Coordinate Independent Formalism for UHFGW detection

Wolfram Ratzinger

Based on 2404.08572 with Sebastian Schenk and Pedro Schwaller

Outline

- Axion haloscopes as GW detectors
- What coordinate frame to use when calculating sensitivity?
 - Coordinate independent framework
 - Additional approximations
- Application of our results

Axion haloscopes as detectors

- Conversion of GW in background EM field
- Harness efforts of axion community

Raffelt, Stodolsky '88 A. Berlin et al. '21

$$\sqrt{-g}F_{\mu\nu}g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta} \to hFF$$

Calculation of detector response What frame to use?

TT gauge

G. Lupanov '67 ...
N. Herman et al. '20

Proper detector frame

L. Baroni, et al. '84 ...
A. Berlin et al. '21

Concrete Example: GW comes in parallel to B-field

There is no signal

There is a signal

from A. Berlin et al. '21

Calculation of detector response What frame to use?

TT gauge

- G. Lupanov '67 ...
 - N. Herman et al. '20

Proper detector frame

- L. Baroni, et al. '84 ...
 - A. Berlin et al. '21

More generally: e.g. suppression for large wavelength

• No suppression

• Signal field suppressed $\propto \omega_{
m GW} L$

How to frame the question

Description of any GW detector

- 1. Full theory in GR
 - ->coordinate invariant
- 2. Perturbed theory
 - -> inherits gauge invariance
- 3. Introduce further approximations e.g. choice of gauge + dropping terms

(Old) Literature:

"You have to use TT gauge / proper detector frame!"

Makes Sense!
Applicability / Errors?

Tension

Electro Magnetism in GR

• Field strength $F_{\mu\nu}$ and 4-current j^μ satisfy: Metric is in here $\partial_\lambda F_{\mu\nu} + \partial_\mu F_{\nu\lambda} + \partial_\nu F_{\lambda\mu} = 0$ $\nabla_\nu F^{\mu\nu} = j^\mu$

• In going from SR to GR
$$F_{\mu\nu}$$
 became a tensor transforming as

$$F'_{\alpha\beta} = F_{\mu\nu} \frac{dx^{\mu}}{dx'_{\alpha}} \frac{dx^{\nu}}{dx'_{\beta}}$$

-> Can't interpret e.g. F_{i0} as electric field

Electro Magnetism in GR

Observers infinitesimal coord. system, tetrad:

$$g_{\mu\nu}e^{\mu}_{\underline{\mu}}e^{\nu}_{\underline{\nu}} = \eta_{\underline{\mu}\underline{\nu}} \qquad e^{\mu}_{\underline{0}} = u^{\mu}$$

Obeys:

$$\frac{\mathrm{d}}{\mathrm{d}\tau}e^{\mu}_{\underline{\alpha}} + \Gamma^{\mu}_{\nu\lambda}u^{\nu}e^{\lambda}_{\underline{\alpha}} = (a_{\nu}u^{\mu} - a^{\mu}u_{\nu}) e^{\nu}_{\underline{\alpha}} + u^{\lambda}\omega^{\rho}\Omega_{\lambda\rho\nu}^{\quad \mu}e^{\nu}_{\underline{\alpha}}$$

How is the sensor attached? acceleration, forces

rotation, torque

• The observed field:

$$E_{\underline{i}} = F_{\mu\nu} \, e^{\mu}_{\underline{i}} u^{\nu} \qquad B^{\underline{i}} = \frac{1}{2} \epsilon^{\underline{i}\underline{m}\underline{n}} F_{\mu\nu} \, e^{\mu}_{\underline{m}} e^{\nu}_{\underline{n}}$$

Electro Magnetism in GR

Boundary conditions on conductor

Consider observer attached to surface of conductor measuring the electric field parallel to surface:

4-velocity of conductor
$$F_{\mu\nu}e_{\underline{1}}^{\mu}u^{\nu}=F_{\mu\nu}e_{\underline{2}}^{\mu}u^{\nu}=0 \quad \Longleftrightarrow \quad \mathbf{E}_{||}=0$$
 directions parallel to surface of conductor

Perturbations around Minkowski

Choose a scheme:

Transition to perturbed quantities:

$$g_{\mu\nu} \to \eta_{\mu\nu} + h_{\mu\nu}$$

$$g^{\mu\nu} \to \eta^{\mu\nu} - h^{\mu\nu}$$

$$F_{\mu\nu} \to \overline{F}_{\mu\nu} + \delta F_{\mu\nu}$$
...

Gauge transformation:

$$x^{\mu} \to x^{\mu} + \xi^{\mu}$$

$$h_{\mu\nu} \to h_{\mu\nu} - \partial_{\mu}\xi_{\nu} - \partial_{\nu}\xi_{\mu}$$

$$\delta F_{\mu\nu} \to \delta F_{\mu\nu} - \xi^{\alpha}\partial_{\alpha}\overline{F}_{\mu\nu} - \overline{F}_{\alpha\nu}\partial_{\mu}\xi^{\alpha} - \overline{F}_{\mu\alpha}\partial_{\nu}\xi^{\alpha}$$
...

Implies e.g.:

$$F^{\mu\nu} = g^{\mu\alpha} F_{\alpha\beta} g^{\beta\nu} \to \overline{F}^{\mu\nu} + \delta F^{\mu\nu} - h^{\mu\alpha} \overline{F}_{\alpha}^{\ \nu} - \overline{F}^{\mu}_{\ \beta} h^{\beta\nu}$$

 $F^{\mu
u}
ightarrow \overline{F}^{\mu
u} + \delta F^{\mu
u}$ trap!

Maxwell's Equations:

$$0 = \partial_{\lambda} \delta F_{\mu\nu} + \partial_{\mu} \delta F_{\nu\lambda} + \partial_{\nu} \delta F_{\lambda\mu}$$

$$\partial_{\nu}\delta F^{\mu\nu} = \delta j^{\mu} + j_{\text{eff}}^{\mu}$$

$$j_{\text{eff}}^{\mu} = -\frac{1}{2}\partial_{\alpha}h \ \overline{F}^{\mu\alpha} + \partial_{\nu}\left(h^{\mu}_{\alpha}\overline{F}^{\alpha\nu} + h^{\nu}_{\alpha}\overline{F}^{\mu\alpha}\right)$$

Perturbations around Minkowski

Perturbed boundary condition:

(observed fields work similarly)

Most Literature only considers this -> Can drop in frame in which conductor surface -> Can drop in frame in which conductor is at rest!!! $0 = \delta F_{\mu\nu} \overline{e}^{\mu}_{\underline{1}/\underline{2}} \overline{u}^{\nu} + \delta x^{\lambda} \partial_{\lambda} \overline{F}_{\mu\nu} \overline{e}^{\mu}_{\underline{1}/\underline{2}} \overline{u}^{\nu} + \overline{F}_{\mu\nu} \delta e^{\mu}_{\underline{1}/\underline{2}} \overline{u}^{\nu} + \overline{F}_{\mu\nu} \overline{e}^{\mu}_{\underline{1}/\underline{2}} \delta u^{\nu}$ Perturbed boundary Unperturbed boundary Unperturbed boundary

Transverse-Traceless (TT) Gauge

$$h_{0\mu}^{\mathrm{TT}} = 0$$
 $h_{ij}^{\mathrm{TT}} = \left(A_{ij}^{+} + A_{ij}^{\times}\right) \mathrm{e}^{i(\omega t - \mathbf{k} \cdot \mathbf{x})}$ e.g. $\mathbf{k} = k \hat{\mathbf{e}}_{z}, \ A_{ij}^{+} = A^{+} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

- The synchronous property $h_{0\mu}^{\rm TT}=0$ leads to free falling particle staying at rest $\delta x^\mu=0$
 - -> Good choice for weakly coupled particles

Change of distance rather than motion:

Proper Detector Frame

- Constructed by extending spatial components of tetrad into geodesics
 - Corrections to metric suppressed $h_{\mu\nu} = \mathcal{O}(A\omega_{\mathrm{GW}}^2L^2)$
- By construction particle at fixed distance stays at rest $\delta x^\mu = 0$
 - Sood choice for particles connected by a rigid ruler

Actual motion of free falling particle:

When are particles strongly coupled?

Toy model for a stick:

8x ~ w2 b. L

$$K \sim \frac{1}{2} \times \frac{1}{2} \times$$

Comparison of speed of sound to size of detector and wavelength!

Sound velocity in solid

 $\approx 10^{-5} c$

Mechanical Limits

- Transverse traceless gauge
 - -freely falling masses at rest
 - -free falling limit:

$$\delta x^{TT} = h^{TT} L \left(0 \pm \mathcal{O} \left(\frac{v_s}{\omega_{GW} L} \right) \right) \text{ for } \omega_{GW} L \gg v_s$$

- Proper detector frame
 - -bodies with fixed distance at rest
 - -rigid limit:

$$\delta x^{PDF} = h^{TT} L \left(0 \pm \mathcal{O} \left(\frac{\omega_{GW}^2 L^2}{v_s^2} \right) \right) \text{ for } \omega_{GW} L \ll v_s$$

- -corrections to metric suppressed by $\;\omega_{GW}^2L^2\;$
- -long-wavelength limit (no mechanical approximation):

$$h^{PDF} = h^{TT} \left(\omega_{GW}^2 L^2 \pm \mathcal{O}(\omega_{GW}^3 L^3) \right) \text{ for } \omega_{GW} L \ll 1$$

Toy Example modified from A. Berlin et. al. '21

Thin Rod with $v_s = 10^{-2}$

O Homogeneous B-field

$$\vec{\overline{B}} = \overline{B}\hat{e}_z$$

O GW, plus polarized in x-y

$$\vec{k}_{GW} = \omega \hat{e}_z$$

Observer measuring E-field in y-direction

Spherical cavity in B field

- Hollow sphere with radius R and thickness dR=0.1 R
 -speed of sound v_s=10⁻³
- In homogeneous magnetic field
- Small pickup-loop (rigid) + freely rotating
 - -> Measures oscillating B field orthogonal to loop

Result

Mechanical Resonances

EM Resonances

How to use this result? 1st Example:

Want to compute response of ADMX

How to use this result?

1st Example: Want to compute response of ADMX

-ADMX relies on EM resonances

Lies in regime $\omega_{GW}L\gg v_s$

- -> Free-falling approximation good
- -> Don't need to model mechanics
 Just use effective current in TT

Going further:

- -> Only $\delta F^{\mu\nu}$ encodes EM resonances
- -> Neglect tetrad

How to use this result? 2nd Example:

Want to compute response of MAGO

How to use this result?

2nd Example: Want to compute response of MAGO

-MAGO relies on EM resonances but $\Delta\omega_{\rm EM}\sim\omega_{\rm mech}\ll\omega_{\rm EM}$

Lies in regime $\omega_{GW}L\ll 1$

- -> Free-falling approximation for $\omega_{GW}L\gg v_s$
- -> Effect of mechanical resonances neglected
- -> Rigid limit for $\omega_{GW}L\gg v_s$
- -> Mechanical effect might still be large

-> LW approximation (good but tedious)

Comparison with prediction for MAGO

Discussion: Sensitivity of ABRACADABRA

- Lies in regime $\omega_{GW}L\ll 1$
- Pappas et al. '25 uses rigid approximation even though $\omega_{GW}L\gg v_s$
- On the other hand Domcke '24 et al. finds mechanics dominated signal

(as expected)

-> Probably more work to be done;)

Conclusion

- Detector development requires theoretical and experimental effort
- Bulk equations + boundary conditions + observables must be coordinate invariant
- Choice of gauge + neglecting motion, is approximation
 - -> Make sure that one is in the right limit + introduce errors

Thanks