Feichtner and G. Ziegler: The integral cohomology algebras of ordered configuration spaces of spheres (2000)
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What matters for physics?

{12,34}

{14,23}

{14,23}

(+:=1+1-)

{12,34} Fie. 1. Kinematics of the reactions I, I, and III.

{13,24}

Stanley Mandelstam: Determination of the pion-nucleon scattering amplitude

from dispersion relations and unitarity. General theory, Physical Review (1958).
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Momentum Conservation

The massless momentum conserving (MMC) region C,?’, is

ch, = || chon
(Pyo)

where C%’U’r is the intersection of M?p’g’r with the subspace

Rn(n=3)/2 _ {S : Sji+sip+--+s;, = 0 for i:1,2,...,n}-
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Momentum Conservation
The massless momentum conserving (MMC) region C,?’r is

ch, = || chon
(Pyo)

where COP’” is the intersection of M%W with the subspace

Rn(n=3)/2 _ {S : Sji+sip+--+s;, = 0 for i:1,2,...,n}-

Theorem
The stratum C,ODJJ is non-empty if and only if

1. For3 < r < m: there exist i, j, k, | in [n], with o; = 0; = +
and o, = o, = —, such that the restriction of the matroid P
to {i,j, k, I} is either Uy or {ik, jl},

2. for 2 < r = m: each part of P has elements with opposite signs.

In this case, dim(C%7U7r) = (m=-1)(r-1)—(5)+(n—1-m)-1.
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Four Particles
Use the rank 3 matrix

0 X —X—y y

. X 0 y —X =Yy
S = —X—y y 0 X
y —X—y X 0

The principal 3 x 3 minors are det(Sjx) = —2xy(x +y) > 0.
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Four Particles
Use the rank 3 matrix

0 X

—X=Yy y

_ x 0 y —X—y
S = —X—y y 0 X
y —X—y X 0

The principal 3 x 3 minors are det(Sjx) = —2xy(x +y) > 0.
The MMC region Cf .5 = C3UCY, has nine strata:

{1+3-,2-4%} {1+2-,3-4%}
{1+,2-,3-,4+}
{1t4-,2-3%} {1t4-,2+37}
{1+,2+,3-,47}
{1+,2-,3+,47}
{1+27 3+47} {1+37,2+47}

Figure 3: The 3 + 6 MMC strata for n = 4. 16 /20



On-Shell

For n = 4 particles, fix masses m = (u, i, m, m) with m > p > 0.
We studied the MMC region C3"; by modifying our matrix:

1 x —x =y — y
S — x 12 y —Xx—y—
—x—y—,u2 y m? ,uz—mz—l—x

y —X—y =7 P —m X m?
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On-Shell

For n = 4 particles, fix masses m = (u, i, m, m) with m > p > 0.
We studied the MMC region C3"; by modifying our matrix:

2 2
Iz x —X—y—p y
2 2
S = X ) M }’2 —2X - )/2_ H
—X—y—H y m pe — m* 4 x
2 2 2 2
y —X—y—p pt—mt4x m
{12,34} {12,34} {12,34}
{13,24} [Ep——) {13, 24}
(14,23} (14,23} {14,23} {14,23} {14,23} (14,23}
=)
(@R =o=) (2= > =)
(+, =+, —) (+, = +,-)
{12,34} {13,24} {12,34}  {13,24} {12,34} (13,24
(a) (b) (c)

Figure 4: Regions for (a) massless, (b) equal masses, and (c) two unequal masses.
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Back to 1958

{12,34}

{14, 23} {14,23}

(+: =+ )

{12, 34} {13, 24} Fi16. 1. Kinematics of the reactions I, IT, and III.

Stanley Mandelstam: Determination of the pion-nucleon scattering amplitude

from dispersion relations and unitarity. General theory, Physical Review (1958).
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d/r| 2 | 3 | 4
. . 1 6 30
Five Particles 2 |6 60|3 15
3 9 90
4 110
10 cyclic polytopes C(4,6) 5 110
f = (6,15,18,9)
0 a —a—b+d b—d-—e e
a 0 b —-b—c+e —at+c—e
S = |—-a—b+d b 0 c a—c—d
b—d—-e —-b—c+e c 0 d
e —at+c—e a—c—d d 0
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d/r| 2 | 3 | 4
. . 1 6 30
Five Particles 2 |6 60|3 15
3 9 90
4 110
10 cyclic polytopes C(4,6) 5 110
f = (6,15,18,9)
0 a —a—b+d b—d-—e e
a 0 b —-b—c+e —at+c—e
S = |—-a—b+d b 0 c a—c—d
b—d—-e —-b—c+e c 0 d
e —at+c—e a—c—d d 0

Igusa quartic

a2b? 4+ b2c? + c2d? + d?e? + a2e?
+ 2abcd + 2abce + 2abde + 2acde + 2bcde
—2ab%c — 2bc?d — 2cd?e — 2ade? — 2a%be < 0.
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Conclusion

> We are part of the ERC Synergy project UNIVERSE+, titled
Positive Geometry in Particle Physics and Cosmology.

» This talk discussed a collaboration between the nodes in
Leipzig and Princeton. The other two are Amsterdam and Munich.

» Our paper was submitted to the journal

Discrete and Computational Geometry

20/20



Conclusion

» We are part of the ERC Synergy project UNIVERSE+, titled
Positive Geometry in Particle Physics and Cosmology.

» This talk discussed a collaboration between the nodes in
Leipzig and Princeton. The other two are Amsterdam and Munich.

» Our paper was submitted to the journal

Discrete and Computational Geometry

» Thanks for listening!




