

Università degli Studi di Padova

Istituto Nazionale di Fisica Nuclearo Sezione di Padova

Neutrino Phenomenology from Flavour Deconstruction

Andrea Sainaghi

In collaboration with Gino Isidori, Paride Paradisi and Nudžeim Selimović

Why are the SM-fermion masses so different?

Why are the SM-fermion masses so different?

Why are the SM-fermion masses so different?

Flavour deconstruction refers to a framework wherein the SM gauge group G is extended in the UV to G^3 , one for each fermion generation

Flavour deconstruction refers to a framework wherein the SM gauge group G is extended in the UV to G^3 , one for each fermion generation

The hierarchies in the charged fermion masses are reproduced as long as

 $\langle \phi_{32} \rangle / \Lambda_{32} \ll 1 \qquad \langle \phi_{21} \rangle / \Lambda_{21} \ll 1$

However, it fails in explaining the anarchic neutrino sector

Theory Setup

Recently, [Greljo, Isidori, 2024] showed how to generate neutrino masses in a given flavour-deconstructed model using an Inverse Seesaw mechanism

$$-\mathcal{L} \supset \overline{\ell}_i Y^{ij}_{
u} \widetilde{H}
u_j + \overline{s}_i M^{ij}_R
u_j + \frac{1}{2} \overline{s}_i \mu^{ij} s^c_j + ext{h.c.}$$

 $Y_{
u}, M_R, \mu$ are 3x3 matrices with $M_R \gg v Y_{
u} \gg \mu$ $v \equiv \langle H \rangle$

1

$$Y_{\nu} \sim \begin{pmatrix} \varepsilon_1 \varepsilon_2 & & \\ & \varepsilon_1 & \\ & & 1 \end{pmatrix} \quad \frac{M_R}{2} \sim \Lambda \begin{pmatrix} \eta_1 \eta_2 & \eta_1 & 1 \\ \eta_1 \eta_2 & \eta_1 & 1 \\ \eta_1 \eta_2 & \eta_1 & 1 \end{pmatrix}$$

 μ \longrightarrow Anarchic

 $\Lambda\equiv\langle\chi
angle$, where χ is a scalar which is charged under the flavour gauge sector G_3 The flavour non-universal gauge group ensures the hierarchies $~arepsilon_{2,1},\eta_{2,1}\ll 1$

Mass Spectrum

Below the EW scale we have as mass eigenstates:

• 3 light active neutrinos with Majorana masses u_L^i

$$m_{\nu} \approx A \mu A^T$$

• 3 heavy neutral leptons (HNLs) with hierarchical and (almost) Dirac masses n^i

$$M_n \approx \begin{pmatrix} 0 & M_R \\ M_R^T & \mu \end{pmatrix}$$

The anarchy in the active neutrino mass matrix is guaranteed since there is a (even partial) cancellation in the hierarchies as

$$A \equiv v \frac{Y_{\nu} M_R^{-1}}{M_R^{-1}} \sim \frac{v}{\Lambda} \begin{pmatrix} \Delta_1 \Delta_2 & \Delta_1 \Delta_2 & \Delta_1 \Delta_2 \\ \Delta_1 & \Delta_1 & \Delta_1 \\ 1 & 1 & 1 \end{pmatrix} \qquad \Delta_i \equiv \frac{\varepsilon_i}{\eta_i}$$

SM Interactions

The HNLs interact weakly with the SM

$$\mathcal{L} \supset \frac{g}{\sqrt{2}} \overline{e}_L \mathcal{W}^- \mathcal{U} \nu_L + \frac{g}{\sqrt{2}} \overline{e}_L \mathcal{W}^- \mathcal{V} n_L + \text{h.c.} + \mathcal{L}_Z$$

We exploit the following parameterization for the mixing matrices

$$\boldsymbol{U} = \mathcal{N}\left(1 - \frac{1}{2}WW^{\dagger}
ight) \quad \boldsymbol{V} = \mathcal{N}W \quad W = \mathcal{U}^{\dagger}\hat{A}U_{S}^{\dagger}$$

Where \mathcal{N} is the PMNS matrix of the SM and \mathcal{U} , U_S are 3x3 unitary matrices while $\hat{A} = \frac{y_{\nu}v}{\Lambda} \operatorname{diag}(\Delta_1 \Delta_2, \Delta_1, 1)$

There are 12 parameters relevant for the phenomenology:

There are 12 parameters relevant for the phenomenology:

There are 12 parameters relevant for the phenomenology:

 α_1 , α_2 , α_3

Three angles that parameterize the 3x3 unitary matrix \mathcal{U}

If the leptonic Yukawa matrices are diagonalized on the left by matrices close to the identity, then

 $lpha_ipprox heta_i$ ($heta_i$ are the PMNS mixing angles)

$$\mathcal{L} \supset \frac{g}{\sqrt{2}} \overline{e}_L W^{-} U \nu_L + \frac{g}{\sqrt{2}} \overline{e}_L W^{-} V n_L + \text{h.c.} + \mathcal{L}_Z$$
$$U = \mathcal{N} \left(1 - \frac{1}{2} W W^{\dagger} \right) \qquad V = \mathcal{N} W \qquad W = \mathcal{U}^{\dagger} \hat{A} U_S^{\dagger}$$

There are 12 parameters relevant for the phenomenology:

Three angles that parameterize the 3x3 unitary matrix U_S

In principle, they can range in

 $[0, 2\pi]$

They are related to the singlets of the Inverse Seesaw only, so there is no way to constrain them

$$\begin{split} \mathcal{L} \supset \frac{g}{\sqrt{2}} \overline{e}_L W^{-} U \nu_L + \frac{g}{\sqrt{2}} \overline{e}_L W^{-} V n_L + \text{h.c.} + \mathcal{L}_Z \\ \mathcal{I} = \mathcal{N} \left(1 - \frac{1}{2} W W^{\dagger} \right) \qquad V = \mathcal{N} W \qquad W = \mathcal{U}^{\dagger} \hat{A} U_S^{\dagger} \end{split} \text{here}$$

There are 12 parameters relevant for the phenomenology:

Neutrino Masses

The absolute scale of SM neutrino masses is still unknown

Normal Hierarchy (NH):

Inverted Hierarchy (IH):

$$\Delta m_{\rm atm}^2 = 2.56 \cdot 10^{-3} \, {\rm eV}^2$$

$$\Delta m_{\rm sol}^2 = 7.36 \cdot 10^{-5} \, {\rm eV}^2$$

Normal Hierarchy:

$0.1 < m_1 \,(\text{meV}) < 1$ $1 < m_1 \,(\text{meV}) < 10$ $10 < m_1 \,(\text{meV}) < 50$

It is very difficult to reproduce $m_1 < 0.1 \,\mathrm{meV}$

 Δ_1

Normal Hierarchy:

$0.1 < m_1 \,(\text{meV}) < 1$ $1 < m_1 \,(\text{meV}) < 10$ $10 < m_1 \,(\text{meV}) < 50$

It is very difficult to reproduce $m_3 < 1 \,\mathrm{meV}$

Inverted Hierarchy:

$1 < m_3 \,(\text{meV}) < 10$ $10 < m_3 \,(\text{meV}) < 50$

Direct Searches

Direct Searches

Direct Searches

$$\begin{split} M_1 < M_{W,Z} &\longrightarrow \Lambda \gtrsim 20 \text{ TeV} \\ \text{Otherwise, by imposing} \quad M_1 > M_{W,Z} \\ & \downarrow \\ \Lambda \gtrsim 40 \left(\frac{\Delta_1 \Delta_2}{0.13}\right) \left(\frac{m_{\mu}/m_{\tau}}{\varepsilon_1}\right) \left(\frac{m_e/m_{\mu}}{\varepsilon_2}\right) \text{ TeV} \end{split}$$

Compatible with NP at TeV scale!

$$\Lambda \gtrsim \text{few TeV}$$

Recall that NH: $\Delta_1 \Delta_2 \gtrsim 0.08$ IH: $\Delta_1 \Delta_2 \gtrsim 0.15$

Flavour-deconstructed models predict LFV processes even without including neutrinos

-

$$\mathcal{L} \supset |D_{\mu}H|^{2} + Z'_{\mu}J^{\mu}_{Z'} + \frac{1}{2}M^{2}_{Z'}Z'_{\mu}Z'^{\mu} + \mathcal{L}_{Y}$$

Flavour-deconstructed models predict LFV processes even without including neutrinos

$$\mathcal{L} \supset (D_{\mu}H)^{2} + Z_{\mu}J_{Z'}^{\mu} + \frac{1}{2}M_{Z'}^{2}Z_{\mu}'Z'^{\mu} + \mathcal{L}_{Y}$$
$$J_{Z'}^{\mu} = g_{\mathrm{NP}}\sum_{\psi}\overline{\psi}\gamma^{\mu}\psi Q_{Z'}(\psi)$$
$$D_{\mu}H \supset \partial_{\mu}H - \frac{ig}{c_{W}}(T_{3} - s_{W}^{2}Q)Z_{\mu}H - ig_{\mathrm{NP}}Q_{Z'}(H)Z_{\mu}'H$$

Z'

It is a neutral heavy gauge boson that couples non-universally with all the fermions in the theory

Flavour-deconstructed models predict LFV processes even without including neutrinos

$$\begin{split} \mathcal{L} \supset |D_{\mu}H|^{2} + Z'_{\mu}J^{\mu}_{Z'} + \frac{1}{2}M^{2}_{Z'}Z'_{\mu}Z'^{\mu} + \mathcal{L}_{Y} \\ \mathcal{L}_{Y} \sim y_{33}\overline{\ell}_{3}He_{3} + \sum_{j=1,2}\sum_{\alpha=\text{heavy}}Y_{j\alpha}\overline{\ell}_{j}HE_{\alpha} \\ &+ \left[\sum_{\alpha=\text{heavy}}Y'_{\alpha i}\overline{E}_{\alpha}\phi_{32}e_{2} + \sum_{\alpha=\text{heavy}}M_{\alpha}\overline{E}_{\alpha}E_{\alpha} + 1^{\text{st}} \text{ generation}\right] \\ &\overline{E}_{\alpha} \longrightarrow \text{ Heavy NP fermions} \qquad \Lambda_{32} \sim M_{\alpha} \end{split}$$

Flavour-deconstructed models predict LFV processes even without including neutrinos

$$\begin{split} \mathcal{L} \supset |D_{\mu}H|^{2} + Z'_{\mu}J^{\mu}_{Z'} + \frac{1}{2}M^{2}_{Z'}Z'_{\mu}Z'^{\mu} + \mathcal{L}_{Y} \\ \mathcal{L}_{Y} \sim y_{33}\bar{\ell}_{3}He_{3} + \sum_{j=1,2}\sum_{\alpha=\text{heavy}}Y_{j\alpha}\bar{\ell}_{j}HE_{\alpha} \\ &+ \left[\sum_{\alpha=\text{heavy}}Y'_{\alpha i}\overline{E}_{\alpha}\phi_{32}e_{2} + \sum_{\alpha=\text{heavy}}M_{\alpha}\overline{E}_{\alpha}E_{\alpha} + 1^{\text{st}} \text{ generation}\right] \\ \text{It generates a mass-mixing} \\ \text{It generates a mass-mixing} \\ \text{matrix between light and} \\ \text{heavy fermions} \qquad \qquad \mathcal{U}_{\text{mix}} = \begin{pmatrix} \mathbb{I} - \frac{1}{2}\mathcal{E}^{\dagger}\mathcal{E} & \mathcal{E}^{\dagger} \\ -\mathcal{E} & \mathbb{I} - \frac{1}{2}\mathcal{E}\mathcal{E}^{\dagger} \end{pmatrix} \\ \mathcal{E} \sim \langle \phi_{32} \rangle / \Lambda_{32} \end{split}$$

Flavour-deconstructed models predict LFV processes even without including neutrinos

$$\mathcal{L} \supset |D_{\mu}H|^{2} + Z'_{\mu}J^{\mu}_{Z'} + \frac{1}{2}M^{2}_{Z'}Z'_{\mu}Z'^{\mu} + \mathcal{L}_{Y}$$

Flavour-deconstructed models predict LFV processes even without including neutrinos

$$\mathcal{L} \supset |D_{\mu}H|^{2} + Z'_{\mu}J^{\mu}_{Z'} + \frac{1}{2}M^{2}_{Z'}Z'_{\mu}Z'^{\mu} + \mathcal{L}_{Y}$$

$$\frac{\operatorname{Br}(\mu \to eee)|_{Z'}}{\operatorname{Br}(\mu \to eee)|_{\nu}} \approx (10^{-1} \div 10) \times \left(\frac{1}{y_{\nu}}\right)^4 \left(\frac{0.5^3}{\Delta_1^2 \Delta_2}\right)^2 \left(\frac{\varepsilon_e \varepsilon_\mu}{0.05^2}\right)^2 \left(\frac{\alpha_{\mathrm{NP}}}{\alpha}\right)^2 \left(\frac{\Lambda}{M_{Z'}}\right)^4$$

$$\frac{\operatorname{Cr}(\mu - e, Al)|_{Z'}}{\operatorname{Cr}(\mu - e, Al)|_{\nu}} \approx (10^{-1} \div 10) \times \left(\frac{1}{y_{\nu}}\right)^4 \left(\frac{0.5^3}{\Delta_1^2 \Delta_2}\right)^2 \left(\frac{\varepsilon_e \varepsilon_\mu}{0.05^2}\right)^2 \left(\frac{\alpha_{\mathrm{NP}}}{\alpha}\right)^2 \left(\frac{\Lambda}{M_{Z'}}\right)^4$$

This range is only due to β_i

Mixing between third and light generations

Neutrino sector could dominate for $\,\Lambda \lesssim M_{Z'}\,$

This model-independent study can be easily matched to any given flavourdeconstructed model of interest

As example, we refer to Model B discussed in [Greljo, Isidori, 2024]

This model-independent study can be easily matched to any given flavourdeconstructed model of interest

Gauge group:
$$SU(3)_C \times SU(2)_L^3 \times U(1)_R \times U(1)_{B-L}^3$$

Flavour-deconstructed

To break the symmetry down to the SM gauge group we need some scalar fields

This model-independent study can be easily matched to any given flavourdeconstructed model of interest

Gauge group:
$$SU(3)_C \times SU(2)_L^3 \times U(1)_R \times U(1)_{B-L}^3$$

The Lagrangian contains all the possible EFT operators allowed by the full symmetry

$$\mathcal{L}_{Y} = y_{33}\overline{\ell}_{3}\widetilde{H}\nu_{3} + \frac{c_{32}}{\Lambda_{32}}\overline{\ell}_{3}\widetilde{H}\phi_{32}^{\ell}\nu_{2} + \frac{c_{23}}{\Lambda_{32}^{2}}\overline{\ell}_{2}\widetilde{H}\phi_{32}^{L}\phi_{32}^{\ell}\nu_{3} + 1\text{-st generation} \qquad \Big] \rightarrow Y_{\nu}$$

$$\mathcal{L}_{R} = \tilde{c}_{i3} \overline{s}_{i} \chi \nu_{3} + \frac{\tilde{c}_{i2}}{\Lambda_{32}} \overline{s}_{i} \chi \phi_{32}^{\ell} \nu_{2} + 1^{\text{st}} \text{ generation } \longrightarrow M_{R}$$

$$\swarrow \chi \rangle \sim \Lambda$$

This model-independent study can be easily matched to any given flavourdeconstructed model of interest

Gauge group:
$$SU(3)_C \times SU(2)_L^3 \times U(1)_R \times U(1)_{B-L}^3$$

The Lagrangian leads to the following hierarchical matrices

$$Y_{\nu} \sim \begin{pmatrix} \varepsilon_1 \varepsilon_2 & \varepsilon_1 \varepsilon_2 \eta_2 & \varepsilon_1 \varepsilon_2 \eta_1 \eta_2 \\ \varepsilon_1 \eta_2 & \varepsilon_1 & \varepsilon_1 \eta_1 \\ \eta_1 \eta_2 & \eta_1 & 1 \end{pmatrix} \quad M_R \sim \Lambda \begin{pmatrix} \eta_1 \eta_2 & \eta_1 & 1 \\ \eta_1 \eta_2 & \eta_1 & 1 \\ \eta_1 \eta_2 & \eta_1 & 1 \end{pmatrix}$$

$$\varepsilon_{1} = \langle \phi_{32}^{L} \rangle / \Lambda_{32}$$
$$\varepsilon_{2} = \langle \phi_{21}^{L} \rangle / \Lambda_{21}$$
$$\eta_{1} = \langle \phi_{32}^{\ell} \rangle / \Lambda_{32}$$
$$\eta_{2} = \langle \phi_{21}^{\ell} \rangle / \Lambda_{21}$$

This model-independent study can be easily matched to any given flavourdeconstructed model of interest

Gauge group:
$$SU(3)_C \times SU(2)_L^3 \times U(1)_R \times U(1)_{B-L}^3$$

The Lagrangian leads to the following hierarchical matrices

$$Y_{\nu} \sim \begin{pmatrix} \varepsilon_1 \varepsilon_2 & \varepsilon_1 \varepsilon_2 \eta_2 & \varepsilon_1 \varepsilon_2 \eta_1 \eta_2 \\ \varepsilon_1 \eta_2 & \varepsilon_1 & \varepsilon_1 \eta_1 \\ \eta_1 \eta_2 & \eta_1 & 1 \end{pmatrix} \quad M_R \sim \Lambda \begin{pmatrix} \eta_1 \eta_2 & \eta_1 & 1 \\ \eta_1 \eta_2 & \eta_1 & 1 \\ \eta_1 \eta_2 & \eta_1 & 1 \end{pmatrix}$$

$$\begin{split} \varepsilon_{1} &= \langle \phi_{32}^{L} \rangle / \Lambda_{32} \\ \varepsilon_{2} &= \langle \phi_{21}^{L} \rangle / \Lambda_{21} \\ \eta_{1} &= \langle \phi_{32}^{\ell} \rangle / \Lambda_{32} \\ \eta_{2} &= \langle \phi_{21}^{\ell} \rangle / \Lambda_{21} \end{split} \quad \begin{aligned} & \text{We have the freedom to} \\ \text{require Normal Hierarchy} \quad \Delta_{1} \lesssim 1 \quad \Delta_{2} \lesssim 1 \\ & \Rightarrow \quad \Lambda \gtrsim \text{few TeV} \end{split}$$

Conclusions

In this work we have considered the leading phenomenological implications of neutrino anarchy in flavour deconstruction [Greljo, Isidori, 2024]

- We have computed which is the expected absolute neutrino mass scale predicted by any given flavour-deconstructed model
- We have shown that Normal Hierarchy allows for the NP scale Λ to be lower with respect to Inverted Hierarchy
- The contribution to LFV processes coming from the neutrino sector can be dominant over the Gauge and Yukawa sectors
- In some cases, the NP scale Λ can be as low as few TeV and can be probed by near future experiments, such as Mu3e and COMET