

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Institut für Theoretische Teilchenphysik (KIT)

Leptoquarks: emerging lepton flavour universality from RG evolution and flavour-collider connection

Ulrich Nierste, Karlsruhe Institute of Technology

Institute for Theoretical Particle Physics (TTP)

www.kit.edu

Leptoquarks and semileptonic decays

Scalar leptoquarks are a popular explanation of flavour anomalies.

$$\begin{split} S_1 \text{ or } R_2 \text{ for} \\ R(D^{(*)}) &= \frac{B(B \to D^{(*)} \tau \nu)}{B(B \to D^{(*)} \ell \nu)}, \quad \ell = e, \mu, \end{split}$$

 S_3 for low- q^2 deficit in several $b \rightarrow s\ell^+\ell^-$, $\ell = e, \mu$, decay distributions.

BSM mass reach

Flavour physics probes virtual effects of new heavy particles coupling to quarks, with a mass reach of

a few TeV in the case of S_1 or R_2 for $b \to c \tau \bar{\nu}$ and

a few tens of TeV in the case of S_3 for $b \to s\ell^+\ell^-$.

⇒ The firm establishment of a flavour anomaly helps for the design of a future hadron collider and could establish a "no-lose" situation for FCC-hh.

FCC-hh fansflavour physicsflavour physicistsFCC-ee: 10^{13} Z bosons are a perfect b factory!

New developments in $b \rightarrow c \tau \nu$

Renormalisation group analysis of leptoquark solutions

Leptoquarks at colliders

Summary and outlook

New developments in $b \rightarrow c \tau \nu$

New developments in $b \rightarrow c \tau \nu$

$R(H_c) \equiv \frac{B(H_b \to H_c \tau \nu)}{B(H_b \to H_c \ell \nu)}$

Spring 2024: Significance of deviation from SM: $3.1.\sigma$, for the form factors used by HFLAV.

Different measurements (from four experiments) agree within normal statistical fluctuations.

With 2024 LHCb measurement of $R(D^+)$:

$B \rightarrow D^*$ form factors

2022: Iguro, Kitahara and Watanabe employed Heavy Quark Effective Theory (HQET) and a systematic expansion of form factors in $1/m_b$ and performed a fit to all available data (including q^2 shapes) in $B \rightarrow D^* \ell \nu$ with light leptons $\ell = e, \mu$. arXiv:2210.10751

2023: new data on the fraction $F_L^{D^*,light}$ of longitudinally polarized D^* in $B \rightarrow D^* \ell \nu$ and the forward-backward asymmetries A_{FB}^e and A_{FB}^μ Belle, 2301.07529; Belle II, talk by Chaoyi Lyu at ALPS, March 2023

The HQET form factors excellently describe these data, while other form factor calculations do not. Fedele,Blanke,Crivellin,Iguro,UN,Simula,Vittorio, arXiv:2305.15457

$R(D^{(*)})$ with best form factors

2024 deviation from SM prediction: 4.3σ

using also new Belle/LHCb average $F^{D^*,\tau} = 0.49 \pm 0.05$

 $F_L^{D^*,\tau} = 0.49 \pm 0.05$

Good fits (pulls $\geq 4.0\sigma$) for all tree-level BSM scenarios, including charged-Higgs exchange.

Iguro, Kitahara, Watanabe, 2405.06062

From Iguro, Kitahara, Watanabe, 2405.06062:

	Reference	R_D	R_{D^*}	P_{τ}^{D}	$-P_{\tau}^{D^*}$	$F_L^{D^*}$	$R_{J\!/\psi}$	R_{Λ_c}	$R_{\Upsilon(3S)}$
	Bernlochner, et al. [29]	0.288(4)	0.249(3)	_	_	_	_	_	_
	Iguro, Watanabe [30]	0.290(3)	0.248(1)	0.331(4)	0.497(7)	0.464(3)	_	—	-
	Bordone, <i>et al.</i> [31, 32]	0.298(3)	0.250(3)	0.321(3)	0.492(13)	0.467(9)	_	_	_
	HFLAV2024 [14]	0.298(4)	0.254(5)	-	_	_	_	—	-
	Refs. [33–35]	_	_	_	_	_	0.258(4)	0.324(4)	0.9948
	Data	0.342(26)	0.287(12)	_	$0.38 {}^{+0.53}_{-0.55}$	0.49(5)	0.61(18)	0.271(72)	0.968(16)
							1	1	
								•	
							1	- ?	

$R(D^{(*)})$ from Belle II in 2025

2025 Belle II, semileptonic tag: slight increase of the global significance

Belle II coll., 2504.11220

μ

Renormalisation group analysis of leptoquark solutions

Consider lepton number conservation $y_{3ij}^{\ell} \propto \delta_{\ell j}$ to suppress LFV processes like $\mu \rightarrow e$ conversion.

Leptoquark solutions to flavour anomalies Γ

The deficit in $b \to s\ell^+\ell^-$ for low q^2 can be cured with three copies S_3^e , S_3^μ , S_3^τ of SU(2) triplet leptoquarks with masses below $\mathcal{O}(50)$ TeV.

The enhancement of $b \rightarrow c\tau\nu$ can be explained with an SU(2) singlet leptoquark S_1^{τ} with mass below $\mathcal{O}(5)$ TeV. We consider three copies S_1^e , S_1^{μ} , S_1^{τ} .

Mass gap

Flavour anomalies are usually explained by postulating a new particle with mass in the TeV range *ad-hoc*. The other particles of a reasonable UV completion are heavier.

Leptoquarks: Motivation in models with quark-lepton unification, such as $SU(4)_c$ models à la Pati-Salam. Heavy gluons (which are vector-like leptoquarks) must have masses above 1000 TeV to comply with bounds on $B(K_L \rightarrow \mu e)$.

Mass gap between the LQ masses as and the scale of the UV completion:

⇒ study low-energy properties of LQ couplings without knowing details of the UV model with renormalisation group (RG) equations.

Prototype example: Probing SM gauge unification at GUT scale only involves SM RG equations. GUT masses only enter next-to-leading order corrections.

¹⁴ MITP, Flavour for New Physics, 19 June 2025, Leptoquarks: emerging LFU... and flavour-collider connection Ulrich Nierste

Infrared fixed-point

RG beta functions are known for generic BSM theories. Machacek, Vaughn, 1983, 1984

At fixed points of the RG equations the beta functions are zero. Quasi-fixed point: The beta functions of the LQ couplings $y_{3\,ij}^a$ are zero, while the beta function of the SM couplings are not.

Infrared fixed point: y_{3ij}^a at the low scale as probed in flavour or collider experiments is predicted.

Infrared fixed-point for $S_3^{\mathscr{C}}$ scenario

Result for S_3^{ℓ} leptoquarks:

Marco Fedele, UN, Felix Wüst, JHEP 11 (2023) 131.

Infrared fixed-point solutions:

y^e_{321}	y^{e}_{331}	y^{μ}_{322}	y^{μ}_{332}	$y_{323}^{ au}$	$y_{333}^{ au}$
0.760	0.189	0.191	0.759	0.639	-0.452
0.189	0.760	0.759	0.191	0.639	-0.452

and two more pairs found by permutations of (e, μ, τ) . Partial lepton-flavour universality (LFU) as an emerging feature! The third generation comes with opposite sign for $C_{9,10}^{\ell\ell}$. Prediction for $b \to s\tau^+\tau^-$! LFU needs three copies of S_3^{ℓ} , with just two S_3^{ℓ} find opposite signs.

Infrared fixed-point for (S_1^{ℓ}, S_3^{ℓ}) scenario **P**

Bizarre: *s*-*e* coupling converges to *b*- μ coupling and *b*-*e* coupling converges to s- μ coupling!

Infrared fixed-point (S_1^{ℓ}, S_3^{ℓ}) scenario

The infrared fixed point for the S_1^{τ} coupling is smaller that the coupling inferred from $b \to c\tau\bar{\nu}$ data (for S_1^{τ} masses allowed by collider searches). Landau pole:

- ⇒ upper bound on scale of quark-lepton unification:
 - $M_{\rm QLU} \lesssim 10^{11}\,{\rm GeV}$

Leptoquarks at colliders

Radiative corrections...

...to collider processes with leptoquarks (LQ):

 QCD corrections to pair production at Tevatron and LHC: M. Krämer, T. Plehn, M. Spira, P.M. Zerwas, Phys. Rev. Lett. 79, 341 (1997), Phys.Rev.D 71 (2005) 057503;
QCD and QED corrections to resonant production: A. Greljo, N. Selimovic, JHEP 03 (2021) 279.
NNLO resummation of soft gluon radiation in pair production

C. Borschensky, B. Fuks, A. Kulesza, D. Schwartländer, JHEP 02 (2022) 157.

But if we invoke $\mathcal{O}(1)$ quark-lepton-LQ couplings to explain B anomalies, radiative corrections with these couplings might be sizeable as well.

Radiative corrections...

...linking low-energy to collider observables.

Innes Bigaran, Rodolfo Capdevilla, UN, 2408.06501

Focus: universal radiative corrections linking couplings y_{njk}^{XY} with X, Y = L, R, probed at low and high energy to each other.

Define two renormalisation schemes with couplings $y_{njk}^{XY,\text{low}}$ and $y_{njk}^{XY,\text{high}}$, defined such that radiative corrections vanish for zero LQ momentum q or for on-shell LQ, $q^2 = M_{LQ}^2$.

Coupling renormalisation

Couplings at low and high energy

 $\kappa_{1jk}^{LL} \equiv \frac{y_{1jk}^{LL,\text{high}}}{y_{1jk}^{LL,\text{low}}}$ captures the process-independent part of the radiative corrections

entering collider-physics observables of S_1 , if $y_{1ik}^{LL \text{low}}$ is taken from flavour data.

If only one LQ species is present, there are no vertex corrections. For these need both S_1 and R_2 :

If only one LQ species is present, only the LQ self-energy contributes to $\kappa_{1 ik}^{LL}$.

Couplings at low and high energy The κ_{njk}^{XY} factors are close to one, if all y_{njk}^{XY} are $\leq \mathcal{O}(1)$. Example for S_1 LQ with mass 2 TeV and with couplings $(y_{123}^{RR}, y_{133}^{LL}) = (2.6, -0.41)$: $\kappa_{1jk}^{LL} = \kappa_{1jk}^{RR} = 0.98$.

• Perturbation theory seems to work for $y_{njk}^{XY} = \mathcal{O}(5)$. Collider searches first exclude the parameter region with small LQ mass and large couplings. Example for a 2 TeV R_2 LQ with couplings $(y_{2 33}^{LR}, y_{2 23}^{RL}) \approx (0.5, -0.82 \pm 6.86 i)$: $\kappa_{2jk}^{LR} = \kappa_{2jk}^{RL} = 0.85$.

• $\kappa_{n\,ik}^{XY} < 1 \Rightarrow$ couplings in collider processes weaker than in flavour physics.

Vertex corrections

The vertex correction in scenarios with both S_1 and R_2 involves different couplings than the tree-level coupling, e.g.

Summary

Current flavour anomalies probe BSM physics with particle masses in the multi-TeV range.

 \Rightarrow instrumental to justify and design future hadron colliders

- Leptoquarks (LQs) with O(TeV) masses can give imprints on low-energy observables (e.g. in B physics) and are searched for at LHC.
 - embedding LQs into a theory of quark-lepton unification requires a mass gap. **RG evolution** for triplet LQ $S_3^{\ell\ell}$ reveals infrared fixed-points for two out of three coefficients $C_9^{\ell\ell}$, e.g. $C_9^{ee} = C_9^{\mu\mu}$.

 \Rightarrow Two-generation lepton-flavour universality emerges dynamically.

Collider bounds probe LQ couplings at high momentum transfer differing from low-energy couplings by a scaling factor $\kappa_{n,ik}^{XY} < 1$.

Backup slides

$B \rightarrow D^*$ form factors

Compare

BGL (Boyd, Grinstein, Lebed 1995):

global fit by Gambino, Jung, Schacht in 2019 to all available calculations and data in $B \to D^* \ell \nu$ with light leptons $\ell = e, \mu$. Phys. Lett. B 795 (2019) 386

HQET (using expansions in $\Lambda_{\text{OCD}}/m_{c,b}$):

global fit by Iguro, Kitahara and Watanabe in 2022 to all available calculations and data (including q^2 shapes) in $B \to D^* \ell \nu$ with light leptons $\ell = e, \mu$. arXiv:2210.10751 Fermilab/MILC (2021):

first lattice calculation employing $q^2 \neq q_{\text{max}}^2$.

Eur. Phys. J. C 82 (2022) 1141, Eur.Phys.J.C 83, 21 (2023).

$B \rightarrow D^*$ form factors

DM (Dispersive Matrix approach, Rome lattice group): uses Fermilab/MILC data and Rome calculation of susceptibility χ , employs analyticity and unitarity constraints to derive two-sided bounds on form factors.

> G. Martinelli, S. Simula, and L. Vittorio, Phys. Rev. D 104 (2021) 094512, Eur. Phys. J. C 82 (2022) 1083, JHEP 08 (2022) 022. G. Martinelli, M. Naviglio, S. Simula, and L. Vittorio, Phys. Rev. D 106 (2022) 093002.

With DM method find $R(D^*)$ compatible with Standard Model prediction and furthermore $|V_{cb}|$ from $B \to D^* \ell \nu$ consistent with $|V_{cb}|$ from inclusive $B \to X_c \ell \nu$ decays.

Predictions for $F_L^{D^*,\text{light}}$ and $A_{\text{FB}}^{e,\mu}$

from Patrick Koppenburg's web page https://www.nikhef.nl/~pkoppenb/anomalies.html