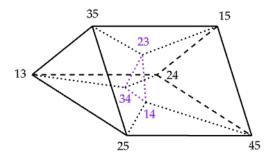
Kinematic Stratifications

Bernd Sturmfels MPI-MiS Leipzig



Joint work with Veronica Calvo Cortes and Hadleigh Frost

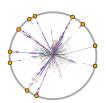
One Particle

In physics, particles are represented by momentum vectors p in *Minkowski space* \mathbb{R}^{1+d} , with Lorentzian inner product

$$p \cdot q = p_0 q_0 - p_1 q_1 - \cdots - p_d q_d.$$

The *universal speed limit* states that $p \cdot p \ge 0$ for each particle.

A particle is *massless* if the equality $p \cdot p = 0$ holds.



Massless: think photon Massive: think proton

Positive Geometry in Particle Physics and Cosmology

The Lightcone

Several Particles

Consider *n* particles, with momenta $p^{(1)}, p^{(2)}, \ldots, p^{(n)} \in \mathbb{R}^{1+d}$.

The Lorentz group SO(1, d) acts on such configurations. Kinematic data are invariant under this action.

The Mandelstam invariants are the entries in the symmetric matrix

$$\begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1n} \\ s_{12} & s_{22} & \cdots & s_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ s_{1n} & s_{2n} & \cdots & s_{nn} \end{bmatrix} = \begin{bmatrix} -\rho^{(1)} - \\ -\rho^{(2)} - \\ \vdots \\ -\rho^{(n)} - \end{bmatrix} \begin{bmatrix} +1 & 0 & \cdots & 0 \\ 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -1 \end{bmatrix} \begin{bmatrix} | & | & \cdots & | \\ |\rho^{(1)}|^T (\rho^{(2)})^T & \cdots & (\rho^{(n)})^T \\ | & | & \cdots & | \end{bmatrix}$$

Several Particles

Consider *n* particles, with momenta $p^{(1)}, p^{(2)}, \ldots, p^{(n)} \in \mathbb{R}^{1+d}$.

The Lorentz group SO(1, d) acts on such configurations. Kinematic data are invariant under this action.

The *Mandelstam invariants* are the entries in the symmetric matrix

$$\begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1n} \\ s_{12} & s_{22} & \cdots & s_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ s_{1n} & s_{2n} & \cdots & s_{nn} \end{bmatrix} = \begin{bmatrix} -p^{(1)} - \\ -p^{(2)} - \\ \vdots \\ -p^{(n)} - \end{bmatrix} \begin{bmatrix} +1 & 0 & \cdots & 0 \\ 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -1 \end{bmatrix} \begin{bmatrix} | & | & \cdots & | \\ |p^{(1)}|^T (p^{(2)})^T & \cdots & (p^{(n)})^T \\ | & | & \cdots & | \end{bmatrix}$$

The Mandelstam region $\mathcal{M}_{n,r}$ is the semi-algebraic set of these matrices, for fixed rank $r \leq 1+d$. It has codimension $\binom{n-r-1}{2}$ in $\mathbb{R}^{\binom{n+1}{2}}$.

We examine the stratification of $\mathcal{M}_{n,r}$ by the signs of the s_{ij} .

Being Lorentzian

The Mandelstam region $\mathcal{M}_{n,r}$ consists of matrices S that satisfy:

- \blacktriangleright the *n* diagonal entries s_{ii} of *S* are non-negative, and
- \triangleright S has one positive eigenvalue and r-1 negative eigenvalues.

The *Lorentzian region* is the subset of nonnegative matrices

$$\mathcal{L}_{n,r} = \mathcal{M}_{n,r} \cap (\mathbb{R}_{\geq 0})^{\binom{n+1}{2}}.$$

Being Lorentzian

The Mandelstam region $\mathcal{M}_{n,r}$ consists of matrices S that satisfy:

- \blacktriangleright the *n* diagonal entries s_{ii} of *S* are non-negative, and
- \triangleright S has one positive eigenvalue and r-1 negative eigenvalues.

The Lorentzian region is the subset of nonnegative matrices

$$\mathcal{L}_{n,r} = \mathcal{M}_{n,r} \cap (\mathbb{R}_{\geq 0})^{\binom{n+1}{2}}.$$

Points in $\mathcal{L}_{n,\leq n} = \sqcup_{r=1}^n \mathcal{L}_{n,r}$ are Lorentzian polynomials of degree two.

Petter Brändén and June Huh: Lorentzian polynomials, Ann. Math. (2020).

Bränden proved that $\mathcal{L}_{n,\leq n}$ is a topological ball of dimension $\binom{n+1}{2}$.

P. Brändén: Spaces of Lorentzian and real stable polynomials are Euclidean balls, Forum Math. Sigma (2021)

Thus, $\mathcal{M}_{n,\leq n} = \sqcup_{r=1}^n \mathcal{M}_{n,r}$ is a disjoint union of 2^{n-1} such balls.

Our stratifications match those in

M. Baker, J. Huh, M. Kummer, O. Lorscheid: Lorentzian polynomials and matroids over triangular hyperfields.

Principal Minors

Lemma

 $S \in \mathcal{M}_{n,r}$ if and only if the principal minors have alternating signs:

$$(-1)^{|I|-1} \cdot \det(S_I) \geq 0$$
 for all $I \subseteq [n]$.

For minors of size 2 and 3,

$$s_{ii}s_{jj} \leq s_{ij}^2$$
 and $2s_{ij}s_{ik}s_{jk} + s_{ii}s_{jj}s_{kk} \geq s_{ii}s_{jk}^2 + s_{jj}s_{ik}^2 + s_{kk}s_{ij}^2$.

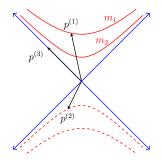
This implies

$$s_{ij}s_{ik}s_{jk} \geq 0.$$

Proposition

If $S \in \mathcal{M}_{n,r}$ has nonzero entries then there exists $\sigma \in \{-,+\}^n$ such that $\operatorname{sgn}(s_{ij}) = \sigma_i \sigma_j$ for all i,j.

Causality



Corollary

The region $\mathcal{M}_{n,r}$ is the union of the 2^{n-1} signed Mandelstam regions $\mathcal{M}_{n,\sigma,r}$. Their relative interiors are pairwise disjoint:

$$\mathcal{M}_{n,r} = \bigcup_{\sigma} \mathcal{M}_{n,\sigma,r}.$$

The sign vector σ distinguishes the **future** from the **past**.

The Lorentzian region $\mathcal{L}_{n,r}$ is the closure of the region $\mathcal{M}_{n,\sigma,r}$ with $\sigma = (+, +, \ldots, +)$. Everything lies in the future, or in the past.

Massless Particles

From now on, all particles are massless:

$$s_{11} = s_{22} = \cdots = s_{nn} = 0.$$

Principal 4 \times 4 minors of $S \in \mathcal{M}_{n,r}^0$ satisfy $\det(S_{\{i,j,k,l\}}) =$

$$s_{ij}^2 s_{kl}^2 + s_{ik}^2 s_{jl}^2 + s_{il}^2 s_{jk}^2 - 2 \cdot \left(s_{ij} s_{ik} s_{jl} s_{kl} + s_{ij} s_{il} s_{jk} s_{kl} + s_{ik} s_{il} s_{jk} s_{jl} \right) \leq 0.$$

If we set $p_{ij} = \sqrt{s_{ij}}, \dots, p_{kl} = \sqrt{s_{kl}}$, then this factors:

$$\det(S_{\{i,j,k,l\}}) = (p_{ij}p_{kl} + p_{ik}p_{jl} + p_{il}p_{jk})(-p_{ij}p_{kl} - p_{ik}p_{jl} + p_{il}p_{jk}) \\ (-p_{ij}p_{kl} + p_{ik}p_{jl} - p_{il}p_{jk})(p_{ij}p_{kl} - p_{ik}p_{jl} - p_{il}p_{jk}).$$

Think: Plücker, Schouten, squared Grassmannian, ...

H. Friedman: Likelihood geometry of the squared Grassmannian, Proceedings AMS (2025+)

This guides us to matroids. In this talk, all matroids have rank two.

Matroids

of rank two

A *matroid* is a partition $P = P_1 \sqcup P_2 \sqcup \cdots \sqcup P_m$ of a subset of $[n] = \{1, \ldots, n\}$. The *bases* of P are pairs $\{u, v\}$ where $u \in P_i$ and $v \in P_j$ for $i \neq j$. Elements in $[n] \setminus P$ are *loops*.

The matroid P has $m \ge 2$ parts and I = n - |P| loops.

Example

The *uniform matroid* U_n is the partition of P = [n] into n singletons $P_i = \{i\}$.

Matroids

of rank two

A *matroid* is a partition $P = P_1 \sqcup P_2 \sqcup \cdots \sqcup P_m$ of a subset of $[n] = \{1, \ldots, n\}$. The *bases* of P are pairs $\{u, v\}$ where $u \in P_i$ and $v \in P_j$ for $i \neq j$. Elements in $[n] \setminus P$ are *loops*.

The matroid P has $m \ge 2$ parts and I = n - |P| loops.

Example

The uniform matroid U_n is the partition of P = [n] into n singletons $P_i = \{i\}$.

For $\sigma \in \{-,+\}^P$, the pair (P,σ) is a *signed matroid*.

Definition

The stratum $\mathcal{M}_{P,\sigma,r}^0$ is the subset of the massless Mandelstam region $\mathcal{M}_{n,r}^0$ defined by

 $sign(s_{ij}) = \sigma_i \sigma_j$ if $\{i, j\}$ is a basis of P, and $s_{ij} = 0$ otherwise.

Stratification

Theorem

Fix $r \ge 1$. The massless Mandelstam region equals

$$\mathcal{M}_{n,r}^0 = \bigsqcup_{(P,\sigma)} \mathcal{M}_{P,\sigma,r}^0.$$

The disjoint union is over all signed matroids (P, σ) on [n].

The kinematic stratum $\mathcal{M}_{P,\sigma,r}^0$ is non-empty if and only if $3 \le r \le m$ or r = m = 2. If this holds, then its dimension is

$$\dim \left(\mathcal{M}_{P,\sigma,r}^{0}\right) = m(r-2) + n - I - {r \choose 2}.$$

Recall: The matroid P has $m \ge 2$ parts and I = n - |P| loops.

Enumerative Combinatorics

We write $\binom{n-l}{m}$ for the *Stirling number of second kind*. This is the number of partitions of the set [n-l] into exactly m parts.

Corollary

The number of kinematic strata $\mathcal{M}^0_{P,\sigma,r}$ of dimension d in the Mandelstam region $\mathcal{M}^0_{n,r}$ is given, for a fixed sign vector σ or for all possible sign vectors, respectively, by

$$\sum_{m \ge r} \binom{n}{l} \binom{n-l}{m} \quad \text{and} \quad \sum_{m \ge r} 2^{n-l-1} \binom{n}{l} \binom{n-l}{m}.$$

Enumerative Combinatorics

We write $\binom{n-l}{m}$ for the *Stirling number of second kind*. This is the number of partitions of the set [n-l] into exactly m parts.

Corollary

The number of kinematic strata $\mathcal{M}^0_{P,\sigma,r}$ of dimension d in the Mandelstam region $\mathcal{M}^0_{n,r}$ is given, for a fixed sign vector σ or for all possible sign vectors, respectively, by

$$\sum_{m \ge r} \binom{n}{l} \binom{n-l}{m} \quad \text{and} \quad \sum_{m \ge r} 2^{n-l-1} \binom{n}{l} \binom{n-l}{m}.$$

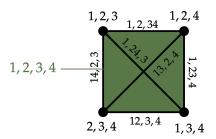
d / r	2		3		4	
1	6	12				
2	12	48 56				
	7	56	4	16 48 8		
4			6	48		
5			1	8		
6					1	8
(a) $n = 4$						

Posets of Matroids

The strata of $\mathcal{L}^0_{n,r}$ form a poset: $P \leq P'$ if every loop of P' is a loop in P, and the partition P' refines the partition P.

Same as containment of matroid polytopes.

For n = 4, r = 3, there are 11 = 1 + 6 + 4 strata. The top stratum $\mathcal{L}_{U_4,3}^0$ has three connected components:



The strata $\mathcal{M}_{P,\sigma,r}^0$ of $\mathcal{M}_{n,r}^0$ form a poset:

$$(P,\sigma) \leq (P',\sigma')$$
 if $P \leq P'$ and $\sigma = \sigma'$ for all non-loops of P .

Inclusions and Topology

Our kinematic stratifications are nice: if a stratum intersects the closure of another stratum, then containment holds.

But, the topology of strata is quite interesting:

Proposition

 $\mathcal{M}_{P,\sigma,3}^0$ has (m-1)!/2 connected components.

Inclusions and Topology

Our kinematic stratifications are nice: if a stratum intersects the closure of another stratum, then containment holds.

But, the topology of strata is quite interesting:

Proposition

 $\mathcal{M}_{P,\sigma,3}^0$ has (m-1)!/2 connected components.

Theorem

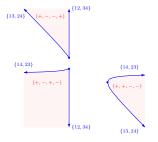
The kinematic stratum $\mathcal{M}^0_{P,\sigma,\leq r}$ is homotopic to the configuration space $F(\mathbb{S}^{r-2},m)/\mathrm{SO}(r-1)$ for m points on the sphere \mathbb{S}^{r-2} .

Corollary

The stratum $\mathcal{M}^0_{P,\sigma,\leq 4}$ is homotopic to the moduli space $M_{0,m}(\mathbb{C})$, and hence to the complement of the affine braid arrangement.

E. Feichtner and G. Ziegler: The integral cohomology algebras of ordered configuration spaces of spheres (2000)

What matters for physics?



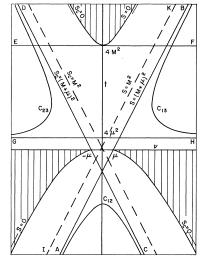


Fig. 1. Kinematics of the reactions I, II, and III.

Stanley Mandelstam: Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory, Physical Review (1958).

Momentum Conservation

The massless momentum conserving (MMC) region $C_{n,r}^0$ is

$$C_{n,r}^0 = \bigsqcup_{(P,\sigma)} C_{P,\sigma,r}^0,$$

where $\mathcal{C}^0_{P,\sigma,r}$ is the intersection of $\mathcal{M}^0_{P,\sigma,r}$ with the subspace

$$\mathbb{R}^{n(n-3)/2} = \{S : s_{i1} + s_{i2} + \dots + s_{in} = 0 \text{ for } i = 1, 2, \dots, n\}.$$

Momentum Conservation

The massless momentum conserving (MMC) region $C_{n,r}^0$ is

$$C_{n,r}^0 = \bigsqcup_{(P,\sigma)} C_{P,\sigma,r}^0,$$

where $\mathcal{C}^0_{P,\sigma,r}$ is the intersection of $\mathcal{M}^0_{P,\sigma,r}$ with the subspace

$$\mathbb{R}^{n(n-3)/2} = \{S : s_{i1} + s_{i2} + \cdots + s_{in} = 0 \text{ for } i = 1, 2, \dots, n\}.$$

Theorem

The stratum $\mathcal{C}^0_{P,\sigma,r}$ is non-empty if and only if

- 1. For $3 \le r < m$: there exist i, j, k, l in [n], with $\sigma_i = \sigma_j = +$ and $\sigma_k = \sigma_l = -$, such that the restriction of the matroid P to $\{i, j, k, l\}$ is either U_4 or $\{ik, jl\}$,
- 2. for $2 \le r = m$: each part of P has elements with opposite signs.

In this case,
$$\dim(\mathcal{C}_{P,\sigma,r}^0) = (m-1)(r-1) - \binom{r}{2} + (n-l-m) - 1$$
.

Four Particles

Use the rank 3 matrix

$$S = \begin{bmatrix} 0 & x & -x - y & y \\ x & 0 & y & -x - y \\ -x - y & y & 0 & x \\ y & -x - y & x & 0 \end{bmatrix}.$$

The principal 3×3 minors are $\det(S_{ijk}) = -2xy(x+y) \ge 0$.

Four Particles

Use the rank 3 matrix

$$S = \begin{bmatrix} 0 & x & -x - y & y \\ x & 0 & y & -x - y \\ -x - y & y & 0 & x \\ y & -x - y & x & 0 \end{bmatrix}.$$

The principal 3×3 minors are $\det(S_{ijk}) = -2xy(x+y) \ge 0$.

The MMC region $C_{4,<3}^0 = C_{4,3}^0 \cup C_{4,2}^0$ has nine strata:

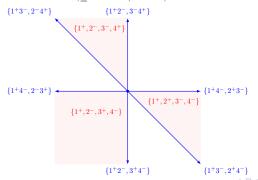


Figure 3: The 3 + 6 MMC strata for n = 4.

On-Shell

For n=4 particles, fix masses $\mathbf{m}=(\mu,\mu,m,m)$ with $m>\mu>0$. We studied the MMC region $\mathcal{C}^{\mathbf{m}}_{4,3}$ by modifying our matrix:

$$S = \begin{bmatrix} \mu^2 & x & -x - y - \mu^2 & y \\ x & \mu^2 & y & -x - y - \mu^2 \\ -x - y - \mu^2 & y & m^2 & \mu^2 - m^2 + x \\ y & -x - y - \mu^2 & \mu^2 - m^2 + x & m^2 \end{bmatrix}.$$

On-Shell

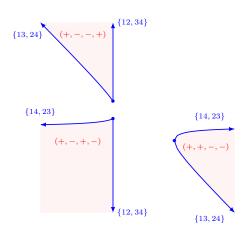
For n=4 particles, fix masses $\mathbf{m}=(\mu,\mu,m,m)$ with $m>\mu>0$. We studied the MMC region $\mathcal{C}_{4,3}^{\mathbf{m}}$ by modifying our matrix:

$$S = \begin{bmatrix} \mu^{2} & x & -x - y - \mu^{2} & y \\ x & \mu^{2} & y & -x - y - \mu^{2} \\ -x - y - \mu^{2} & y & m^{2} & \mu^{2} - m^{2} + x \end{bmatrix}.$$

$$(13,24) \quad (+,-,+,-) \quad (13,24) \quad (+,-,+,-) \quad (13,24) \quad (+,-,+,-) \quad (14,23) \quad (+,-,+,-) \quad (14,23) \quad (+,-,+,-) \quad (+,-,+,-) \quad (14,23) \quad (+,-,+,-) \quad (14,23) \quad (1$$

Figure 4: Regions for (a) massless, (b) equal masses, and (c) two unequal masses.

Back to 1958



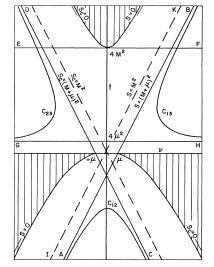


Fig. 1. Kinematics of the reactions I, II, and III.

Stanley Mandelstam: Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory, Physical Review (1958).

Five Particles

10 cyclic polytopes
$$C(4,6)$$

 $f = (6,15,18,9)$

$$S = \begin{bmatrix} 0 & a & -a-b+d & b-d-e & e \\ a & 0 & b & -b-c+e & -a+c-e \\ -a-b+d & b & 0 & c & a-c-d \\ b-d-e & -b-c+e & c & 0 & d \\ e & -a+c-e & a-c-d & d & 0 \end{bmatrix}.$$

Five Particles

10 cyclic polytopes
$$C(4,6)$$

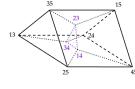
 $f = (6,15,18,9)$

$$S = \begin{bmatrix} 0 & a & -a-b+d & b-d-e & e \\ a & 0 & b & -b-c+e & -a+c-e \\ -a-b+d & b & 0 & c & a-c-d \\ b-d-e & -b-c+e & c & 0 & d \\ e & -a+c-e & a-c-d & d & 0 \end{bmatrix}.$$

$$a^{2}b^{2} + b^{2}c^{2} + c^{2}d^{2} + d^{2}e^{2} + a^{2}e^{2}$$

$$|gusa quartic| + 2abcd + 2abce + 2abde + 2acde + 2bcde$$

$$-2ab^{2}c - 2bc^{2}d - 2cd^{2}e - 2ade^{2} - 2a^{2}be < 0.$$



6 60 3 15

Conclusion

- We are part of the ERC Synergy project UNIVERSE+, titled Positive Geometry in Particle Physics and Cosmology.
- This talk discussed a collaboration between the nodes in Leipzig and Princeton. The other two are Amsterdam and Munich.
- Our paper was submitted to the journal
 Discrete and Computational Geometry

Conclusion

- ▶ We are part of the ERC Synergy project UNIVERSE+, titled Positive Geometry in Particle Physics and Cosmology.
- ► This talk discussed a collaboration between the nodes in Leipzig and Princeton. The other two are Amsterdam and Munich.
- Our paper was submitted to the journal
 Discrete and Computational Geometry
- ► Thanks for listening!

