POLARIMETRIC SEARCHES FOR AXION DARK MATTER AND HIGH-FREQUENCY GRAVITATIONAL WAVES USING OPTICAL CAVITIES

QUANTUM SENSING MEETS ULTRA-HIGH FREQUENCY GRAVITATIONAL WAVES

MAINZ INSTITUTE FOR THEORETICAL PHYSICS

JOHANNES GUTENBERG UNIVERSITY

JUNE 30, 2025

OUTLINE

- 1. Study of the polarization evolution of light in a slowly varying background of axions or gravitational fields, with particular emphasis on placing both phenomena on a unified framework.
- 2. Application to cavities.
- 3. ALPS II and sensitivity prospects on the axion-photon coupling and GW strain.
- 4. Conclusions

AXION BIREFRINGENCE

Geometrical optics limit

$$\frac{d\mathbf{e}}{dt} = -\frac{1}{2}g_{a\gamma\gamma}\dot{a}(t)\,\hat{\mathbf{k}} \times \mathbf{e}$$

BIREFRINGENCE DUE TO A GRAVITATIONAL WAVE

Geometrical optics limit

$$\frac{de^{i}}{dt} = \left(\Gamma^{0}_{\rho\lambda} \frac{dx^{i}}{dt} - \Gamma^{i}_{\rho\lambda}\right) \frac{dx^{\rho}}{dt} e^{\lambda}$$

2025, CGC, Marsili, Ringwald, Spector

UP I ILAL L'AVI I Y

2025, CGC, Marsili, Ringwald, Spector

$$\mathbf{E}_1(0) = \left(\sum_{n=0}^{\infty} e^{i\phi_n} \prod_{j=0}^n L_j\right) t_1 \mathbf{E}_{\text{in}}(0),$$

(j=2)

$$L_{j} = \underbrace{r_{1}\mathcal{P}}_{\text{Reflection off mirror 1}} \times \underbrace{\left((\cdots) \mathbb{I} + \int_{0}^{l} dt' \, \mathcal{M}(t' - (2j+1)l) \middle|_{\mathbf{x}(t') = \hat{\mathbf{z}} \, (l-t')} \right)}_{\mathbf{x}(t') = \hat{\mathbf{z}} \, (l-t')}$$

$$\times \underbrace{r_2 \mathcal{P}}_{\text{Reflection off mirror 2}} \times \underbrace{\left((\cdots) \mathbb{I} + \int_0^l dt' \mathcal{M}(t' - (2j+2)l) \Big|_{\mathbf{x}(t') = \hat{\mathbf{z}} \, t'} \right)}_{\mathbf{x}(t') = \hat{\mathbf{z}} \, t'} \right).$$

$$\tilde{\mathcal{M}}^{ij} = \begin{cases}
-\delta \tilde{c}(f) \epsilon^{ijn} k^n & \text{for axion} \\
\left[(1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{q}}) e^{ij} (\hat{\mathbf{q}}) - e^{in} (\hat{\mathbf{q}}) \hat{k}^n \hat{q}^j + e^{jn} (\hat{\mathbf{q}}) \hat{k}^n \hat{q}^i - e^{jn} (\hat{\mathbf{q}}) \hat{k}^n \hat{k}^i \right] & \text{for GWs.} \\
\times i\pi f \tilde{h}(f) e^{2i\pi f} \hat{\mathbf{q}} \cdot \mathbf{x}(t) &
\end{cases}$$

2025, CGC, Marsili, Ringwald, Spector

define a response function due to polarization change

$$\hat{\mathbf{s}}^{\dagger} \cdot \mathbf{E}_1(t) = t_1 |\mathbf{E}_{\text{in}}| \int_{-\infty}^{\infty} df s(f) \,\mathcal{H}(f) e^{2i\pi f t},$$

$$\mathcal{H}_{0}(f) = \left(\frac{r_{1}r_{2}e^{-4i\pi f_{L}l}}{e^{-4i\pi f_{L}l} - r_{1}r_{2}}\right) \left(\frac{1}{e^{-4i\pi (f_{L}+f)l} - r_{1}r_{2}}\right)$$

$$\approx \frac{\mathcal{F}/\pi}{e^{-4i\pi fl} - r_{1}r_{2}}, \text{ with } \mathcal{F} = \frac{\pi\sqrt{r_{1}r_{2}}}{1 - r_{1}r_{2}}$$

The laser is held on the cavity resonance.

2025, CGC, Marsili, Ringwald, Spector

define a response function due to polarization change

$$\hat{\mathbf{s}}^{\dagger} \cdot \mathbf{E}_1(t) = t_1 |\mathbf{E}_{\text{in}}| \int_{-\infty}^{\infty} df s(f) \,\mathcal{H}(f) e^{2i\pi f t}$$

$$\mathcal{H}_{0}(f) = \left(\frac{r_{1}r_{2}e^{-4i\pi f_{L}l}}{e^{-4i\pi f_{L}l} - r_{1}r_{2}}\right) \left(\frac{1}{e^{-4i\pi(f_{L}+f)l} - r_{1}r_{2}}\right)$$

$$\approx \frac{\mathcal{F}/\pi}{e^{-4i\pi fl} - r_{1}r_{2}}, \text{ with } \mathcal{F} = \frac{\pi\sqrt{r_{1}r_{2}}}{1 - r_{1}r_{2}}$$

The laser is held on the cavity resonance.

	$\mathcal{H}(f)/\mathcal{H}_0(f)$				
Axions	$-\frac{if_L}{f} \left(1 - e^{-2i\pi fl}\right)^2$				
$h_{ imes}$	$\frac{(1 - e^{-2i\pi f l})^2 + 2e^{-2i\pi f l}(1 - e^{2i\pi f l\cos\theta_h}) + 2(1 - e^{-4i\pi f l})\cos\theta_h\cos^2\phi_h}{2\sqrt{2}}$				
$h_{\times}(f=1/2l)$	$\frac{1 + e^{i\pi \cos \theta_h}}{\sqrt{2}}$ $\frac{1 - e^{2i\pi \cos \theta_h}}{\sqrt{2}}$				
$h_{\times}(f=1/l)$					
h_+	$(1 - e^{-4i\pi f l}) \frac{(3 + \cos 2\theta_h) \sin 2\phi_h}{8\sqrt{2}}$				
$h_+(f=1/2l)$	0				
$h_+(f=1/l)$	0				

AXION DARK MATTER SENSITIVITY

PHYSICAL REVIEW LETTERS 123, 111301 (2019)

Axion Dark Matter Search with Interferometric Gravitational Wave Detectors

Koji Nagano[®], ¹ Tomohiro Fujita, ^{2,3} Yuta Michimura, ⁴ and Ippei Obata¹

$$\mathbf{E}_{\mathrm{PD}}(t) = \left[t_1^2 | \mathbf{E}_{\mathrm{in}} | \left(\alpha + \int_{-\infty}^{\infty} df s(f) \,\mathcal{H}(f) e^{2i\pi f t} \right) + \mathbf{E}_{\mathrm{noise}}(t) \right] e^{-2i\pi f_L t} \hat{\mathbf{s}}.$$

THE ALPS EXPERIMENT

ALPs II experiment at DESY

Polarimetry enables use of these cavities without requiring a magnetic field.

THE ALPS EXPERIMENT

ALPs II experiment at DESY

Polarimetry enables use of these cavities without requiring a magnetic field.

Polarimetric searches for axion dark matter and high-frequency gravitational waves using optical cavities

2025, CGC, Marsili, Ringwald, Spector

- At the MHz range the sensitivity is limited by the shot noise (light quantum fluctuations)
- The higher the frequency of the laser the higher the noise
- The higher the power reduces the lower the noise

$$P_{\text{signal}} = 2 \left| \mathbf{E}_{\text{in}} \right|^2 \alpha t_1^4 \int_{-\infty}^{\infty} df \tilde{h}(f) \mathcal{H}(f) e^{i2\pi f t}$$

$$(S_h^{\text{noise}})^{1/2} = \frac{1}{t_1^2 \mathcal{H}(f)} \sqrt{\frac{\omega_L}{2P_o}}$$

AXION DARK MATTER SENSITIVITY

2025, CGC, Marsili, Ringwald, Spector

2025, CGC, Marsili, Ringwald, Spector 2025, CGC, Marsili, Ringwald, Spector

define a response function due to polarization change

$$\hat{\mathbf{s}}^{\dagger} \cdot \mathbf{E}_1(t) = t_1 |\mathbf{E}_{\text{in}}| \int_{-\infty}^{\infty} df s(f) \,\mathcal{H}(f) e^{2i\pi f t}$$

For GWs coming from the zenith

- The cross polarization has the same cavity response function as axions
- The plus polarization decouples

(selection rules)

	$\mathcal{H}(f)/\mathcal{H}_0(f)$				
Axions	$-\frac{if_L}{f} \left(1 - e^{-2i\pi f l}\right)^2$				
$h_{ imes}$	$\frac{(1 - e^{-2i\pi f l})^2 + 2e^{-2i\pi f l}(1 - e^{2i\pi f l\cos\theta_h}) + 2(1 - e^{-4i\pi f l})\cos\theta_h\cos^2\phi_h}{2\sqrt{2}}$				
$h_{\times}(f=1/2l)$	$\frac{1+e^{i\pi\cos\theta}h}{\sqrt{2}}$				
$h_{\times}(f=1/l)$	$\frac{1 - e^{2i\pi\cos\theta_h}}{\sqrt{2}}$				
h_+	$(1 - e^{-4i\pi fl}) \frac{(3 + \cos 2\theta_h) \sin 2\phi_h}{8\sqrt{2}}$				
$h_+(f=1/2l)$	0				
$h_+(f=1/l)$	0				

2023, Domcke, CGC, Lee, Rodd

2025, CGC, Marsili, Ringwald, Spector 2025, CGC, Marsili, Ringwald, Spector

define a response function due to polarization change

$$\hat{\mathbf{s}}^{\dagger} \cdot \mathbf{E}_1(t) = t_1 |\mathbf{E}_{\text{in}}| \int_{-\infty}^{\infty} df s(f) \,\mathcal{H}(f) e^{2i\pi f t},$$

For GWs coming from the zenith

- The cross polarization has the same cavity response function as axions
- The plus polarization decouples

(selection rules)

Axions (QWP)	$-\frac{if_L}{f}\left(1 - e^{-4i\pi fl}\right)$
h_{\times} (QWP)	$\frac{1 - e^{-4i\pi f l} + 2\left(1 + e^{-4i\pi f l} - 2e^{-2i\pi f l(1 - \cos\theta_h)}\right)\cos\theta_h\cos^2\phi_h}{2\sqrt{2}}$
h_{\times} (QWP, $f = 1/2l$)	$\sqrt{2}\left(1 + e^{i\pi\cos\theta_h}\right)\cos\theta_h\cos^2\phi_h$
h_{\times} (QWP, $f = 1/l$)	$\sqrt{2}\left(1 - e^{2i\pi\cos\theta_h}\right)\cos\theta_h\cos^2\phi_h$
h_+ (QWP)	$ (1 + e^{-4i\pi fl} - 2e^{-2i\pi fl(1-\cos\theta_h)}) \frac{(3+\cos 2\theta_h)\sin 2\phi_h}{8\sqrt{2}} $
h_{+} (QWP, $f = 1/2l$)	$\left(1 + e^{i\pi\cos\theta_h}\right) \frac{(3 + \cos 2\theta_h)\sin 2\phi_h}{4\sqrt{2}}$
$h_{+} \text{ (QWP, } f = 1/l)$	$\left(1 - e^{2i\pi\cos\theta_h}\right) \frac{(3 + \cos 2\theta_h)\sin 2\phi_h}{4\sqrt{2}}$

2023, Domcke, CGC, Lee, Rodd

2025, CGC, Marsili, Ringwald, Spector

CONCLUSIONS

- I discussed the evolution of light polarization as it propagates through the background of axion DM or that of a passing plane GW.
- For axions, the polarization vector of linearly polarized light rotates around the direction of propagation.
- For GWs, the polarization changes, though the effect goes beyond a simple rotation about the direction of motion.
- Geometric optics provide a unified treatment of these effects, demonstrating that the polarization evolution in all cases originates from the same underlying physics. Synergy between searches for axion DM and those for GWs.
- These effects can be exploited in the optical cavities of the ALPS II experiment, initially designed to
 observe the light-shining-through-a-wall induced by axions, but easily adaptable to measure polarization
 effects from other sources.
- For axions dark matter, this search is competitive with other laboratory-based experiments and with astrophysical searches, particularly near resonance frequencies.
- A natural application of this method is searching for GWs in optical cavities.
- With only minor modifications, the ALPS II experiment may be able to explore currently unconstrained parameter space by other strategies proposed to search for high-frequency GWs.
- In the future, other type of experiments, currently in R&D phase, could significantly enhance these prospects, though such advancements may not occur in the near term.

BACKUP

QWP	$l\left[\mathrm{m}\right]$	$P_{\max} [kW]$	(t_1^2, t_2^2, ℓ^2) (ppm)	${\mathcal F}$	$m_{\rm max} \; ({\rm eV})$	$\tau_{\rm storage} \ ({\rm ms})$
No	245	150	(22, 2, 20)	1.4×10^5	4.2×10^{-8}	74.2
Yes	245	10	(1100, 100, 1000)	2.9×10^3	2.1×10^{-6}	1.48
No	20	50	(11, 1, 10)	2.9×10^5	2.6×10^{-7}	12.1
Yes	20	10	(1100, 100, 1000)	2.9×10^3	2.6×10^{-5}	0.121

Table 2. Properties of the cavities studied in this work, all utilizing a laser with a wavelength $\lambda = 1064$ nm. See text for details.

