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Events

In physics, particles are represented by momentum vectors p
in Minkowski space R1+d , with Lorentzian inner product

p · q = p0q0 − p1q1 − · · · − pdqd .

The universal speed limit states that p · p ≥ 0 for each particle.

A particle is massless if the equality p · p = 0 holds.

Henn Part B1 UNIVERSE+

Objective III: Discover the positive geometries that underlie our universe.

Our final objective is to uncover the positive geometries that describe the real world, from particle
physics to the expanding universe. This must include a new formulation of scattering processes
involving all fundamental interactions, including gravity, where spacetime and quantum mechanics
are not taken as fundamental inputs, but are seen as emergent concepts. Moreover, nowhere is the
question of the emergence of spacetime more urgent than in cosmology, where the birth of spacetime
and the universe itself are intimately connected at the Big Bang singularity. A deeper formulation
of cosmology therefore should not involve time as an input, but must have it arise as a derivable
output. We aim to develop such a new timeless perspective of cosmology, inspired by geometric ideas
similar to those seen for scattering amplitudes. Finally, dislodging spacetime and quantum mechanics
from their primary roles in describing known physical laws will provide a better jumping-o↵ point to
transcending these concepts, in the settings of quantum gravity and cosmology where this is ultimately
necessary. Our work will provide the needed mathematical framework in which such extensions of the
known physical laws can be studied rigorously. Achieving these goals would radically transform our
understanding of fundamental physics and cosmology.
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Figure 2: Three diagrams that illustrate the project UNIVERSE+. Associated to all scattering processes (left)
and cosmological correlations (right) are positive geometries (middle). These novel geometries are defined purely
in terms of the initial and final states of the particles, and make no reference to their evolution in spacetime.

Methodology

In order to achieve our three objectives, we have organized the project into three corresponding work
packages (WPs), which provide a concrete path from mathematical data, via Positive Geometry,
towards our ultimate goal of finding the new geometrical language describing our universe.

I. Mathematical Data from Particle Physics and Cosmology

First, we will create new tools to compute and classify scattering amplitudes and cosmological correla-
tors. This part of the project will build on the pioneering work we have done in these areas. Scattering
amplitudes and cosmological correlators are defined in terms of the energies (and momenta) of the par-
ticles involved in a scattering process. At specific values of these energies, amplitudes and correlators
becomes singular, and the form of these singularities is determined by causality and unitarity. This
has lead to powerful new ways of computing observables in the context of scattering amplitudes [4, 15]
and conformal field theories [16].

We will systematically understand the singular limits of amplitudes and correlators and exploit this
to fully determine these observables, using new mathematical tools ranging from tropical geometry to
novel perspectives on di↵erential equations. Although our understanding of cosmological correlators
is not yet as mature as that of scattering amplitudes, the past few years have seen promising new
developments in the program called the Cosmological Bootstrap [6–10]. So far, this has only been
applied to the simplest tree-level processes of toy scalar theories. We will extend the cosmological
bootstrap to more general theories and beyond the tree-level approximation.

3

Massless: think photon Positive Geometry in Particle Physics and Cosmology

Massive: think proton
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The Lightcone
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Several Particles

Consider n particles, with momenta p(1), p(2), . . . , p(n) ∈ R1+d .

The Lorentz group SO(1, d) acts on such configurations.
Kinematic data are invariant under this action.

The Mandelstam invariants are the entries in the symmetric matrix




s11 s12 · · · s1n
s12 s22 · · · s2n
...

...
. . .

...
s1n s2n · · · snn


 =




− p(1) −
− p(2) −

...

− p(n) −







+1 0 · · · 0
0 −1 · · · 0

.

.

.

.

.

.
. . .

.

.

.
0 0 · · · −1






| | · · · |
(p(1))T (p(2))T · · · (p(n))T

| | · · · |




The Mandelstam region Mn,r is the semi-algebraic set of these

matrices, for fixed rank r ≤ 1+d . It has codimension
(
n−r−1

2

)
in R(

n+1
2 ).

We examine the stratification of Mn,r by the signs of the sij .
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Being Lorentzian

The Mandelstam region Mn,r consists of matrices S that satisfy:

▶ the n diagonal entries sii of S are non-negative, and

▶ S has one positive eigenvalue and r − 1 negative eigenvalues.

The Lorentzian region is the subset of nonnegative matrices

Ln,r = Mn,r ∩ (R≥0)
(n+1

2 ).

Points in Ln,≤n = ⊔n
r=1Ln,r are Lorentzian polynomials of degree two.

Petter Brändén and June Huh: Lorentzian polynomials, Ann. Math. (2020).

Bränden proved that Ln,≤n is a topological ball of dimension
(
n+1
2

)
.

P. Brändén: Spaces of Lorentzian and real stable polynomials are Euclidean balls, Forum Math. Sigma (2021)

Thus, Mn,≤n = ⊔n
r=1Mn,r is a disjoint union of 2n−1 such balls.

Our stratifications match those in
M. Baker, J. Huh, M. Kummer, O. Lorscheid: Lorentzian polynomials and matroids over triangular hyperfields.
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Principal Minors

Lemma
S ∈ Mn,r if and only if the principal minors have alternating signs:

(−1)|I |−1 · det(SI ) ≥ 0 for all I ⊆ [n].

For minors of size 2 and 3,

sii sjj ≤ s2ij and 2sijsiksjk + sii sjjskk ≥ sii s
2
jk + sjjs

2
ik + skks

2
ij .

This implies
sijsiksjk ≥ 0.

Proposition

If S ∈ Mn,r has nonzero entries then there exists σ ∈ {−,+}n
such that sgn(sij) = σiσj for all i , j .
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Causality

complicated topology in general, but the full region where we allow any rank is well-behaved.
Bränden [5] proved that Ln,→n s a topological ball. It has a decomposition by polymatroids,
as shown in general by Bränden and Huh [6] and explained in more detail in Baker et al. [4].
Corollary 2.3 says that Mn,→n is the union of 2n↑1 such balls.

In physics, a particle with momentum vector p(i) is said to have mass mi → 0 if

sii = p(i) · p(i) = (mi)
2. (10)

A particle with mass mi > 0 is called massive, and a particle with mass mi = 0 is called
massless. The mass of a particle is a fixed constant. Thus, the momentum vector p of a
particle with mass m > 0 lies on the mass shell hyperboloid given by p · p = m2 > 0.

The real part of this hyperboloid is disconnected with two components, depending on the
sign of p0; see Figure 1. A massless momentum vector p lies on the light cone: p · p = 0.

m1

m2

p(1)

p(2)

p(3)

Figure 1: The light cone (blue) and the mass shells (red) for two given masses.

The mass shell hyperboloids are contained inside the two nappes of this cone: the upper
nappe, p0 > 0, and the lower nappe, p0 < 0. In terms of this light cone (Figure 1), a
Mandelstam matrix S ↑ Mn,ω,r is the Gram matrix of n vectors p(i) that lie either inside
(p · p > 0) or on (p · p = 0) the light cone. The entries of the sign vector ω record which p(i)

are in the upper nappe (ωi > 0), and which in the lower nappe (ωi < 0) of the light cone.
Given that the masses mi are fixed quantities, we are motivated to study the subsets of

Mandelstam regions Mn,r where each sii = m2
i is fixed to some non-negative value. Fixing

sii = m2
i is known as the on shell condition for a particle of mass mi. Most of this paper

is devoted to particles that are massless (mi = 0). Kinematic stratifications for massive
particles are discussed in Section 6.

3 Massless Particles

Henceforth, we require the n particles to be massless. The massless Mandelstam region M0
n,r

is the semialgebraic set of Mandelstam matrices S ↑ Mn,r with zeros on the diagonal (i.e.

5

Corollary

The region Mn,r is the union of the 2n−1 signed Mandelstam
regions Mn,σ,r . Their relative interiors are pairwise disjoint:

Mn,r =
⋃

σ

Mn,σ,r .

The sign vector σ distinguishes the future from the past.

The Lorentzian region Ln,r is the closure of the region Mn,σ,r

with σ = (+,+, . . . ,+). Everything lies in the future, or in the past.
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Massless Particles

From now on, all particles are massless:

s11 = s22 = · · · = snn = 0.

Principal 4× 4 minors of S ∈ M0
n,r satisfy det(S{i ,j ,k,l}) =

s2ij s
2
kl + s2iks

2
jl + s2il s

2
jk − 2 ·

(
sijsiksjlskl+sijsilsjkskl+siksilsjksjl

)
≤ 0.

If we set pij =
√
sij , . . . , pkl =

√
skl , then this factors:

det(S{i ,j ,k,l}) = (pijpkl + pikpjl + pilpjk)(−pijpkl − pikpjl + pilpjk)
(−pijpkl + pikpjl − pilpjk)(pijpkl − pikpjl − pilpjk).

Think: Plücker, Schouten, squared Grassmannian, . . .
H. Friedman: Likelihood geometry of the squared Grassmannian, Proceedings AMS (2025+)

This guides us to matroids. In this talk, all matroids have rank two.
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Matroids of rank two

A matroid is a partition P = P1 ⊔ P2 ⊔ · · · ⊔ Pm of a subset
of [n] = {1, . . . , n}. The bases of P are pairs {u, v} where
u ∈ Pi and v ∈ Pj for i ̸= j . Elements in [n]\P are loops.

The matroid P has m ≥ 2 parts and l = n − |P| loops.
Example
The uniform matroid Un is the partition
of P = [n] into n singletons Pi = {i}.

For σ ∈ {−,+}P , the pair (P, σ) is a signed matroid.

Definition
The stratum M0

P,σ,r is the subset of the

massless Mandelstam region M0
n,r defined by

sign(sij) = σiσj if {i , j} is a basis of P, and sij = 0 otherwise.
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Stratification

Theorem
Fix r ≥ 1. The massless Mandelstam region equals

M0
n,r =

⊔

(P,σ)

M0
P,σ,r .

The disjoint union is over all signed matroids (P, σ) on [n].

The kinematic stratum M0
P,σ,r is non-empty if and only if

3 ≤ r ≤ m or r = m = 2. If this holds, then its dimension is

dim
(
M0

P,σ,r

)
= m(r − 2) + n − l −

(r
2

)
.

Recall: The matroid P has m ≥ 2 parts and l = n − |P| loops.
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Enumerative Combinatorics
We write

{
n−l
m

}
for the Stirling number of second kind. This is

the number of partitions of the set [n − l ] into exactly m parts.

Corollary

The number of kinematic strata M0
P,σ,r of dimension d

in the Mandelstam region M0
n,r is given, for a fixed sign

vector σ or for all possible sign vectors, respectively, by

∑

m≥r

(
n

l

){
n − l

m

}
and

∑

m≥r

2n−l−1

(
n

l

){
n − l

m

}
.

The number of parts, m, in the matroid P satisfies the following lower and upper bounds:

r → m → 1

r ↑ 1

(
d +

(
r

2

))
=: M.

Moreover, for r = 2, we must have m = M = 2. Our considerations imply the following
formulas for the number of strata by dimension. We write

{
n→l
m

}
for the Stirling number of

the second kind. This is the number of partitions of the set [n ↑ l] into exactly m parts.

Corollary 3.2. The number of kinematic strata M0
P,ω,r of dimension d in the Mandelstam

region M0
n,r is given, for a fixed sign vector ω or for all possible sign vectors, respectively, by

M∑

m=r

(
n

l

){
n ↑ l

m

}
and

M∑

m=r

2n→l→1

(
n

l

){
n ↑ l

m

}
.

Example 3.3. The numbers of strata for n = 4, 5 are given in two tables. Rows are indexed
by 1 → d →

(
n
2

)
and columns are indexed by 2 → r → n. The numbers in black are for the

Lorentzian region L0
n,r and the numbers in green are for the Mandelstam region M0

n,r.

d / r 2 3 4
1 6 12
2 12 48
3 7 56 4 16
4 6 48
5 1 8
6 1 8

(a) n = 4

d / r 2 3 4 5
1 10 20
2 30 120
3 35 280 10 40
4 15 240 30 240
5 30 440
6 10 160 5 40
7 1 16 10 160
8
9 1 16
10 1 16

(b) n = 5

Table 1: Counting kinematic strata.

The set of all matroids on [n] is a partially ordered set (poset). We set P → P ↑ if every loop
of P ↑ is a loop in P , and the partition P ↑ refines the partition P . For this refinement, one
removes loops of P that are non-loops in P ↑. The order relation is equivalent to containment
of matroid polytopes, which is used in [4]. The poset structure extends to signed matroids:
we have (P, ω) → (P ↑, ω↑) if and only if P → P ↑ and ω = ω↑ for all non-loops of P .

For any fixed rank r, we consider the restriction of this poset to signed matroids (P, ω)
for which M0

P,ω,r is non-empty. In Section 4 we shall see that this subposet is precisely
the incidence relation among the closures of the kinematic strata in the Mandelstam region
M0

n,r. We conclude this section by o!ering a preview of the n = 4 strata in Table 1 above.

Example 3.4 (n = 4, ω = ++++). We discuss all kinematic strata of L0
4,r for r = 4, 3, 2. Our

ambient space is R6. For r = 4, the only stratum is L0
U4,4 = {(sij) ↓ (R>0)

6 : det(S) < 0}.
Indeed, if one matrix entry is 0 then det(S) is a square and hence det(S) ↔ 0. For r = 3

8
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Posets of Matroids

The strata of L0
n,r form a poset: P ≤ P ′ if every loop of P ′

is a loop in P, and the partition P ′ refines the partition P.
Same as containment of matroid polytopes.

For n = 4, r = 3, there are 11 = 1 + 6 + 4 strata.
The top stratum L0

U4,3
has three connected components:

The strata M0
P,σ,r of M0

n,r form a poset:

(P, σ) ≤ (P ′, σ′) if P ≤ P ′ and σ = σ′ for all non-loops of P.
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Inclusions and Topology

Our kinematic stratifications are nice: if a stratum intersects
the closure of another stratum, then containment holds.

But, the topology of strata is quite interesting:

Proposition

M0
P,σ,3 has (m − 1)!/2 connected components.

Theorem
The kinematic stratum M0

P,σ,≤r is homotopic to the configuration

space F (Sr−2,m)/SO(r − 1) for m points on the sphere Sr−2.

Corollary

The stratum M0
P,σ,≤4 is homotopic to the moduli space M0,m(C),

and hence to the complement of the affine braid arrangement.

E. Feichtner and G. Ziegler: The integral cohomology algebras of ordered configuration spaces of spheres (2000)
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What matters for physics?

(+,−,+,−)

•
{14, 23}

{12, 34}

(+,−,−,+)

{12, 34}
{13, 24}

•

(+,+,−,−)
•

{14, 23}

{13, 24}

PION —NUCLEON SCATTERING AMPLITUDE

reaction. Lines of constant energy for the reaction III
are horizontal lines. The reaction will be energetically
possible above the line EF, at which t=4M', and again
the shaded area represents the physical region.
We now examine the analytic properties of the

scattering amplitude. To simplify the writing, we shall
first neglect spin and isotopic spin; the transition ampli-
tude will then be a scalar function A(v, t) of the two
invariants v and t. Its analytic properties as a function
of v, with t constant, are exhibited by the usual dis-
persion relations

4

g' ( 1 1 ) 1 (" Ar(v', t)
A(v, 1)=

2M Iv))—v vt)+v) or& „~(g~4sr) v'—v

—s—(t(4M) A (vI t)dv', (2.5)
QQ v v

where v~———(p,'/2M)+(1/4M). In this and all subse-
quent such equations, the energy denominators are
taken to have a small imaginary part. A& and A2 are
the "absorptive parts" associated with the reactions I
and II, respectively, and are given by the equations

f 4porposqorqos'l *

!(2~)'A ~(v~&)5(p)+qr —ps—qs) = (2~) 'I

XZ(&(pr)~(qr) I ~)(~ I &(ps)~(qs)), (2 6)

(4polposqolq02) *

!(2s)'As(v, t)8(pr+qr —ps—qs) = (2a)'!

XZP (pr) ~(—qs) I ~)(~ I &(ps)~(—qr)) (2 &)

The symbol (1V(p&)s.(q&)! denotes a state with an in-
going nucleon of momentum pr and an ingoing pion of
momentum qr. The sum P„ is to be taken over all
intermediate states. A~ and A2 are nonzero to the right
of AB, and to the left of CD, respectively.
Equation (2.5) indicates that A is an analytic func-

tion of v in the complex plane, with poles at &v~, and
cuts along the real axis from p+ (t/4M) to oe and from—~ to —p—(t/4M).
On Fig. 1, (2.5) will be represented by an integration

along a horizontal line below the v axis. The poles will
occur where this line crosses the dashed lines; apart
from them, the integrand will be zero between AB and
CD. Except for forward scattering, the region where
the integrand is nonzero will lie partly in the unphysical
region, where the energy is above threshold but the
angle imaginary.
Equation (2.5) is only true as it stands if the func-

tions A, A&, and A2 tend to zero sufficiently rapidly as
v tends to infinity; otherwise it will be necessary to
perform one or more subtractions in the usual way.
Whenever such a dispersion relation is written down,

FIG. 1. Kinematics of the reactions I, II, and III.

the possibility of having to perform subtractions is
implied.
We next wish to obtain analytic properties of A as a

function of t. In order to do this we shall write the
scattering amplitude, not as the expectation value of
the time-ordered product of the two meson current
operators between two one-nucleon states, as is done
in the proof of the usual dispersion relations, ' "but as
the expectation value of the product of a meson current
operator and a nucleon current operator between a
nucleon state and a meson state. Thus

(2porqos) *

(2~)'A5(P)+Ps qr—qs) = (2&)s! I s "doodx'
M )

Xs-' ~' "'(V(p)
I &{J(x)u(x')) I (q)), (2.&)

where a(x') is a nucleon current operator. From this
expression, we can obtain dispersion relations in which
the momentum transfer between the incoming nucleon
and the outgoing pion, rather than between the two
nucleons, is kept constant —the proof is exactly the
same as the usual heuristic proof of the ordinary dis-
persion relations. ' "As this momentum transfer is just
s„we obtain dispersion relations in which s, is kept
constant; if A is written as a function of s, and t, they

o M. L. Goldberger, Phys. Rev. 99, 979 (1955)."R.H. Capps and G. Takeda, Phys. Rev. 106, 1337 (1956).

Stanley Mandelstam: Determination of the pion-nucleon scattering amplitude

from dispersion relations and unitarity. General theory, Physical Review (1958).
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Momentum Conservation

The massless momentum conserving (MMC) region C0
n,r is

C0
n,r =

⊔

(P,σ)

C0
P,σ,r ,

where C0
P,σ,r is the intersection of M0

P,σ,r with the subspace

Rn(n−3)/2 =
{
S : si1+si2+· · ·+sin = 0 for i = 1, 2, . . . , n

}
.

Theorem
The stratum C0

P,σ,r is non-empty if and only if

1. For 3 ≤ r < m: there exist i , j , k, l in [n], with σi = σj = +
and σk = σl = −, such that the restriction of the matroid P
to {i , j , k, l} is either U4 or {ik, jl}, and

2. for 2 ≤ r = m: each part of P has elements with opposite signs.

In this case, dim(C0
P,σ,r ) = (m− 1)(r − 1)−

(r
2

)
+ (n− l −m)− 1.

15 / 20



Momentum Conservation

The massless momentum conserving (MMC) region C0
n,r is

C0
n,r =

⊔

(P,σ)

C0
P,σ,r ,

where C0
P,σ,r is the intersection of M0

P,σ,r with the subspace

Rn(n−3)/2 =
{
S : si1+si2+· · ·+sin = 0 for i = 1, 2, . . . , n

}
.

Theorem
The stratum C0

P,σ,r is non-empty if and only if

1. For 3 ≤ r < m: there exist i , j , k , l in [n], with σi = σj = +
and σk = σl = −, such that the restriction of the matroid P
to {i , j , k , l} is either U4 or {ik, jl}, and

2. for 2 ≤ r = m: each part of P has elements with opposite signs.

In this case, dim(C0
P,σ,r ) = (m− 1)(r − 1)−

(r
2

)
+ (n− l −m)− 1.

15 / 20



Four Particles
Use the rank 3 matrix

S =




0 x −x − y y
x 0 y −x − y

−x − y y 0 x
y −x − y x 0


 .

The principal 3× 3 minors are det(Sijk) = −2xy(x + y) ≥ 0.

The MMC region C0
4,≤3 = C0

4,3 ∪ C0
4,2 has nine strata:

{1+, 2→, 3→, 4+}

{1+, 2→, 3+, 4→}
{1+, 2+, 3→, 4→}

{1+4→, 2+3→}

{1+2→, 3→4+}{1+3→, 2→4+}

{1+4→, 2→3+}

{1+2→, 3+4→} {1+3→, 2+4→}

•

Figure 3: The 3 + 6 MMC strata for n = 4.

strata for ranks r = 3, 4, as seen in Table 2b. These are indexed by the rows in the table:

ω s12 s13 s14 s15 s23 s24 s25 s34 s35 s45

(→,→, +, +, +) + → → → → → → + + +
(→, +,→, +, +) → + → → → + + → → +
(→, +, +,→, +) → → + → + → + → + →
(→, +, +, +,→) → → → + + + → + → →
(+,→,→, +, +) → → + + + → → → → +
(+,→, +,→, +) → + → + → + → → + →
(+,→,→, +, +) → + + → → → + + → →
(+, +,→,→, +) + → → + → → + + → →
(+, +,→, +,→) + → + → → + → → + →
(+, +, +,→,→) + + → → + → → → → +

We fix one sign vector, say ω = (→,→, +, +, +). The region of A is the cone C over the 4-
dimensional cyclic polytope C(4, 6), with f-vector (6, 15, 18, 9). This agrees with [8, Example
5.2]. The unique MMC stratum for r = 4 is C0

U5,ω,4. It is the open subset of C given by

a2b2 + b2c2 + c2d2 + d2e2 + a2e2 + 2abcd + 2abce + 2abde + 2acde + 2bcde
→ 2ab2c → 2bc2d → 2cd2e → 2ade2 → 2a2be < 0.

(28)

This is the determinant of any principal 4 ↑ 4 minor of S. The quartic hypersurface in P4

defined by (28) is known to algebraic geometers as the Igusa quartic. It separates C0
U5,ω,4

from its (much smaller) complement in C. The boundary is the top stratum C0
U4,ω,3 for r = 3.

The strata C0
P,ω,3 and C0

P,ω,2 for other matroids P are given by Theorem 5.1. They corre-
spond to faces of C(4, 6). No part of P can contain 1 and 2 since these are the only negative
particles in ω. This mirrors the fact that {s12 = 0} is not a facet of C(4, 6). We find it
convenient to draw the dual polytope C(4, 6)→, which is the direct product of two triangles:
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On-Shell
For n = 4 particles, fix masses m = (µ, µ,m,m) with m > µ > 0.
We studied the MMC region Cm

4,3 by modifying our matrix:

S =




µ2 x −x − y − µ2 y
x µ2 y −x − y − µ2

−x − y − µ2 y m2 µ2 −m2 + x
y −x − y − µ2 µ2 −m2 + x m2


.

(+,→, +,→)

•
{14, 23}

{12, 34}

(+,→,→, +)

{12, 34}
{13, 24}

•
(+, +,→,→)

•
{14, 23}

{13, 24}

(a)

(+,→, +,→)

•
{14, 23}

{12, 34}

(+,→,→, +)

{12, 34}
{13, 24}

•

(+, +,→,→)

•
{14, 23}

{13, 24}

(b)

(+,→, +,→)

•
{14, 23}

{12, 34}

(+,→,→, +)

{12, 34}
{13, 24}

•

(+, +,→,→)
•

{14, 23}

{13, 24}

(c)

Figure 4: Regions for (a) massless, (b) equal masses, and (c) two unequal masses.

region Cm
4,3 by modifying Example 5.4. A Gram matrix S in this region takes the form

S =




µ2 x →x → y → µ2 y
x µ2 y →x → y → µ2

→x → y → µ2 y m2 µ2 → m2 + x
y →x → y → µ2 µ2 → m2 + x m2


.

The following inequalities for C(µ,µ,m,m)
4,3 are seen from the 2 ↑ 2-minors:

y2→m2µ2 > 0, (x+µ2)(x→2m2 +µ2) > 0, (x+y)(x+y +2µ2)→µ2(m2→µ2) > 0. (31)

These conditions exclude three strips that are parallel to the blue lines in Figure 4a. The
signs of the 3↑3 minors furnish additional cubic inequalities. In our example, with only two
distinct masses, all 3 ↑ 3 minors of S are equal and they factor. We obtain the condition

(
x + µ2

)(
2xy + 2y2 + (m2 + µ2)x + 2µ2y → m2µ2 + µ4

)
< 0. (32)

The inequalities give three strata, shown in Figure 4c, with linear and quadratic boundaries.
In the limit µ, m ↓ 0, the cubic in (32) degenerates and we recover the cones of Figure 4a.

The massive case exhibits noteworthy novelties. Note that the stratum {1+, 2+, 3→, 4→}
is bounded by the hyperbola in (32). Whereas, the other two strata, {1+, 2→, 3→, 4+} and
{1+, 2→, 3+, 4→}, are bounded by both a line and a hyperbola. In physics, these strata
correspond to the scattering of a µ particle and an m particle. The {1+, 2+, 3→, 4→} stratum
is di!erent: it corresponds to two µ particles annihilating and producing two m particles.
This physical di!erence is reflected in the geometry of the strata for this region.

Remarkably, this very example was studied by Mandelstam himself, in his 1958 article
[14]. His corresponding region is shown in [14, Figure 1], and it matches our Figure 4c. The
study of the on-shell regions Cm

n,r for n ↔ 5 will be an interesting subsequent research project.
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Back to 1958

(+,−,+,−)

•
{14, 23}

{12, 34}

(+,−,−,+)

{12, 34}
{13, 24}

•

(+,+,−,−)
•

{14, 23}

{13, 24}

PION —NUCLEON SCATTERING AMPLITUDE

reaction. Lines of constant energy for the reaction III
are horizontal lines. The reaction will be energetically
possible above the line EF, at which t=4M', and again
the shaded area represents the physical region.
We now examine the analytic properties of the

scattering amplitude. To simplify the writing, we shall
first neglect spin and isotopic spin; the transition ampli-
tude will then be a scalar function A(v, t) of the two
invariants v and t. Its analytic properties as a function
of v, with t constant, are exhibited by the usual dis-
persion relations

4

g' ( 1 1 ) 1 (" Ar(v', t)
A(v, 1)=

2M Iv))—v vt)+v) or& „~(g~4sr) v'—v

—s—(t(4M) A (vI t)dv', (2.5)
QQ v v

where v~———(p,'/2M)+(1/4M). In this and all subse-
quent such equations, the energy denominators are
taken to have a small imaginary part. A& and A2 are
the "absorptive parts" associated with the reactions I
and II, respectively, and are given by the equations

f 4porposqorqos'l *

!(2~)'A ~(v~&)5(p)+qr —ps—qs) = (2~) 'I

XZ(&(pr)~(qr) I ~)(~ I &(ps)~(qs)), (2 6)

(4polposqolq02) *

!(2s)'As(v, t)8(pr+qr —ps—qs) = (2a)'!

XZP (pr) ~(—qs) I ~)(~ I &(ps)~(—qr)) (2 &)

The symbol (1V(p&)s.(q&)! denotes a state with an in-
going nucleon of momentum pr and an ingoing pion of
momentum qr. The sum P„ is to be taken over all
intermediate states. A~ and A2 are nonzero to the right
of AB, and to the left of CD, respectively.
Equation (2.5) indicates that A is an analytic func-

tion of v in the complex plane, with poles at &v~, and
cuts along the real axis from p+ (t/4M) to oe and from—~ to —p—(t/4M).
On Fig. 1, (2.5) will be represented by an integration

along a horizontal line below the v axis. The poles will
occur where this line crosses the dashed lines; apart
from them, the integrand will be zero between AB and
CD. Except for forward scattering, the region where
the integrand is nonzero will lie partly in the unphysical
region, where the energy is above threshold but the
angle imaginary.
Equation (2.5) is only true as it stands if the func-

tions A, A&, and A2 tend to zero sufficiently rapidly as
v tends to infinity; otherwise it will be necessary to
perform one or more subtractions in the usual way.
Whenever such a dispersion relation is written down,

FIG. 1. Kinematics of the reactions I, II, and III.

the possibility of having to perform subtractions is
implied.
We next wish to obtain analytic properties of A as a

function of t. In order to do this we shall write the
scattering amplitude, not as the expectation value of
the time-ordered product of the two meson current
operators between two one-nucleon states, as is done
in the proof of the usual dispersion relations, ' "but as
the expectation value of the product of a meson current
operator and a nucleon current operator between a
nucleon state and a meson state. Thus

(2porqos) *

(2~)'A5(P)+Ps qr—qs) = (2&)s! I s "doodx'
M )

Xs-' ~' "'(V(p)
I &{J(x)u(x')) I (q)), (2.&)

where a(x') is a nucleon current operator. From this
expression, we can obtain dispersion relations in which
the momentum transfer between the incoming nucleon
and the outgoing pion, rather than between the two
nucleons, is kept constant —the proof is exactly the
same as the usual heuristic proof of the ordinary dis-
persion relations. ' "As this momentum transfer is just
s„we obtain dispersion relations in which s, is kept
constant; if A is written as a function of s, and t, they

o M. L. Goldberger, Phys. Rev. 99, 979 (1955)."R.H. Capps and G. Takeda, Phys. Rev. 106, 1337 (1956).

Stanley Mandelstam: Determination of the pion-nucleon scattering amplitude

from dispersion relations and unitarity. General theory, Physical Review (1958).
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Five Particles

10 cyclic polytopes C(4, 6)
f = (6, 15, 18, 9)

The poset for the stratification of the MMC region is the restriction of the poset defined
in Section 3 for the Mandelstam region to r-momentum conserving signed matroids. The
proof of Proposition 4.1 descends to the MMC region, showing this is indeed a stratification.
The poset governs when the closure of an MMC stratum contains lower dimensional strata.

We conclude with a study of the MMC regions for n = 4, 5. The numbers of MMC strata
are given in Table 2. They are smaller than those for the Mandelstam strata in Table 1.

d / r 2 3
1 2 6
2 1 3

(a) n = 4

d / r 2 3 4
1 6 30
2 6 60 3 15
3 9 90
4 1 10
5 1 10

(b) n = 5

Table 2: Counting MMC strata.

Example 5.4 (n = 4). The regions counted in Table 2a can be drawn in the (x, y)-plane,

S =




0 x →x → y y
x 0 y →x → y

→x → y y 0 x
y →x → y x 0


 .

This matrix has rank 3. Each triple I in [4] = {1, 2, 3, 4} yields the same inequality

det(SI) = →2xy(x + y) ↑ 0.

This inequality defines the MMC region. It consists of three closed convex cones in R2. We
see that C0

4,→3 = C0
4,3 ↓ C0

4,2 has nine MMC strata. These are shown in Figure 3, with red
for r = 3 and blue for r = 2. The uniform matroid U4 contributes C0

U4,ω,3 = {x < 0, y < 0}
for ω = (+,→, +,→), C0

U4,ω,3 = {x + y > 0, x < 0} for ω = (+,→,→, +), and C0
U4,ω,3 =

{x + y > 0, y < 0} for ω = (+, +,→,→). The matroid P = {12, 34} contributes the rays
{x = 0, y > 0} and {x = 0, y < 0}, the matroid {13, 24} contributes the rays {x = →y > 0}
and {x = →y < 0}, and {14, 23} contributes the rays {y = 0, x > 0} and {y = 0, x < 0}.

Example 5.5 (n = 5). Here r ↔ {2, 3, 4}. We parametrize the 5-dimensional space in (3) by

S =




0 a →a → b + d b → d → e e
a 0 b →b → c + e →a + c → e

→a → b + d b 0 c a → c → d
b → d → e →b → c + e c 0 d

e →a + c → e a → c → d d 0


 . (27)

The ten matrix entries define a hyperplane arrangement A with 332 regions in R5. Only
10 = 2n↑1 → n → 1 of the regions satisfy the inequalities (11). Thus U5 contributes 10 MMC

15

S =




0 a −a− b + d b − d − e e
a 0 b −b − c + e −a+ c − e

−a− b + d b 0 c a− c − d
b − d − e −b − c + e c 0 d

e −a+ c − e a− c − d d 0


 .

Igusa quartic
a2b2 + b2c2 + c2d2 + d2e2 + a2e2

+2abcd + 2abce + 2abde + 2acde + 2bcde
− 2ab2c − 2bc2d − 2cd2e − 2ade2 − 2a2be < 0.

σ s12 s13 s14 s15 s23 s24 s25 s34 s35 s45
(−,−,+,+,+) + − − − − − − + + +
(−,+,−,+,+) − + − − − + + − − +
(−,+,+,−,+) − − + − + − + − + −
(−,+,+,+,−) − − − + + + − + − −
(+,−,−,+,+) − − + + + − − − − +
(+,−,+,−,+) − + − + − + − − + −
(+,−,−,+,+) − + + − − − + + − −
(+,+,−,−,+) + − − + − − + + − −
(+,+,−,+,−) + − + − − + − − + −
(+,+,+,−,−) + + − − + − − − − +
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
 . (27)

The ten matrix entries define a hyperplane arrangement A with 332 regions in R5. Only
10 = 2n↑1 → n → 1 of the regions satisfy the inequalities (11). Thus U5 contributes 10 MMC
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S =




0 a −a− b + d b − d − e e
a 0 b −b − c + e −a+ c − e

−a− b + d b 0 c a− c − d
b − d − e −b − c + e c 0 d

e −a+ c − e a− c − d d 0


 .

Igusa quartic
a2b2 + b2c2 + c2d2 + d2e2 + a2e2

+2abcd + 2abce + 2abde + 2acde + 2bcde
− 2ab2c − 2bc2d − 2cd2e − 2ade2 − 2a2be < 0.

σ s12 s13 s14 s15 s23 s24 s25 s34 s35 s45
(−,−,+,+,+) + − − − − − − + + +
(−,+,−,+,+) − + − − − + + − − +
(−,+,+,−,+) − − + − + − + − + −
(−,+,+,+,−) − − − + + + − + − −
(+,−,−,+,+) − − + + + − − − − +
(+,−,+,−,+) − + − + − + − − + −
(+,−,−,+,+) − + + − − − + + − −
(+,+,−,−,+) + − − + − − + + − −
(+,+,−,+,−) + − + − − + − − + −
(+,+,+,−,−) + + − − + − − − − +19 / 20



Conclusion

Henn Part B1 UNIVERSE+

Objective III: Discover the positive geometries that underlie our universe.

Our final objective is to uncover the positive geometries that describe the real world, from particle
physics to the expanding universe. This must include a new formulation of scattering processes
involving all fundamental interactions, including gravity, where spacetime and quantum mechanics
are not taken as fundamental inputs, but are seen as emergent concepts. Moreover, nowhere is the
question of the emergence of spacetime more urgent than in cosmology, where the birth of spacetime
and the universe itself are intimately connected at the Big Bang singularity. A deeper formulation
of cosmology therefore should not involve time as an input, but must have it arise as a derivable
output. We aim to develop such a new timeless perspective of cosmology, inspired by geometric ideas
similar to those seen for scattering amplitudes. Finally, dislodging spacetime and quantum mechanics
from their primary roles in describing known physical laws will provide a better jumping-o↵ point to
transcending these concepts, in the settings of quantum gravity and cosmology where this is ultimately
necessary. Our work will provide the needed mathematical framework in which such extensions of the
known physical laws can be studied rigorously. Achieving these goals would radically transform our
understanding of fundamental physics and cosmology.
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Figure 2: Three diagrams that illustrate the project UNIVERSE+. Associated to all scattering processes (left)
and cosmological correlations (right) are positive geometries (middle). These novel geometries are defined purely
in terms of the initial and final states of the particles, and make no reference to their evolution in spacetime.

Methodology

In order to achieve our three objectives, we have organized the project into three corresponding work
packages (WPs), which provide a concrete path from mathematical data, via Positive Geometry,
towards our ultimate goal of finding the new geometrical language describing our universe.

I. Mathematical Data from Particle Physics and Cosmology

First, we will create new tools to compute and classify scattering amplitudes and cosmological correla-
tors. This part of the project will build on the pioneering work we have done in these areas. Scattering
amplitudes and cosmological correlators are defined in terms of the energies (and momenta) of the par-
ticles involved in a scattering process. At specific values of these energies, amplitudes and correlators
becomes singular, and the form of these singularities is determined by causality and unitarity. This
has lead to powerful new ways of computing observables in the context of scattering amplitudes [4, 15]
and conformal field theories [16].

We will systematically understand the singular limits of amplitudes and correlators and exploit this
to fully determine these observables, using new mathematical tools ranging from tropical geometry to
novel perspectives on di↵erential equations. Although our understanding of cosmological correlators
is not yet as mature as that of scattering amplitudes, the past few years have seen promising new
developments in the program called the Cosmological Bootstrap [6–10]. So far, this has only been
applied to the simplest tree-level processes of toy scalar theories. We will extend the cosmological
bootstrap to more general theories and beyond the tree-level approximation.
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