

Università degli Studi di Padova

Modular Invariance in Flavour Physics

Arsenii Titov

Dipartimento di Fisica e Astronomia, Università di Padova, Italy INFN, Sezione di Padova, Italy

MITP Topical Workshop

Flavour for New Physics at Present and Future Colliders

Mainz, Germany, 18 June 2025

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

Outline

- Flavour problem
- Non-Abelian discrete symmetries
- Modular invariance
 - Modular group
 - Modular forms
 - Modular-invariant supersymmetric theories
- Modular-invariant flavour models
 - Leptons
 - o Quarks
- Modular invariance and CP symmetry
 - Strong CP problem

Flavour problem: masses

- Why are there 3 families (generations)?
- Is there any organising principle behind the values of fermion masses?
- What is the value of the lightest neutrino mass?
- Why is the mass of neutrino ~10⁷ times smaller than that of electron?
- What is the mechanism of neutrino mass generation?

$$\begin{split} \delta m^2 &= m_2^2 - m_1^2 \approx 7.4 \times 10^{-5} \text{ eV}^2 \\ \Delta m^2 &= m_3^2 - \frac{m_1^2 + m_2^2}{2} \approx \begin{cases} +2.5 \times 10^{-3} \text{ eV}^2 \text{ for NO} \\ -2.5 \times 10^{-3} \text{ eV}^2 \text{ for IO} \end{cases} \\ \frac{\delta m^2}{|\Delta m^2|} \approx 0.03 \end{split}$$

Flavour problem: mixing

Interaction/flavour basis

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
 Mass basis

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{21}/2} & 0 \\ 0 & 0 & e^{i\alpha_{31}/2} \end{pmatrix}$$
 Majorana phases

Quarks

Why are the PMNS and CKM mixing matrices so different?

Neutrino oscillation data

Capozzi et al., 2503.07752; see also Esteban et al., 2410.05380 and de Salas et al., 2006.11237

Neutrino oscillation data

Capozzi et al., 2503.07752; see also Esteban et al., 2410.05380 and de Salas et al., 2006.11237

Neutrino oscillation data

Capozzi et al., 2503.07752; see also Esteban et al., 2410.05380 and de Salas et al., 2006.11237

Flavour symmetry

At high energies, the theory is invariant under

$$\begin{split} \varphi(x) &\to \rho(g) \, \varphi(x) \,, \quad g \in G_f \qquad \text{e.g.} \qquad \varphi = \begin{pmatrix} L_e \\ L_\mu \\ L_\tau \end{pmatrix} \\ \hline & & & & \\ \text{representation of } G_f \qquad & & \\ -\mathcal{L} = \overline{\ell_L} M_e \ell_R + \overline{\nu_L^c} M_\nu \nu_L + \text{h.c.} \end{split}$$

At low energies, flavour symmetry has to be broken

$$G_{e} \subset G_{f}$$

$$G_{e} \subset G_{f}$$

$$P(g_{e})^{\dagger}M_{e}M_{e}^{\dagger}\rho(g_{e}) = M_{e}M_{e}^{\dagger}$$

$$P(g_{\nu})^{T}M_{\nu}\rho(g_{\nu}) = M_{\nu}$$

$$U_{e}^{\dagger}M_{e}M_{e}^{\dagger}U_{e} = \text{diag}\left(m_{e}^{2}, m_{\mu}^{2}, m_{\tau}^{2}\right)$$

$$U_{\nu}^{T}M_{\nu}U_{\nu} = \text{diag}\left(m_{1}, m_{2}, m_{3}\right)$$

$$U_{e}^{\dagger}\rho(g_{e})U_{e} = \rho(g_{e})^{\text{diag}}$$

$$U_{\nu}^{\dagger}\rho(g_{\nu})U_{\nu} = \rho(g_{\nu})^{\text{diag}}$$

$$U_{\nu}^{\dagger}\rho(g_{\nu})U_{\nu} = \rho(g_{\nu})^{\text{diag}}$$

9

Non-Abelian discrete symmetries

Generated by two elements S and T

$$\langle S, T | S^2 = (ST)^3 = T^N = I \rangle$$
, $N = 2, 3, 4, 5$

Another convenient presentation for S_4

$$\langle S, T, U | S^2 = T^3 = U^2 = (ST)^3 = (SU)^2 = (TU)^2 = (STU)^4 = I \rangle$$

 A_4 , S_4 , and A_5 admit a 3-dimensional irrep (unification of families) Reviews: Altarelli, Feruglio, 1002.0211; Ishimori et al., 1003.3552; King, Luhn, 1301.1340; Petcov, 1711.10806; Feruglio, Romanino, 1912.06028

Discrete flavour symmetry

PROS

- ✓ Can successfully describe the observed lepton mixing pattern
- ✓ Unification of three families at high energies: irrep 3

CONS

- Symmetry breaking typically relies on numerous flavons
- Elaborated potentials to get desirable vacuum alignment
- Higher-dimensional operators can spoil LO predictions
- Mainly mixing, and not masses

What is the origin of discrete flavour symmetry?

Discrete flavour symmetry

PROS

- ✓ Can successfully describe the observed lepton mixing pattern
- ✓ Unification of three families at high energies: irrep 3

CONS

- Symmetry breaking typically relies on numerous flavons
- Elaborated potentials to get desirable vacuum alignment
- Higher-dimensional operators can spoil LO predictions
- Mainly mixing, and not masses

What is the origin of discrete flavour symmetry?

Perhaps modular invariance

Proposal by Feruglio, in book "From My Vast Repertoire ...: Guido Altarelli's Legacy", 1706.08749

Modular invariance

Modular invariance

au and au' describe the same torus

Modular group

Modular group

Inhomogeneous modular group

$$\overline{\Gamma} = \left\langle S, T \mid S^2 = (ST)^3 = I \right\rangle \cong \text{PSL}(2,\mathbb{Z}) = \text{SL}(2,\mathbb{Z})/\{I, -I\}$$

In other words, $SL(2,\mathbb{Z})$ matrices γ and $-\gamma$ are identified

$$\tau \xrightarrow{\gamma} \gamma \tau = \frac{a\tau + b}{c\tau + d}$$
 $\qquad \qquad \tau \xrightarrow{-\gamma} (-\gamma) \tau = \frac{-a\tau - b}{-c\tau - d} = \gamma \tau$

Finite modular groups

Principle congruence subgroups of SL(2,Z) of level
$$N = 2, 3, 4, \dots$$

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,Z), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

Finite modular groups

 $\overline{\Gamma} = \mathrm{PSL}(2,\mathbb{Z})$

$$\Gamma_N \equiv \overline{\Gamma} / \overline{\Gamma}(N)$$

$$\Gamma_N = \langle S, T | S^2 = (ST)^3 = T^N = I \rangle, \quad N = 2, 3, 4, 5$$

Finite modular groups

Principle congruence subgroups of SL(2,Z) of level
$$N = 2, 3, 4, \dots$$

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,Z), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

Finite modular groups

 $\Gamma = \mathrm{SL}(2,\mathbb{Z})$

$$\Gamma'_N \equiv \Gamma/\Gamma(N)$$

$$\Gamma'_N = \langle S, T \mid S^4 = (ST)^3 = T^N = I, S^2T = TS^2 \rangle, N = 3, 4, 5$$

Double covers
$$\Gamma'_3 \cong A'_4 = T'$$
 $\Gamma'_4 \cong S'_4$ $\Gamma'_5 \cong A'_5$

Holomorphic functions on $\mathscr{H} = \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$ transforming under $\Gamma(N)$ as follows

Holomorphic functions on $\mathscr{H} = \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}$ transforming under $\Gamma(N)$ as follows

Modular forms of weight k and level N form a linear space $\mathcal{M}_k(\Gamma(N))$ of finite dimension. We can choose a basis in this space s.t. $Y(\tau) \equiv (y_1(\tau), y_2(\tau), ...)^T$ transforms as

$$Y(\gamma\tau) = (c\tau + d)^k \rho(\gamma) Y(\tau), \quad \gamma \in \Gamma$$

 ρ is effectively a representation of finite $\Gamma_N'\equiv\Gamma/\Gamma(N)$

$$\rho\left(\Gamma(N)\right) = 1\,,\quad \rho\left(S\Gamma(N)\right) = \rho(S)\,,\quad \rho\left(T\Gamma(N)\right) = \rho(T)\,,\ldots$$

Feruglio, 1706.08749

N	2	3	4	5
Γ_N	S_3	A_4	S_4	A_5
Γ'_N	S_3	$A_4' \equiv T'$	$S'_4 \equiv SL(2,\mathbb{Z}_4)$	$A_5' \equiv SL(2, \mathbb{Z}_5)$
$\dim \mathcal{M}_k(\Gamma(N))$	k/2 + 1	k+1	2k + 1	5k + 1

A finite set of functions for each k and N

N	2	3	4	5
Γ_N	S_3	A_4	S_4	A_5
Γ'_N	S_3	$A'_4 \equiv T'$	$S'_4 \equiv SL(2,\mathbb{Z}_4)$	$A_5' \equiv SL(2, \mathbb{Z}_5)$
$\dim \mathcal{M}_k(\Gamma(N))$	k/2 + 1	k+1	2k + 1	5k + 1

A finite set of functions for each k and N

Lowest-weight modular forms for each group

Γ_N	$Y_{\mathbf{r}}^{(k)}$	# forms
$\Gamma_2 \cong S_3$	$Y_{2}^{(2)}$	2
$\Gamma_3 \cong A_4$	$Y_{3}^{(2)}$	3
$\Gamma_4 \cong S_4$	$Y_{2}^{(2)}, Y_{3'}^{(2)}$	5
$\Gamma_5 \cong A_5$	$Y_{3}^{(2)}, Y_{3'}^{(2)}, Y_{5}^{(2)}$	11

See, e.g., Novichkov, Penedo, Petcov, AT, 1905.11970 and Ding, King, 2311.09282

N	2	3	4	5
Γ_N	S_3	A_4	S_4	A_5
Γ'_N	S_3	$A'_4 \equiv T'$	$S'_4 \equiv SL(2,\mathbb{Z}_4)$	$A_5' \equiv SL(2, \mathbb{Z}_5)$
$\dim \mathcal{M}_k(\Gamma(N))$	k/2 + 1	k+1	2k + 1	5k + 1

A finite set of functions for each k and N

Lowest-weight modular forms for each group

Γ_N	$Y_{\mathbf{r}}^{(k)}$	# forms	Γ'_N	$Y^{(k)}_{\mathbf{r}}$	# forms
$\Gamma_2 \cong S_3$	$Y_{2}^{(2)}$	2			
$\Gamma_3 \cong A_4$	$Y_{3}^{(2)}$	3	$\Gamma'_3\cong T'$	$Y^{(1)}_{\hat{2}}$	2
$\Gamma_4 \cong S_4$	$Y_{2}^{(2)}, Y_{3'}^{(2)}$	5	$\Gamma'_4 \cong S'_4$	$Y^{(1)}_{{\bf \hat{3}}}$	3
$\Gamma_5 \cong A_5$	$Y_{3}^{(2)}, Y_{3'}^{(2)}, Y_{5}^{(2)}$	11	$\Gamma_5'\cong A_5'$	$Y^{(1)}_{\hat{6}}$	6

See, e.g., Novichkov, Penedo, Petcov, AT, 1905.11970 and Ding, King, 2311.09282

 $\mathcal{N} = 1 \text{ global SUSY action}$ $\mathcal{L} = \int d^2\theta \, d^2\overline{\theta} \, K\left(\tau, e^{2V}\Phi, \tau^{\dagger}, \Phi^{\dagger}\right) + \left[\int d^2\theta \, W(\tau, \Phi) + \frac{1}{16} \int d^2\theta \, f_a(\tau) \, \mathcal{W}_a \, \mathcal{W}_a + \text{h.c.}\right]$

Kähler potential *K* (kinetic terms, gauge interactions) Superpotential W (Yukawa interactions)

 $\mathcal{N} = 1 \text{ global SUSY action}$ $\mathcal{L} = \int d^2\theta \, d^2\overline{\theta} \, K\left(\tau, e^{2V}\Phi, \tau^{\dagger}, \Phi^{\dagger}\right) + \left[\int d^2\theta \, W(\tau, \Phi) + \frac{1}{16} \int d^2\theta \, f_a(\tau) \, \mathcal{W}_a \, \mathcal{W}_a + \text{h.c.}\right]$

Kähler potential *K* (kinetic terms, gauge interactions) Superpotential W (Yukawa interactions)

Gauge kinetic function f $f_3 = \frac{1}{g_3^2} - i \frac{\theta_{\text{QCD}}}{8\pi^2}$

Under modular transformations $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$

$$\begin{cases} \tau \to \frac{a\tau + b}{c\tau + d} \\ \Phi \to \left(c\tau + d\right)^{-k_{\Phi}} \rho_{\Phi}(\gamma) \Phi \\ V \to V \end{cases}$$

 τ is promoted to a (dimensionless) superfield

matter supermultiplets

vector supermultiplets

Modular symmetry acts non-linearly

Ferrara et al., PLB 225 (1989) 363; PLB 233 (1989) 147; Feruglio, 1706.08749

 $\mathcal{N} = 1 \text{ global SUSY action}$ $\mathcal{L} = \int d^2\theta \, d^2\overline{\theta} \, K\left(\tau, e^{2V}\Phi, \tau^{\dagger}, \Phi^{\dagger}\right) + \left[\int d^2\theta \, W(\tau, \Phi) + \frac{1}{16} \int d^2\theta \, f_a(\tau) \, \mathcal{W}_a \, \mathcal{W}_a + \text{h.c.}\right]$

Kähler potential *K* (kinetic terms, gauge interactions) Superpotential W (Yukawa interactions)

Modular invariance of the action requires

$$\begin{cases} K(\tau, \Phi, \tau^{\dagger}, \Phi^{\dagger}) \to K(\tau, \Phi, \tau^{\dagger}, \Phi^{\dagger}) + f_{K}(\tau, \Phi) + \overline{f_{K}}\left(\tau^{\dagger}, \Phi^{\dagger}\right) \\ W(\tau, \Phi) \to W(\tau, \Phi) \end{cases}$$

Ferrara et al., PLB 225 (1989) 363; PLB 233 (1989) 147; Feruglio, 1706.08749

Minimal Kähler potential

$$K = -h^2 \ln\left(-i\tau + i\tau^{\dagger}\right) + \sum_{\Phi} \frac{\Phi^{\dagger}\Phi}{\left(-i\tau + i\tau^{\dagger}\right)^{k_{\Phi}}}$$

Minimal Kähler potential

$$K = -h^2 \ln\left(-i\tau + i\tau^{\dagger}\right) + \sum_{\Phi} \frac{\Phi^{\dagger}\Phi}{\left(-i\tau + i\tau^{\dagger}\right)^{k_{\Phi}}}$$

Superpotential

$$W = \sum_{ijk} g_{ijk} \left(Y_{ijk}(\tau) \Phi_i \Phi_j \Phi_k \right)_1$$

$$\tau$$
-dependent Yukawa couplings

$$Y_{ijk}(\tau) \to (c\tau + d)^{k_{Y_{ijk}}} \rho_{Y_{ijk}}(\gamma) Y_{ijk}(\tau) \quad \text{with} \quad \begin{cases} k_{Y_{ijk}} = k_{\Phi_i} + k_{\Phi_j} + k_{\Phi_k} \\ \rho_{Y_{ijk}} \otimes \rho_{\Phi_i} \otimes \rho_{\Phi_j} \otimes \rho_{\Phi_k} \supset \mathbf{1} \end{cases}$$

 $Y_{ijk}(\tau)$ are modular forms if $k_{Y_{ijk}} \ge 0$ (SUSY \Rightarrow holomorphicity)

Modular A4 symmetry

$$\Gamma_3 = \left\langle S, T \mid S^2 = (ST)^3 = T^3 = I \right\rangle$$

- o 12 elements
- 4 irreps: 1, 1', 1", 3
- Space of the lowest non-trivial weight 2 modular forms has dimension 3
- 3 weight 2 modular forms arrange themselves in a triplet:

$$Y_{3}^{(2)}(\tau) \equiv \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \\ Y_{3}(\tau) \end{pmatrix}$$

• $Y_i(\tau)$ are given in terms of the Dedekind eta function

$$\eta(\tau) \equiv q^{1/24} \prod_{n=1}^{\infty} (1-q^n) , \quad q = e^{2\pi i \tau}$$

• Products of $Y_i(\tau)$ generate modular forms of higher weights, 4, 6, 8, ... Feruglio, 1706.08749

Modular forms of level 3 and weight 2

$$\begin{split} & Y_{1}(\tau) = \frac{i}{2\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} - 27\frac{\eta'(3\tau)}{\eta(3\tau)} \right] = 1 + 12q + 36q^{2} + 12q^{3} + \dots \\ & Y_{2}(\tau) = -\frac{i}{\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \omega^{2} \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \omega \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} \right] = -6q^{1/3} \left(1 + 7q + 8q^{2} + \dots\right) \\ & Y_{3}(\tau) = -\frac{i}{\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \omega \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \omega^{2} \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} \right] = -18q^{2/3} \left(1 + 2q + 5q^{2} + \dots\right) \end{split}$$

Here $\omega = e^{\frac{2\pi i}{3}}$ and $q = e^{2\pi i \tau}$ ($|q| = e^{-2\pi \operatorname{Im} \tau} < 1$ since $\operatorname{Im} \tau > 0$)

Since modular forms are periodic

$$f(T^N\tau) = f(\tau + N) = (c\tau + d)^k f(\tau) = f(\tau), \qquad T^N = \begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix} \in \overline{\Gamma}(N),$$

they admit *q*-expansions:

$$f(\tau) = \sum_{n=0}^{\infty} a_n q_N^n, \qquad q_N = e^{\frac{2\pi i \tau}{N}}$$
 (N = 3 in this example)

Feruglio's modular A4 model

Feruglio, 1706.08749

$$\Gamma_3 \cong A_4 \quad (\text{level } N = 3)$$

 $\Phi \sim (\mathbf{r}, k)$

$$L \sim (\mathbf{3}, 1)$$
 and $H_u \sim (\mathbf{1}, 0)$

3 independent modular forms of weight k = 2 form a triplet of A_4 : $Y_3^{(2)} = (Y_1, Y_2, Y_3)^T$

$$W_{\nu} = \frac{1}{\Lambda_L} \left(Y_{3}^{(2)}(\tau) LL \atop 3 \otimes 3 \otimes 3 \right)_{\mathbf{1}} H_u H_u \qquad \Rightarrow \qquad M_{\nu}(\tau) = \frac{v_u^2}{\Lambda_L} \begin{pmatrix} 2Y_1(\tau) & -Y_3(\tau) & -Y_2(\tau) \\ -Y_3(\tau) & 2Y_2(\tau) & -Y_1(\tau) \\ -Y_2(\tau) & -Y_1(\tau) & 2Y_3(\tau) \end{pmatrix}$$

 M_{ν} depends on 3 real parameters: Re τ , Im τ and the overall scale v_u^2/Λ_L

Feruglio's modular A4 model

Feruglio, 1706.08749

$$\Gamma_3 \cong A_4 \quad (\text{level } N = 3)$$

 $\Phi \sim (\mathbf{r}, k)$

$$L \sim (\mathbf{3}, 1)$$
 and $H_u \sim (\mathbf{1}, 0)$

3 independent modular forms of weight k = 2 form a triplet of A_4 : $Y_3^{(2)} = (Y_1, Y_2, Y_3)^T$

$$W_{\nu} = \frac{1}{\Lambda_{L}} \begin{pmatrix} Y_{3}^{(2)}(\tau) LL \\ \mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} \end{pmatrix}_{\mathbf{1}} H_{u} H_{u} \qquad \Rightarrow \qquad M_{\nu}(\tau) = \frac{\mathbf{v}_{u}^{2}}{\Lambda_{L}} \begin{pmatrix} 2Y_{1}(\tau) & -Y_{3}(\tau) & -Y_{2}(\tau) \\ -Y_{3}(\tau) & 2Y_{2}(\tau) & -Y_{1}(\tau) \\ -Y_{2}(\tau) & -Y_{1}(\tau) & 2Y_{3}(\tau) \end{pmatrix}$$

 M_{ν} depends on 3 real parameters: Re τ , Im τ and the overall scale v_{u}^{2}/Λ_{L}

 $\langle \tau \rangle = 0.0111 + 0.9946 i$

$$\begin{aligned} \sin^2 \theta_{12} &= 0.295 & \sin^2 \theta_{13} = 0.0447 & \sin^2 \theta_{23} = 0.651 \\ \delta/\pi &= 1.55 & \alpha_{21}/\pi = 0.22 & \alpha_{31}/\pi = 1.80 \\ m_1 &= 0.0500 \text{ eV} & m_2 = 0.0507 \text{ eV} & m_3 = 0.0007 \text{ eV} \end{aligned} \tag{IO}$$

Novichkov, Penedo, Petcov, AT, 1811.04933 $L \sim (\mathbf{3}, 2)$ $E^c \sim (\mathbf{1}', 0) \oplus (\mathbf{1}, 2) \oplus (\mathbf{1}', 2)$ $N^c \sim (\mathbf{3}', 0)$ and $H_{u,d} \sim (\mathbf{1}, 0)$

$$W = \alpha \left(E_{1}^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{d} + \beta \left(E_{2}^{c} L Y_{\mathbf{3}}^{(4)} \right)_{\mathbf{1}} H_{d} + \gamma \left(E_{3}^{c} L Y_{\mathbf{3}'}^{(4)} \right)_{\mathbf{1}} H_{d} + g \left(N^{c} L Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}} H_{u} + g' \left(N^{c} L Y_{\mathbf{3}'}^{(2)} \right)_{\mathbf{1}} H_{u} + \Lambda \left(N^{c} N^{c} \right)_{\mathbf{1}}$$

Novichkov, Penedo, Petcov, AT, 1811.04933 $L \sim (\mathbf{3}, 2)$ $E^c \sim (\mathbf{1}', 0) \oplus (\mathbf{1}, 2) \oplus (\mathbf{1}', 2)$ $N^c \sim (\mathbf{3}', 0)$ and $H_{u,d} \sim (\mathbf{1}, 0)$

$$W = \alpha \left(E_{1}^{c} L Y_{3'}^{(2)} \right)_{1} H_{d} + \beta \left(E_{2}^{c} L Y_{3}^{(4)} \right)_{1} H_{d} + \gamma \left(E_{3}^{c} L Y_{3'}^{(4)} \right)_{1} H_{d} + g \left(N^{c} L Y_{2}^{(2)} \right)_{1} H_{u} + g' \left(N^{c} L Y_{3'}^{(2)} \right)_{1} H_{u} + \Lambda \left(N^{c} N^{c} \right)_{1}$$

Solutions A and A*

Input parameters		Observables		Predictions	
$\operatorname{Re} \tau$	± 0.1045	m_e/m_μ	0.0048	$m_1 \; [eV]$	0.017
$\operatorname{Im} au$	1.0100	$m_\mu/m_ au$	0.0565	$m_2 \; [eV]$	0.019
$\beta/lpha$	9.465	r	0.0299	$m_3 \; [eV]$	0.053
$\gamma/lpha$	0.0022	$\sin^2 \theta_{12}$	0.305	δ/π	± 1.31
$\operatorname{Re}\left(g'/g\right)$	0.2330	$\sin^2 \theta_{13}$	0.0213	α_{21}/π	± 0.30
$\lim \left(g'/g \right)$	± 0.4924	$\sin^2\theta_{23}$	0.551	α_{31}/π	± 0.87
$v_d \alpha \; [\text{MeV}]$	53.19	$\delta m^2 \ [10^{-5} \ {\rm eV}^2]$	7.34	$ m_{ee} $ [eV]	0.017
$v_u^2 g_1^2 / \Lambda ~[\text{eV}]$	0.0093	$ \Delta m^2 \ [10^{-3} \ {\rm eV}^2]$	2.455	$\sum_i m_i [eV]$	0.090
		Nσ	0.02	Ordering	NO

8 (5) parameters vs 12 (9) observables

 $L \sim (\mathbf{3}, 2) \qquad E^c \sim (\mathbf{1}', 0) \oplus (\mathbf{1}, 2) \oplus (\mathbf{1}', 2) \qquad N^c \sim (\mathbf{3}', 0) \qquad \text{and} \qquad H_{u,d} \sim (\mathbf{1}, 0)$

$$W = \alpha \left(E_{1}^{c} L Y_{3'}^{(2)} \right)_{1} H_{d} + \beta \left(E_{2}^{c} L Y_{3}^{(4)} \right)_{1} H_{d} + \gamma \left(E_{3}^{c} L Y_{3'}^{(4)} \right)_{1} H_{d}$$

No CP
$$+ g \left(N^{c} L Y_{2}^{(2)} \right)_{1} H_{u} + g' \left(N^{c} L Y_{3'}^{(2)} \right)_{1} H_{u} + \Lambda \left(N^{c} N^{c} \right)_{1}$$

complex

Solutions A and A*

Input parameters		Observables		Predictions	
$\operatorname{Re} \tau$	± 0.1045	m_e/m_μ	0.0048	$m_1 \; [eV]$	0.017
$\operatorname{Im} \tau$	1.0100	$m_\mu/m_ au$	0.0565	$m_2 \; [eV]$	0.019
$\beta/lpha$	9.465	r	0.0299	$m_3 \; [eV]$	0.053
$\gamma/lpha$	0.0022	$\sin^2 \theta_{12}$	0.305	δ/π	±1.31
$\operatorname{Re}\left(g'/g\right)$	0.2330	$\sin^2 \theta_{13}$	0.0213	α_{21}/π	± 0.30
$\operatorname{Im}\left(g'/g\right)$	± 0.4924	$\sin^2 \theta_{23}$	0.551	α_{31}/π	± 0.87
$v_d \alpha \; [\text{MeV}]$	53.19	$\delta m^2 \ [10^{-5} \ \mathrm{eV}^2]$	7.34	$ m_{ee} $ [eV]	0.017
$v_u^2 g_1^2 / \Lambda ~[\text{eV}]$	0.0093	$ \Delta m^2 \ [10^{-3} \ {\rm eV}^2]$	2.455	$\sum_{i} m_i [eV]$	0.090
		$\begin{bmatrix} & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ $	0.02	Ordering	NO

8 (5) parameters vs 12 (9) observables

 $L \sim (\mathbf{3}, 2) \qquad E^c \sim (\mathbf{1}', 0) \oplus (\mathbf{1}, 2) \oplus (\mathbf{1}', 2) \qquad N^c \sim (\mathbf{3}', 0) \qquad \text{and} \qquad H_{u,d} \sim (\mathbf{1}, 0)$

Solutions A and A*

Input parameters		Observables		Predictions	
$\operatorname{Re} \tau$	± 0.0992	m_e/m_μ	0.0048	$m_1 \; [eV]$	0.012
${ m Im} au$	1.0160	$m_\mu/m_ au$	0.0576	$m_2 \; [eV]$	0.015
$\beta/lpha$	9.348	r	0.0298	$m_3 \; [eV]$	0.051
$\gamma/lpha$	0.0022	$\sin^2 \theta_{12}$	0.305	δ/π	± 1.64
g'/g	-0.0209	$\sin^2 heta_{13}$	0.0214	α_{21}/π	± 0.35
$v_d \alpha \; [\text{MeV}]$	53.61	$\sin^2 \theta_{23}$	0.486	α_{31}/π	± 1.25
$v_u^2 g_1^2 / \Lambda ~[\mathrm{eV}]$	0.0135	$\delta m^2 \ [10^{-5} \ {\rm eV}^2]$	7.33	$ m_{ee} $ [eV]	0.012
		$ \Delta m^2 \ [10^{-3} \ {\rm eV}^2]$	2.457	$\sum_{i} m_i [eV]$	0.078
		$N\sigma$	1.01	Ordering	NO

 $\sin^2 \delta$ 1.5 1.5 0.6 0.4 0.2 0.0 $Re \tau$

7 (4) parameters vs 12 (9) observables
Minimal modular S4 seesaw model

Correlations between observables

No CP

Novichkov, Penedo, Petcov, AT, 1811.04933

Minimal modular S4 seesaw model

26

A modular A4 model of quarks

Yao, Lu, Ding, 2012.13390

 $Q \sim (\mathbf{3}, 2) \quad U^c \sim (\mathbf{1}, 0) \oplus (\mathbf{1}', 0) \oplus (\mathbf{1}'', 0) \quad D^c \sim (\mathbf{1}'', 0) \oplus (\mathbf{1}', 2) \oplus (\mathbf{1}'', 4) \quad \text{and} \quad H_{u,d} \sim (\mathbf{1}, 0)$

$$\mathcal{W}_{u} = \alpha_{u} u_{\mathbf{1}}^{c} (Q_{L} Y_{\mathbf{3}}^{(2)})_{\mathbf{1}} H_{u} + \beta_{u} c_{\mathbf{1}'}^{c} (Q_{L} Y_{\mathbf{3}}^{(2)})_{\mathbf{1}''} H_{u} + \gamma_{u} t_{\mathbf{1}''}^{c} (Q_{L} Y_{\mathbf{3}'}^{(2)})_{\mathbf{1}'} H_{u} ,$$

$$\mathcal{W}_{d} = \alpha_{d} d_{\mathbf{1}''}^{c} (Q_{L} Y_{\mathbf{3}}^{(2)})_{\mathbf{1}'} H_{d} + \beta_{d} s_{\mathbf{1}'}^{c} (Q_{L} Y_{\mathbf{3}}^{(4)})_{\mathbf{1}''} H_{d} + \gamma_{d,1} b_{\mathbf{1}''}^{c} (Q_{L} Y_{\mathbf{3}I}^{(6)})_{\mathbf{1}'} H_{d}$$

$$+ \gamma_{d,2} b_{\mathbf{1}''}^{c} (Q_{L} Y_{\mathbf{3}II}^{(6)})_{\mathbf{1}'} H_{d} .$$

A modular A4 model of quarks

Yao, Lu, Ding, 2012.13390

 $Q \sim (\mathbf{3}, 2) \quad U^c \sim (\mathbf{1}, 0) \oplus (\mathbf{1}', 0) \oplus (\mathbf{1}'', 0) \quad D^c \sim (\mathbf{1}'', 0) \oplus (\mathbf{1}', 2) \oplus (\mathbf{1}'', 4) \quad \text{and} \quad H_{u,d} \sim (\mathbf{1}, 0)$

$$\mathcal{W}_{u} = \alpha_{u} u_{\mathbf{1}}^{c} (Q_{L} Y_{\mathbf{3}}^{(2)})_{\mathbf{1}} H_{u} + \beta_{u} c_{\mathbf{1}'}^{c} (Q_{L} Y_{\mathbf{3}}^{(2)})_{\mathbf{1}''} H_{u} + \gamma_{u} t_{\mathbf{1}''}^{c} (Q_{L} Y_{\mathbf{3}'}^{(2)})_{\mathbf{1}'} H_{u} ,$$

$$\mathcal{W}_{d} = \alpha_{d} d_{\mathbf{1}''}^{c} (Q_{L} Y_{\mathbf{3}}^{(2)})_{\mathbf{1}'} H_{d} + \beta_{d} s_{\mathbf{1}'}^{c} (Q_{L} Y_{\mathbf{3}}^{(4)})_{\mathbf{1}''} H_{d} + \gamma_{d,1} b_{\mathbf{1}''}^{c} (Q_{L} Y_{\mathbf{3}I}^{(6)})_{\mathbf{1}'} H_{d} + \beta_{d} s_{\mathbf{1}'}^{c} (Q_{L} Y_{\mathbf{3}}^{(4)})_{\mathbf{1}''} H_{d} + \gamma_{d,1} b_{\mathbf{1}''}^{c} (Q_{L} Y_{\mathbf{3}I}^{(6)})_{\mathbf{1}'} H_{d} + \gamma_{d,2} b_{\mathbf{1}''}^{c} (Q_{L} Y_{\mathbf{3}II}^{(6)})_{\mathbf{1}'} H_{d} .$$

Parameters

$\langle \tau \rangle = 0.49175 + 0.88563i$,	$\beta_u/\alpha_u = 518.22933,$	$\gamma_u/\alpha_u = 1.83596 \times 10^5 ,$
$\beta_d/\alpha_d = 9.39751,$	$\gamma_{d,1}/\alpha_d = 32.46046$,	$\gamma_{d,2}/lpha_d = -0.02697,$
$\alpha_u v_u = 0.00034 \text{GeV},$	$\alpha_d v_d = 0.05081 \text{GeV}.$	

Observables

$$\begin{split} \theta^q_{12} &= 0.22734\,, \qquad \theta^q_{13} = 0.00332\,, \qquad \theta^q_{23} = 0.05708\,, \qquad \delta^q_{CP} = 0.39532\,\,\pi\,, \\ m_u/m_c &= 0.00193\,, \quad m_c/m_t = 0.00282\,, \quad m_d/m_s = 0.05055\,, \quad m_s/m_b = 0.01815\,. \\ m_t &= 87.46~{\rm GeV}\,, \qquad m_b = 0.968~{\rm GeV}\,. \end{split}$$

9 parameters vs 10 observables

Modular invariance and CP

Fields

$$\tau \xrightarrow{\mathrm{CP}} - \tau^{\dagger}$$
 and $\Phi \xrightarrow{\mathrm{CP}} \Phi^{\dagger}$

Modular forms

$$Y(\tau) \xrightarrow{\mathrm{CP}} Y(-\tau^*) = Y(\tau)^*$$

Novichkov, Penedo, Petcov, AT, 1905.11970; Baur, Nilles, Trautner, Vaudrevange, 1901.03251

Modular invariance and CP

Fields

$$\tau \xrightarrow{\mathrm{CP}} - \tau^{\dagger}$$
 and $\Phi \xrightarrow{\mathrm{CP}} \Phi^{\dagger}$

Modular forms

$$Y(\tau) \xrightarrow{\text{CP}} Y(-\tau^*) = Y(\tau)^*$$

Novichkov, Penedo, Petcov, AT, 1905.11970; Baur, Nilles, Trautner, Vaudrevange, 1901.03251

Modular invariance and CP

Fields

$$\tau \xrightarrow{\mathrm{CP}} - \tau^{\dagger}$$
 and $\Phi \xrightarrow{\mathrm{CP}} \Phi^{\dagger}$

Modular forms

$$Y(\tau) \xrightarrow{\text{CP}} Y(-\tau^*) = Y(\tau)^*$$

Novichkov, Penedo, Petcov, AT, 1905.11970; Baur, Nilles, Trautner, Vaudrevange, 1901.03251

The strong CP problem

$$\begin{split} \mathscr{L}_{\text{QCD}} &= \overline{q} \left(i \not{D} - M_q \right) q - \frac{1}{4g_3^2} G^a_{\mu\nu} G^{a,\mu\nu} + \frac{\theta_{\text{QCD}}}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \\ \\ \overline{\theta} &= \theta_{\text{QCD}} + \arg \det M_q \end{split} \quad \text{CPV parameter} \end{split}$$

Neutron EDM d

... and the CPV phase in the CKM matrix $\delta_{\rm CKM} \approx 1.2$

Our solution: CP + modular invariance

Feruglio, Strumia, **AT**, 2305.08908

- 1. CP is a symmetry => $\theta_{\rm QCD} = 0$ (and real Lagrangian couplings)
- 2. Modular invariance/anomaly cancellation = arg det $M_q = 0$
- 3. CP is broken spontaneously by the VEV of a single complex scalar field, the modulus $\tau \implies \delta_{\rm CKM} = O(1)$
- 4. Quark mass hierarchies and mixing angles are reproduced by $\mathcal{O}(1)$ parameters
- 5. Corrections to $\bar{\theta} = 0$ are small under certain assumptions on SUSY breaking

Modular-invariant SUSY theories

Minimal Kähler potential

$$K = -h^2 \ln\left(-i\tau + i\tau^{\dagger}\right) + \sum_{M} \frac{\Phi^{\dagger} e^{2V} \Phi}{\left(-i\tau + i\tau^{\dagger}\right)^{k_M}}$$

Superpotential

$$W = Y_{ij}^u(\tau) U_i^c Q_j H_u + Y_{ij}^d(\tau) D_i^c Q_j H_d$$

 τ -dependent Yukawa couplings

$$\begin{split} Y^q_{ij}(\tau) &\to (c\tau + d)^{k^q_{ij}} Y^q_{ij}(\tau) \quad \text{with} \quad k^{u(d)}_{ij} = k_{U^c_i(D^c_i)} + k_{Q_j} + k_{H_{u(d)}} \\ &\text{are modular forms!} \\ \hline Y^q_{ij}(\tau) &= c^q_{ij} \, Z_{k^q_{ij}}(\tau) \quad \text{with} \quad c^q_{ij} \in \mathbb{R} \quad \text{because of CP} \end{split}$$

Gauge kinetic function

$$f = \frac{1}{g_3^2}$$
 $\theta_{\rm QCD} = 0$ because of CP

Determinant of quark mass matrix

$$M_{u} = v_{u} Y^{u} \qquad M_{d} = v_{d} Y^{d}$$

$$\det M_{q} = \det M_{u} \det M_{d} \propto \det Y^{u} \det Y^{d}$$

$$Y^{q}(\tau) = \begin{pmatrix} Z_{k_{11}^{q}} & Z_{k_{12}^{q}} & Z_{k_{13}^{q}} \\ Z_{k_{21}^{q}} & Z_{k_{22}^{q}} & Z_{k_{23}^{q}} \\ Z_{k_{31}^{q}} & Z_{k_{32}^{q}} & Z_{k_{33}^{q}} \end{pmatrix} \Rightarrow \quad \det Y^{q}(\tau) \text{ is a modular form of weight } k_{det}^{q}$$

$$k_{det}^{u} = k_{11}^{u} + k_{22}^{u} + k_{33}^{u} = \dots = \sum_{i=1}^{3} \left(k_{U_{i}^{c}} + k_{Q_{i}} \right) + 3k_{H_{u}}$$

And det $Y^{u}(\tau)$ det $Y^{d}(\tau)$ is a modular form of weight k_{det}

$$k_{\text{det}} = k_{\text{det}}^{u} + k_{\text{det}}^{d} = \sum_{i=1}^{3} \left(2k_{Q_i} + k_{U_i^c} + k_{D_i^c} \right) + 3 \left(k_{H_u} + k_{H_d} \right)$$
$$k_{\text{det}} = 0 \quad \Rightarrow \quad \det Y^u(\tau) \det Y^d(\tau) = \text{(real) constant}$$

Simplest example: quarks

Simplest non-trivial example giving $k_{det} = 0$

$$k_Q = k_{U^c} = k_{D^c} = (-6, 0, 6)$$
 and $k_{H_u} = k_{H_d} = 0$

Yukawa matrices

$$Y^{q} = \begin{pmatrix} 0 & 0 & c_{13}^{q} \\ 0 & c_{22}^{q} & c_{23}^{q} E_{6} \\ c_{31}^{q} & c_{32}^{q} E_{6} & c_{33}^{q} E_{4}^{3} + c_{33}^{\prime q} E_{6}^{2} \end{pmatrix} \quad \text{with} \quad \det Y^{q} = -c_{13}^{q} c_{22}^{q} c_{31}^{q} \in \mathbb{R}$$

Fixing $\tau = 1/8 + i$ and $\tan \beta = 10$

$$c_{ij}^{u} \approx 10^{-3} \begin{pmatrix} 0 & 0 & 1.56 \\ 0 & -1.86 & 0.87 \\ 1.29 & 4.14 & 3.51, 1.40 \end{pmatrix} \qquad c_{ij}^{d} \approx 10^{-3} \begin{pmatrix} 0 & 0 & 1.55 \\ 0 & -2.59 & 4.59 \\ 0.378 & 0.710 & 0.734, 1.76 \end{pmatrix}$$

reproduce the quark masses, mixing angles and $\delta_{\rm CKM}$ at the GUT scale of $2\times 10^{16}\,{\rm GeV}$

Simplest example: leptons

 $k_L = k_{E^c} = (-6, 0, 6)$

Weinberg operator $\mathscr{C}_{ij}^{\nu}(L_iH_u)(L_jH_u)$ for neutrino masses

Charged lepton Yukawa matrix and coefficient of the Weinberg operator

$$Y^{e} = \begin{pmatrix} 0 & 0 & c_{13}^{e} \\ 0 & c_{22}^{e} & c_{23}^{e} E_{6} \\ c_{31}^{e} & c_{32}^{e} E_{6} & c_{33}^{e} E_{4}^{3} + c_{33}^{\prime e} E_{6}^{2} \end{pmatrix} \qquad \mathscr{C}^{\nu} = \begin{pmatrix} 0 & 0 & c_{13}^{\nu} \\ 0 & c_{22}^{\nu} & c_{23}^{\nu} E_{6} \\ c_{13}^{\nu} & c_{23}^{\nu} E_{6} & c_{33}^{\nu} E_{4}^{3} + c_{33}^{\prime \nu} E_{6}^{2} \end{pmatrix}$$

Fixing $\tau = 1/8 + i$ and $\tan \beta = 10$

$$c_{ij}^{e} = 10^{-3} \begin{pmatrix} 0 & 0 & 1.29 \\ 0 & 5.95 & 0.35 \\ -2.56 & 1.47 & 1.01, 1.32 \end{pmatrix} \qquad c_{ij}^{\nu} = \frac{1}{10^{16} \text{ GeV}} \begin{pmatrix} 0 & 0 & 3.4 \\ 0 & 7.1 & 1.2 \\ 3.4 & 1.2 & 0.19, 0.95 \end{pmatrix}$$

reproduce the lepton masses and mixing angles

Generalisations

• With SM quarks only, finite modular groups Γ_N do not help to reduce the number of parameters while keeping $\bar{\theta} = 0$ and accommodating m_q and $V_{\rm CKM}$ Penedo, Petcov, 2404.08032

O Unlike in the Nelson—Barr models, heavy vector-like quarks are not needed, but can help to lower modular weights favoured in string compactifications Feruglio, Parriciatu, Strumia, AT, 2406.01689

 \circ In string compactifications, gauge kinetic function is usually a complex, non-trivial function of τ

$$f(\tau) = \frac{1}{g_3^2} + i\frac{\theta_{\rm QCD}}{8\pi^2}$$

The solution still works (under certain assumptions)

Feruglio, Marrone, Strumia, AT, 2505.20395

I have not discussed...

- Fermion mass hierarchies from modular symmetry along Novichkov, Penedo, Petcov, 2102.07488; Feruglio, Gherardi, Romanino, AT, 2101.08718 Okada, Tanimoto, 2009.14242
- Dynamical selection of the vacuum/scalar potential potential for the modulus recently revisited in Novichkov, Penedo, Petcov, 2201.02020; Leedom, Righi, Westphal, 2212.03876
- Control over the Kähler potential top-down concept of eclectic flavour symmetries helps Nilles, Ramos-Sánchez, Vaudrevange, 2001.01736, 2004.05200, 2006.03059, 2010.13798
- Non-SUSY/non-holomorphic version of the construction Qu, Ding, 2406.02527
- Modular-invariant inflation
 Ding, Jiang, Zhao, 2405.06497, 2411.18603 (+Xu); King, Wang, 2405.08924
- Modular-invariant baryogenesis
 Duch, Strumia, AT, 2504.03506

Conclusions

Modular invariance as flavour symmetry

- can be implemented in a bottom-up approach
- Yukawa couplings are functions of a modulus τ
- both lepton masses and mixing are constrained
- Minimal modular-invariant flavour models
 - no flavons
 - lightest neutrino mass, mass ordering and CPV phases are predicted
 - quarks are challenging...
- Modular invariance and CP
 - can be consistently combined
 - real couplings => smaller number of free parameters
 - τ is the only source of CPV
 - provide an alternative solution to the strong CP problem

3-neutrino mixing

Charged current weak interactions

$$-\mathscr{L}_{\rm CC} = \frac{g}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \overline{\mathscr{T}_L}(x) \, \gamma_\alpha \, \nu_{\ell L}(x) \, W^{\alpha\dagger}(x) + \text{h.c.}$$

Mismatch between the interaction and mass eigenstates

$$\nu_{\ell L}(x) = \sum_{j=1}^{3} U_{\ell j} \nu_{jL}(x)$$

U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix

The standard parameterisation (adopted by the PDG)

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

Atmospheric angle θ_{23} Reactor angle θ_{13} Solar angle θ_{12} Majorana phases α_{21} and α_{31} (if ν are Majorana)

Neutrino oscillation data

Capozzi et al., 2503.07752; see also Esteban et al., 2410.05380 and de Salas et al., 2006.11237

Neutrino oscillation data

Capozzi et al., 2503.07752; see also Esteban et al., 2410.05380 and de Salas et al., 2006.11237

Lepton masses and mixings

NuFIT 5.2 (2022)

		Normal Ord	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 6.4)$			
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range		
	$\sin^2 \theta_{12}$	$0.303\substack{+0.012\\-0.012}$	$0.270 \rightarrow 0.341$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$		
lata	$ heta_{12}/^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$		
ric ($\sin^2 heta_{23}$	$0.451_{-0.016}^{+0.019}$	$0.408 \rightarrow 0.603$	$0.569\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.613$		
sphe	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$		
utmo	$\sin^2 heta_{13}$	$0.02225^{+0.00056}_{-0.00059}$	$0.02052 \rightarrow 0.02398$	$0.02223\substack{+0.00058\\-0.00058}$	$0.02048 \rightarrow 0.02416$		
SK a	$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.94$		
with	$\delta_{ m CP}/^{\circ}$	232^{+36}_{-26}	$144 \rightarrow 350$	276^{+22}_{-29}	$194 \rightarrow 344$		
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.41_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.03$	$7.41_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.03$		
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.507^{+0.026}_{-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486^{+0.025}_{-0.028}$	$-2.570 \rightarrow -2.406$		

Esteban et al., 2007.14792 and www.nu-fit.org

 $m_e/m_\mu = 0.0048 \pm 0.0002$ $m_\mu/m_\tau = 0.0565 \pm 0.0045$

Quark masses and mixings

At the GUT scale of 2×10^{16} GeV, assuming MSSM with tan $\beta = 10$ and SUSY breaking scale of 10 TeV

m_{u}/m_{c}	$(1.93 \pm 0.60) \times 10^{-3}$
m_{c}/m_{t}	$(2.82 \pm 0.12) \times 10^{-3}$
m_d/m_s	$(5.05 \pm 0.62) \times 10^{-2}$
m_s/m_b	$(1.82 \pm 0.10) \times 10^{-2}$
$\sin^2 \theta_{12}$	$(5.08 \pm 0.03) \times 10^{-2}$
$\sin^2 \theta_{13}$	$(1.22 \pm 0.09) \times 10^{-5}$
$\sin^2 \theta_{23}$	$(1.61 \pm 0.05) \times 10^{-3}$
δ/π	0.385 ± 0.017

 $m_t = 87.46 \text{ GeV}$ $m_b = 0.9682 \text{ GeV}$

> Antusch, Maurer, 1306.6879 Yao, Lu, Ding, 2012.13390

Tri-bimaximal (TBM) mixing

Harrison, Perkins, Scott, hep-ph/0202074

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\sin^2 \theta_{23} = \frac{1}{2} \qquad \sin^2 \theta_{13} = 0 \qquad \sin^2 \theta_{12} = \frac{1}{3}$$
Allowed at 2σ Excluded at many σ Allowed at 2σ

TBM mixing from S4

In concrete models, flavour symmetry breaking occurs spontaneously when flavons (scalar fields not charged under the SM) acquire VEVs

$$\langle \phi^e \rangle \propto \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 preserves T and $\langle \phi^{\nu} \rangle \propto \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ preserves S and U

Finite modular groups

$$\Gamma_N = \langle S, T | S^2 = (ST)^3 = T^N = I \rangle$$
, $N = 2, 3, 4, 5$

Images: WIKIPEDIA

For N>5 additional relations f(S,T)=I needed to render Γ_N finite de Adelhart Toorop, Feruglio, Hagedorn, 1112.1340

Vacuum selection

In the considered bottom-up approach the VEV of τ is a free parameter

Top-down conjecture

All extrema of the potential lie on the boundary of the fundamental domain and on the imaginary axis

M. Cvetic et al., NPB **361** (1991) 194

Recent studies find new, CP-violating minima Novichkov, Penedo, Petcov, 2201.02020 Leedom, Righi, Westphal, 2212.03876

Residual symmetries

$$\begin{aligned} \tau &= i: \quad i \xrightarrow{S} - \frac{1}{i} = i \quad \Rightarrow \quad Z_2^S = \{I, S\} \\ \tau &= \omega \equiv e^{\frac{2\pi i}{3}}: \quad \omega \xrightarrow{ST} - \frac{1}{\omega + 1} = \omega \quad \Rightarrow \quad Z_3^{ST} = \{I, ST, (ST) \\ \tau &= i\infty: \quad i\infty \xrightarrow{T} i\infty + 1 = i\infty \quad \Rightarrow \quad Z_N^T = \{I, T, T^2, \dots, T^N\} \end{aligned}$$

Matter fields and canonical normalisation

Gauge quantum numbers

	Q	U^c	D^c	L	E^{c}	H_u	H_d
$\mathrm{SU}(3)_c$	3	$\overline{3}$	$\overline{3}$	1	1	1	1
$\mathrm{SU}(2)_L$	2	1	1	2	1	2	2
$\mathrm{U}(1)_Y$	$\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	1	$\frac{1}{2}$	$-\frac{1}{2}$

Canonical normalisation

$$K \supset \frac{\Phi^{\dagger} \Phi}{(-i\tau + i\tau^{\dagger})^{k_{\Phi}}} = \Phi_{\text{can}}^{\dagger} \Phi_{\text{can}} \qquad \Phi_{\text{can}} = \{\phi_{\text{can}}, \psi_{\text{can}}\}$$
$$\psi_{\text{can}} \rightarrow \left(\frac{c\tau + d}{c\tau^{\dagger} + d}\right)^{-\frac{k_{\Phi}}{2}} \psi_{\text{can}} = e^{-ik_{\Phi}\alpha(\tau)}\psi_{\text{can}} \qquad \alpha(\tau) = \arg(c\tau + d)$$

Modular symmetry acts on canonically normalised fields as a τ -dependent phase rotation (with $\tau = \tau(x)$)

Modular-SM anomalies

Conditions for modular-gauge anomaly cancellation

$$SU(3)_{c}: A \equiv \sum_{i=1}^{3} \left(2k_{Q_{i}} + k_{U_{i}^{c}} + k_{D_{i}^{c}} \right) = 0$$

$$SU(2)_{L}: \sum_{i=1}^{3} \left(3k_{Q_{i}} + k_{L_{i}} \right) + k_{H_{u}} + k_{H_{d}} = 0$$

$$U(1)_{Y}: \sum_{i=1}^{3} \left(k_{Q_{i}} + 8k_{U_{i}^{c}} + 2k_{D_{i}^{c}} + 3k_{L_{i}} + 6k_{E_{i}^{c}} \right) + 3\left(k_{H_{u}} + k_{H_{d}} \right) = 0$$

Simplest solution

$$k_Q = k_{U^c} = k_{D^c} = k_L = k_{E^c} = (-k, 0, k)$$
 and $k_{H_u} + k_{H_d} = 0$

Cancellation of modular-QCD anomaly along with $k_{H_u} + k_{H_d} = 0$ implies

$$k_{\text{det}} = \sum_{i=1}^{3} \left(2k_{Q_i} + k_{U_i^c} + k_{D_i^c} \right) + 3\left(k_{H_u} + k_{H_d} \right) = 0$$

More on modular-gauge anomalies

$$\Phi \to \Phi' = \Lambda(\gamma, \tau)^{-k_{\Phi}} \Phi$$

Jacobian *J*: $\mathscr{D} \Phi' = J \mathscr{D} \Phi$

Arkani-Hamed, Murayama, hep-th/9707133

$$\log J = -\frac{i}{64\pi^2} \int d^4x \, d^2\theta \, \left[\sum_{\Phi} T(\Phi) \, k_{\Phi} \right] \, W^a W^a \, \ln \Lambda$$

 $T(\Phi)$ is the Dynkin index of the rep of Φ : tr $(t_a t_b) = T(\Phi) \delta_{ab}$

$$\sum_{\Phi} T(\Phi) \, k_{\Phi} = 0$$

$$\begin{aligned} &\mathrm{SU}(3)_{c}: \quad \sum_{i} \left(2k_{Q_{i}} + k_{U_{i}^{c}} + k_{D_{i}^{c}} \right) = 0 \\ &\mathrm{SU}(2)_{L}: \quad \sum_{i} \left(3k_{Q_{i}} + k_{L_{i}} \right) + k_{H_{u}} + k_{H_{d}} = 0 \\ &\mathrm{U}(1)_{Y}: \quad \sum_{i} \left(k_{Q_{i}} + 8k_{U_{i}^{c}} + 2k_{D_{i}^{c}} + 3k_{L_{i}} + 6k_{E_{i}^{c}} \right) + 3\left(k_{H_{u}} + k_{H_{d}} \right) = 0 \end{aligned}$$

Simplest example: quarks

Simplest non-trivial example giving $k_{\rm det} = 0$ and A = 0

$$k_Q = k_{U^c} = k_{D^c} = (-6, 0, 6)$$
 and $k_{H_u} = k_{H_d} = 0$

Yukawa matrices

$$Y^{q} = \begin{pmatrix} 0 & 0 & c_{13}^{q} \\ 0 & c_{22}^{q} & c_{23}^{q} E_{6} \\ c_{31}^{q} & c_{32}^{q} E_{6} & c_{33}^{q} E_{4}^{3} + c_{33}^{\prime q} E_{6}^{2} \end{pmatrix} \Rightarrow Y^{q}|_{can} = \begin{pmatrix} 0 & 0 & c_{13}^{q} \\ 0 & c_{22}^{q} & c_{23}^{q} (2 \text{Im}\tau)^{3} E_{6} \\ c_{31}^{q} & c_{32}^{q} (2 \text{Im}\tau)^{3} E_{6} & (2 \text{Im}\tau)^{6} [c_{33}^{q} E_{4}^{3} + c_{33}^{\prime q} E_{6}^{2}] \end{pmatrix}$$
$$\det Y^{q}|_{can} = -c_{13}^{q} c_{22}^{q} c_{31}^{q} \in \mathbb{R}$$

Fixing $\tau = 1/8 + i$ and $\tan \beta = 10$

$$c_{ij}^{u} \approx 10^{-3} \begin{pmatrix} 0 & 0 & 1.56 \\ 0 & -1.86 & 0.87 \\ 1.29 & 4.14 & 3.51, 1.40 \end{pmatrix} \qquad c_{ij}^{d} \approx 10^{-3} \begin{pmatrix} 0 & 0 & 1.55 \\ 0 & -2.59 & 4.59 \\ 0.378 & 0.710 & 0.734, 1.76 \end{pmatrix}$$

reproduce the quark masses, mixing angles and $\delta_{\rm CKM}$ at the GUT scale of $2\times 10^{16}\,{\rm GeV}$

M _{Pl}		
$\Lambda_{\mathrm{flavour/CP}}$		
Λ_{SUSY}		
m _{SUSY}		
V		

♠	<i>M</i>	
	^{IVI} PI	SUSY unbroken
	$\Lambda_{\mathrm{flavour/CP}}$	Modular invariance determines completely (up to real couplings) the functional dependence $W(\tau)$
		It is not the case for K, but $\bar{\theta}$ is insensitive to K
		No-renormalisation theorems Ellis, Ferrara, Nanopoulos, PLB 114 (1982) 231
	$\Lambda_{ m SUSY}$	SUSY breaking corrections
		In general, can be large
	m _{SUSY}	Small if $\Lambda_{\rm flavour/CP} \gg \Lambda_{\rm SUSY}$ (as e.g. in gauge mediation) and soft SUSY terms respect the flavour structure of the SM
	V	$\bar{\theta} \lesssim \frac{M_t^4 M_b^4 M_c^2 M_s^2}{v^{12}} J_{\rm CP} \tan^6 \beta \sim 10^{-28} \tan^6 \beta$
		SM corrections are negligible
		51

Modular forms

Holomorphic functions on $\mathscr{H} = \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$ transforming under Γ as

$$f(\gamma\tau) = (c\tau + d)^k f(\tau), \qquad \gamma \in \Gamma$$

k is weight, a non-negative even integer

$$\gamma = -I \implies f(\tau) = (-1)^k f(\tau) \implies k \text{ is even}$$

Modular forms are periodic and admit q-expansions

$$\gamma = T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \Rightarrow \quad f(\tau + 1) = f(\tau) \quad \Rightarrow \quad f(\tau) = \sum_{n=0}^{\infty} a_n q^n, \quad q = e^{2\pi i \tau}$$

Modular forms of weight k form a linear space \mathcal{M}_k of finite dimension

$$\dim \mathcal{M}_{k} = \begin{cases} 0 & \text{if } k \text{ is negative or odd} \\ \lfloor k/12 \rfloor & \text{if } k = 2 \pmod{12} \\ \lfloor k/12 \rfloor + 1 & \text{if } k \neq 2 \pmod{12} \end{cases}$$

Modular forms of level 1: E4 and E6

Holomorphic functions on $\mathscr{H} = \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}$ transforming under Γ as

$$Z(\gamma\tau) = (c\tau + d)^k Z(\tau), \qquad \gamma \in \Gamma$$

k is weight, a non-negative even integer

Normalised Eisenstein series

$$E_k(\tau) = \frac{1}{2\zeta(k)} \sum_{(m,n) \neq (0,0)} \frac{1}{(m+n\tau)^k}$$

Each modular form of weight k can be written as a polynomial in E_4 and E_6

$$Z(\tau) = \sum_{a,b \ge 0} c_{ab} E_4^a(\tau) E_6^b(\tau) \quad \text{with} \quad 4a + 6b = k$$

Modular weight k	0	2	4	6	8	10	12	14
Modular forms	1		E_4	E_6	$E_8 = E_4^2$	$E_{10} = E_4 E_6$	E_4^3, E_6^2	$E_{14} = E_4^2 E_6$
Modular forms of level 1: E4 and E6

$$E_4(\tau) = 1 + 240 \sum_{n=1}^{\infty} \frac{n^3 q^n}{1 - q^n} = 1 + 240q + 2160q^2 + 6720q^3 + 17520q^4 + \mathcal{O}(q^5)$$
$$E_6(\tau) = 1 - 540 \sum_{n=1}^{\infty} \frac{n^5 q^n}{1 - q^n} = 1 - 504q - 16632q^2 - 122976q^3 - 532728q^4 + \mathcal{O}(q^5)$$

0.4

0.6

Modular forms of level 2

Dedekind eta function

$$\eta(\tau) = q^{\frac{1}{24}} \prod_{n=1}^{\infty} \left(1 - q^n \right) \qquad q \equiv e^{2\pi i \tau}$$

$$Z_{1}^{(2)} = \frac{2i}{\pi} \left[\frac{\eta'(\tau/2)}{\eta(\tau/2)} + \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} - 8\frac{\eta'(2\tau)}{\eta(2\tau)} \right] = 1 + 24q + 24q^{2} + 96q^{3} + 24q^{4} + \mathcal{O}\left(q^{5}\right)$$

$$Z_{2}^{(2)} = \frac{2\sqrt{3}i}{\pi} \left[\frac{\eta'(\tau/2)}{\eta(\tau/2)} - \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} \right] = 8\sqrt{3}q^{1/2} \left(1 + 4q + 6q^{2} + 8q^{3} + \mathcal{O}\left(q^{4}\right) \right)$$

$$\begin{pmatrix} Z_1^{(2)} \\ Z_2^{(2)} \end{pmatrix} \sim \mathbf{2} \quad \text{of} \quad \Gamma_2 \cong S_3$$

$$\left\{ Z_1^{(4)}, Z_2^{(4)}, Z_3^{(4)} \right\} = \left\{ Z_2^{(2)^2} - Z_1^{(2)^2}, 2Z_1^{(2)}Z_2^{(2)}, Z_1^{(2)^2} + Z_2^{(2)^2} \right\}$$
$$\begin{pmatrix} Z_1^{(4)} \\ Z_2^{(4)} \end{pmatrix} \sim \mathbf{2} \qquad Z_3^{(4)} \sim \mathbf{1}_0 \quad \text{of} \quad \Gamma_2 \cong S_3$$

Group properties of $\Gamma_2 \cong S_3$

$$\Gamma_2 = \left\langle S, T \mid S^2 = (ST)^3 = T^2 = I \right\rangle$$
$$\mathcal{S}_2 = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix} \qquad \mathcal{T}_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline S_3 & {\bf 1}_0 & {\bf 1}_1 & {\bf 2} \\ \hline \mathscr{S} & 1 & -1 & \mathscr{S}_2 \\ \hline \mathscr{T} & 1 & -1 & \mathscr{T}_2 \end{array}$$

Tensor products

 $\mathbf{1}_1 \otimes \mathbf{1}_1 = \mathbf{1}_0 \qquad \mathbf{1}_1 \otimes \mathbf{2} = \mathbf{2} \qquad \mathbf{2} \otimes \mathbf{2} = \mathbf{1}_0 \oplus \mathbf{1}_1 \oplus \mathbf{2}$

Clebsch-Gordan coefficients

$$\begin{pmatrix} \gamma_{\mathbf{1}_{1}} \otimes \beta_{\mathbf{2}} \end{pmatrix}_{\mathbf{2}} = (-\gamma \beta_{2}, \gamma \beta_{1})^{T} (\alpha_{\mathbf{2}} \otimes \beta_{\mathbf{2}})_{\mathbf{1}_{0}} = \alpha_{1}\beta_{1} + \alpha_{2}\beta_{2} (\alpha_{\mathbf{2}} \otimes \beta_{\mathbf{2}})_{\mathbf{1}_{1}} = \alpha_{1}\beta_{2} - \alpha_{2}\beta_{1} (\alpha_{\mathbf{2}} \otimes \beta_{\mathbf{2}})_{\mathbf{2}} = (\alpha_{2}\beta_{2} - \alpha_{1}\beta_{1}, \alpha_{1}\beta_{2} + \alpha_{2}\beta_{1})^{T}$$

Modular S4 symmetry

$$\Gamma_4 = \left\langle S, T \mid S^2 = (ST)^3 = T^4 = I \right\rangle$$

o 24 elements

- ° 5 irreps: 1, 1', 2, 3, 3'
- Space of the lowest non-trivial weight 2 modular forms has dimension 5
- 5 weight 2 modular forms arrange themselves in a doublet and a triplet:

$$Y_{2}(\tau) \equiv \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \end{pmatrix} \qquad Y_{3'}(\tau) \equiv \begin{pmatrix} Y_{3}(\tau) \\ Y_{4}(\tau) \\ Y_{5}(\tau) \end{pmatrix}$$

• $Y_i(\tau)$ are given in terms of the Dedekind eta function

$$\eta(\tau) \equiv q^{1/24} \prod_{n=1}^{\infty} (1-q^n) , \quad q = e^{2\pi i \tau}$$

• Products of $Y_i(\tau)$ generate modular forms of higher weights, 4, 6, 8, ... Penedo, Petcov, 1806.11040

Novichkov, Penedo, Petcov, AT, 1811.04933

Seesaw type I models with no flavons

	E_1^c	E_2^c	E_3^c	N^c	L	H_d	H_u
$SU(2)_L \times U(1)_Y$	(1,+1)	(1,+1)	(1,+1)	(1, 0)	(2, -1/2)	(2, -1/2)	(2, +1/2)
$\Gamma_4 \cong S_4$	1 or 1'	1 or 1'	1 or 1'	3 or 3 ′	3 or 3 ′	1	1
k_I	k_1	k_2	k_3	k_N	k_L	0	0

$$W = \sum_{i=1}^{3} \alpha_{i} \left(E_{i}^{c} L F_{E_{i}}(\tau) \right)_{1} H_{d} + g \left(N^{c} L F_{N}(\tau) \right)_{1} H_{u} + \Lambda \left(N^{c} N^{c} F_{M}(\tau) \right)_{1}$$

Modular invariance imposes the following constraints on the weights:

$$\begin{cases} k_{\alpha_i} = k_i + k_L \\ k_g = k_N + k_L \\ k_\Lambda = 2 k_N \end{cases} \Leftrightarrow \begin{cases} k_i = k_{\alpha_i} - k_g + k_\Lambda/2 \\ k_L = k_g - k_\Lambda/2 \\ k_N = k_\Lambda/2 \end{cases}$$
$$W = \lambda_{ij}(\tau) E_i^c L_j H_d + \mathcal{Y}_{ij}(\tau) N_i^c L_j H_u + \frac{1}{2} M_{ij}(\tau) N_i^c N_j^c \end{cases}$$

After integrating out heavy neutrinos and after EWSB

$$M_e = \mathbf{v}_d \,\lambda^{\dagger} \qquad M_\nu = -\,\mathbf{v}_u^2 \,\mathcal{Y}^T M^{-1} \,\mathcal{Y}$$
 58

Systematic exploration of low weights k_{α_i} , k_g , k_N Higher weights => more free parameters in the superpotential

Majorana mass term for N^c

$$\mathbf{3}\otimes\mathbf{3}=\mathbf{3}'\otimes\mathbf{3}'=\mathbf{1}\oplus\mathbf{2}\oplus\mathbf{3}\oplus\mathbf{3}'$$

$$k_{\Lambda} = 0 \implies F_{M} = \text{const}: \quad (N^{c} N^{c})_{1} = N_{1}^{c} N_{1}^{c} + N_{2}^{c} N_{3}^{c} + N_{3}^{c} N_{2}^{c} \qquad M = 2 \Lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$k_{\Lambda} = 2 \implies F_{M} = Y_{2}, Y_{3'}: \Lambda \left(N^{c} N^{c} Y_{2} \right)_{1} + \Lambda' \left(N^{c} N^{c} Y_{3'} \right)_{1} \qquad M = 2 \Lambda \begin{pmatrix} 0 & Y_{1} & Y_{2} \\ Y_{1} & Y_{2} & 0 \\ Y_{2} & 0 & Y_{1} \end{pmatrix}$$

$$k_{\Lambda} = 4 \implies F_{M} = Y_{1}^{(4)}, Y_{2}^{(4)}, Y_{3}^{(4)}, Y_{3'}^{(4)}:$$

$$\Lambda \left(N^{c} N^{c} Y_{1}^{(4)} \right)_{1} + \Lambda' \left(N^{c} N^{c} Y_{2}^{(4)} \right)_{1} + \Lambda'' \left(N^{c} N^{c} Y_{3}^{(4)} \right)_{1} + \Lambda''' \left(N^{c} N^{c} Y_{3'}^{(4)} \right)_{1}$$

Charged-lepton Yukawa matrix

$$\begin{pmatrix} k_{\alpha_1}, k_{\alpha_2}, k_{\alpha_3} \end{pmatrix} = (2, 4, 4) \implies \begin{pmatrix} F_{E_1}, F_{E_2}, F_{E_3} \end{pmatrix} = \begin{pmatrix} Y_{3'}, Y_{3}^{(4)}, Y_{3'}^{(4)} \end{pmatrix} : \lambda = \begin{pmatrix} \alpha Y_3 & \alpha Y_5 & \alpha Y_4 \\ \beta (Y_1 Y_4 - Y_2 Y_5) & \beta (Y_1 Y_3 - Y_2 Y_4) & \beta (Y_1 Y_5 - Y_2 Y_3) \\ \gamma (Y_1 Y_4 + Y_2 Y_5) & \gamma (Y_1 Y_3 + Y_2 Y_4) & \gamma (Y_1 Y_5 + Y_2 Y_3) \end{pmatrix}$$

Number of free real parameters in M_e and M_{ν} (Re(τ) and Im(τ) + coupling constants in the superpotential)

We aim to describe/predict 12 observables: m_e, m_μ, m_τ m_1, m_2, m_3 or m_3, m_1, m_2 $\sin^2 \theta_{12}, \ \sin^2 \theta_{13}, \ \sin^2 \theta_{23}$ $\delta, \alpha_{21}, \alpha_{31}$

$$\begin{aligned} \text{Charged leptons:} & (k_{\alpha_1}, \, k_{\alpha_2}, \, k_{\alpha_3}) = (2 \,, \, 4 \,, \, 4) & \text{Neutrinos:} \, (k_{\Lambda}, \, k_g) = (0 \,, \, 2) \\ & W = \alpha \left(E_1^c L \, Y_{3'}^{(2)} \right)_1 H_d + \beta \left(E_2^c L \, Y_{3}^{(4)} \right)_1 H_d + \gamma \left(E_3^c L \, Y_{3'}^{(4)} \right)_1 H_d \\ & + g \left(N^c L \, Y_{2}^{(2)} \right)_1 H_u + g' \left(N^c L \, Y_{3'}^{(2)} \right)_1 H_u + \Lambda \left(N^c N^c \right)_1 \end{aligned}$$

Solutions A and A*

Input para	ameters	Observable	S	Predictions	
$\operatorname{Re} \tau$	± 0.1045	m_e/m_μ	0.0048	$m_1 \; [eV]$	0.017
$\operatorname{Im} \tau$	1.0100	$m_\mu/m_ au$	0.0565	$m_2 \; [eV]$	0.019
$\beta/lpha$	9.465	r	0.0299	$m_3 \; [eV]$	0.053
$\gamma/lpha$	0.0022	$\sin^2 \theta_{12}$	0.305	δ/π	± 1.31
$\operatorname{Re}\left(g'/g\right)$	0.2330	$\sin^2 \theta_{13}$	0.0213	α_{21}/π	± 0.30
$\operatorname{Im}\left(g'/g\right)$	± 0.4924	$\sin^2\theta_{23}$	0.551	α_{31}/π	± 0.87
$v_d \alpha \; [\text{MeV}]$	53.19	$\delta m^2 \ [10^{-5} \ \mathrm{eV^2}]$	7.34	$ m_{ee} $ [eV]	0.017
$v_u^2 g_1^2 / \Lambda ~[\text{eV}]$	0.0093	$ \Delta m^2 \ [10^{-3} \ {\rm eV}^2]$	2.455	$\sum_{i} m_i [eV]$	0.090
		Νσ	0.02	Ordering	NO

8 (5) parameters vs 12 (9) observables

Modular invariance and CP

Novichkov, Penedo, Petcov, AT, 1905.11970

 $\triangleright \ \tau \xrightarrow{CP} - \tau^*$

$$\chi(x) \xrightarrow{CP} X \overline{\chi}(x_P), \quad x_P = (t, -\mathbf{x})$$

In the symmetric basis where $\rho(S)^T = \rho(S)$ and $\rho(T)^T = \rho(T)$, $X = \mathbb{I}$ (canonical CP basis)

▶
$$Y(\tau) \xrightarrow{CP} Y(-\tau^*) = X Y^*(\tau) = Y^*(\tau)$$
 in the symmetric basis

Extended modular group

 $CP \rightarrow \gamma \rightarrow CP^{-1}$ on the modulus

$$\tau \xrightarrow{CP} - \tau^* \xrightarrow{\gamma} - \frac{a\tau^* + b}{c\tau^* + d} \xrightarrow{CP^{-1}} \frac{a\tau - b}{-c\tau + d}$$

Outer automorphism of $\overline{\Gamma}$

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow u(\gamma) \equiv CP \gamma CP^{-1} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$$
$$u(S) = S \qquad u(T) = T^{-1}$$

Extended modular group

$$\overline{\Gamma}^* = \left\langle \tau \xrightarrow{S} - 1/\tau, \quad \tau \xrightarrow{T} \tau + 1, \quad \tau \xrightarrow{CP} - \tau^* \right\rangle \simeq \overline{\Gamma} \rtimes Z_2^{CP}$$

$$\overline{\Gamma}^* \simeq PGL(2,\mathbb{Z}) \text{ with } CP = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

$$\tau \to \frac{a\tau + b}{c\tau + d} \quad \text{if } ad - bc = 1 \quad \text{and} \quad \tau \to \frac{a\tau^* + b}{c\tau^* + d} \quad \text{if } ad - bc = -1$$

CP-conserving values of the modulus

 τ and $\gamma\tau$ are physically equivalent, thus CP is preserved for

 $\tau \xrightarrow{CP} - \tau^* = \gamma \tau$

CP is violated in the fundamental domain, except for:

Implication of CP for couplings

$$W \supset \sum_{s} g_{s} \left(Y_{s}(\tau) \chi_{1} \dots \chi_{n} \right)_{\mathbf{1},s} \qquad \overline{W} \supset \sum_{s} g_{s}^{*} \overline{\left(Y_{s}(\tau) \chi_{1} \dots \chi_{n} \right)_{\mathbf{1},s}}$$

In a symmetric basis (X = I)

$$g_{s}\left(Y_{s}(\tau)\chi_{1}...\chi_{n}\right)_{1,s} \xrightarrow{CP} g_{s}\left(Y_{s}^{*}(\tau)\overline{\chi}_{1}...\overline{\chi}_{n}\right)_{1,s} = g_{s}\overline{\left(Y_{s}(\tau)\chi_{1}...\chi_{n}\right)_{1,s}}$$
reality of Clebsch-
Gordan coefficients
(holds for $N \leq 5$)

 $g_s = g_s^*$

Couplings must be real

SUSY breaking

Can be made negligible via separation of SUSY-breaking scale and messenger scale

Renormalisation group running

Small for $\tan\beta \lesssim 10~(25)$ dependent on the model

Criado, Feruglio, 1807.01125

Kähler potential

This is a problem in the bottom-up approach, since many terms allowed by modular invariance can be present in K

Feruglio, 1706.08749 Chen, Ramos-Sánchez, Ratz 1909.06910, + et al. 2108.02240 Feruglio, Gherardi, Romanino, **AT**, 2101.08718 Eclectic flavour symmetries: Nilles, Ramos-Sánchez, Vaudrevange, 2001.01736, 2004.05200

Selection of models

67

Selection of models with CP

Feruglio, 2211.00659

- Γ_3 with CP
- Γ_4 with CP
- Γ_4' with CP
- Γ'_5 with CP
- Γ'_6 with CP

 $--- |\tau - i| = 0.25$ For 2/3 of points $|\tau - i| < 0.25$

 $L \sim 3$ of finite modular group $\Gamma_N^{(\prime)}$ 9 observables (m_i , θ_{ii} , δ , α_{ii}) depend on τ and 2 or 3 additional Lagrangian parameters

Models with $|\tau - i| < 0.25$ leading to NO

Linearly realised symmetries

Change of variables:

Feruglio, Gherardi, Romanino, **AT**, 2101.08718 Novichkov, Penedo, Petcov, 2102.07488

$$u = \frac{\tau - i}{\tau + i} \qquad \Phi = (1 - u)^{k_{\varphi}} \varphi$$
$$u \xrightarrow{S} - u \qquad \Phi \xrightarrow{S} \Omega_{\varphi}(S) \Phi \qquad \Omega_{\varphi}(S) = i^{k_{\varphi}} \rho_{\varphi}(S)$$
$$u \xrightarrow{CP} \overline{u} \qquad \Phi \xrightarrow{CP} \overline{\Phi}$$

After canonical normalisation of the kinetic terms: Feruglio, 2211.00659

$$\begin{aligned} \Omega(S)^{\dagger} m_e^2(-u, -\overline{u}) \,\Omega(S) &= m_e^2(u, \overline{u}) & \Omega(S)^T \, m_{\nu}(-u, -\overline{u}) \,\Omega(S) = m_{\nu}(u, \overline{u}) \\ & [m_e^2(\overline{u}, u)]^* = m_e^2(u, \overline{u}) & m_{\nu}(\overline{u}, u)^* = m_{\nu}(u, \overline{u}) \\ & \Omega(S) \equiv \Omega_{H_u}(S) \,\Omega_L(S) = i^{k_{H_u} + k_L} \rho_{H_u}(S) \,\rho_L(S) \end{aligned}$$

Under the assumption that ρ_L is irreducible, $\Omega(S)$ is fixed (up to an overall phase)

$$\Omega(S) = i^{k_S} \operatorname{diag}\left(1, -1, -1\right) \quad \forall N$$

Universal scaling

The case of k_S odd and $m_{\nu}(0,0)$ singular (originating from seesaw)

$$m_{\nu}^{-1} = m_{0\nu}^{-1} \begin{pmatrix} x_{11} \ x \ x_{12}^{0} & x_{13}^{0} \\ \cdot & x_{22} \ x \ x_{23} \ x \\ \cdot & \cdot & x_{33} \ x \end{pmatrix} + \mathcal{O}(x^{2})$$

 $u = xe^{i\theta}$

$$\begin{split} m_{1,2} &= \frac{m_{0\nu}}{h} \left(1 \mp \frac{s}{2h} x \right) & m_3 = \frac{m_{0\nu}}{|q|x} & x \approx 0.1 \\ \sin^2 \theta_{12} &= \frac{1}{2} \left(1 + \frac{l\bar{k} + \bar{l}k}{hs} x \right) & \sin^2 \theta_{13} = 2 \frac{|n|^2}{h^2} x^2 & m_{0\nu}/h = 11.5 \text{ meV} \\ \sin^2 \theta_{23} &= \frac{(x_{13}^0)^2}{h^2} (1 + \mathcal{O}(x)) \\ \delta_{CP} &= \pi - \arg\left[\frac{(c_{\nu} - is_{\nu})^2 x_{12}^0 x_{13}^0}{n} \right] + \mathcal{O}(x^2) \\ \alpha_{21} &= \pi + \mathcal{O}(x) \\ \alpha_{31} &= \arg(q) - \arg\left[(c_{\nu} - is_{\nu})^2 \right] + \mathcal{O}(x) . & \underbrace{ \begin{array}{c} |q| \\ h \\ 2\sqrt{2}hs \end{array}} & x \approx 0.1 \\ m_{0\nu}/h &= 11.5 \text{ meV} \\ \frac{|q|}{h} \approx 2.3 & \frac{s}{h} \approx 3.4 & \frac{\sqrt{2}|n|}{h} \approx 1.5 \\ \frac{|l\bar{k} + \bar{l}k|}{2\sqrt{2}hs} \approx 1.4 & \frac{|x_{23}^2 - x_{22}x_{33}|}{2h|q|} \approx 4.8 \\ \frac{\mathcal{O}(1) \text{ constants}}{to get the averages} \end{split}$$

71

Dimension of linear space of modular forms

N	g	$d_{2k}(\Gamma(N))$	μ_N	Γ_N
2	0	k+1	6	S_3
3	0	2k + 1	12	A_4
4	0	4k + 1	24	S_4
5	0	10k + 1	60	A_5
6	1	12k	72	
7	3	28k - 2	168	

k(this presentation) $\equiv 2k$ (this table)

F. Feruglio, in book "From My Vast Repertoire ...: Guido Altarelli's Legacy", 1706.08749

Level
$$N = 2$$
 $(\Gamma_2 \simeq S_3 : S^2 = (ST)^3 = T^2 = I)$

N\k	0	2	4	6
2	1	2	3	4

 $\eta(\tau) \equiv q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$, $q = e^{2\pi i \tau}$, is the Dedekind eta function

$$\eta(\tau+1) = e^{i\pi/12} \eta(\tau) \qquad \eta(-1/\tau) = \sqrt{-i\tau} \eta(\tau)$$

T. Kobayashi, K. Tanaka, T.H. Tatsuishi, PRD **98** (2018) 016004

Level
$$N = 2$$
 $(\Gamma_2 \simeq S_3 : S^2 = (ST)^3 = T^2 = I)$

$$Y(a_1, a_2, a_3 | \tau) \equiv \sum_{i=1}^3 a_i \frac{d}{d\tau} \log \eta_i(\tau), \qquad \sum_{i=1}^3 a_i \frac{d}{d\tau} \log \eta_i(\tau)$$

$$\sum_{i=1}^{5} a_i = 0$$

$$Y_{2}(-1/\tau) = \tau^{2} \rho(S) Y_{2}(\tau) \qquad Y_{2}(\tau+1) = \rho(T) Y_{2}(\tau)$$

$$\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$Y_2(\tau) = \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix} \equiv c \begin{pmatrix} Y(1,1,-2 \mid \tau) \\ Y(\sqrt{3},-\sqrt{3},0 \mid \tau) \end{pmatrix}$$

 S_3 doublet of weight 2 modular forms

T. Kobayashi, K. Tanaka, T.H. Tatsuishi, PRD 98 (2018) 016004

Level N = 3
$$(\Gamma_3 \simeq A_4: S^2 = (ST)^3 = T^3 = I)$$

NVK 0 2 4 6
3 1 3 5 7
(up to multiplicative factors)
 $\eta\left(\frac{\tau}{3}\right), \eta\left(\frac{\tau+1}{3}\right), \eta\left(\frac{\tau+2}{3}\right), \eta(3\tau)$
T
A₄ triplet of weight 2 modular forms
E. Feruglio, in book "From My Vast Repertoire ...: Guido Altarelli's Legacy", 1706.08749
Level N = 4 $(\Gamma_4 \simeq S_4: S^2 = (ST)^3 = T^4 = I)$
NVK 0 2 4 6

1 **5** 9 13

4

S

$$\eta\left(\tau + \frac{1}{2}\right), \quad \eta\left(4\tau\right), \quad \eta\left(\frac{\tau}{4}\right), \quad \eta\left(\frac{\tau+1}{4}\right), \quad \eta\left(\frac{\tau+2}{4}\right), \quad \eta\left(\frac{\tau+3}{4}\right)$$

 S_4 doublet and triplet (3') of weight 2 modular forms _____75 J.T. Penedo, S.T. Petcov, NPB 939 (2019) 292

Building lowest-weight forms

$$Y(a_1, \dots, a_6 | \tau) \equiv \frac{d}{d\tau} \left(\sum_{i=1}^6 a_i \log \eta_i(\tau) \right) \qquad \qquad \sum_i a_i = 0$$

$$S: Y(a_1, \dots, a_6 | \tau) \to Y(a_1, a_2, a_3, a_4, a_5, a_6 | -1/\tau)$$
$$= \tau^2 Y(a_5, a_3, a_2, a_6, a_1, a_4 | \tau)$$

$$T: Y(a_1, \dots, a_6 | \tau) \to Y(a_1, a_2, a_3, a_4, a_5, a_6 | \tau + 1)$$
$$= Y(a_1, a_2, a_6, a_3, a_4, a_5 | \tau)$$

 $Y(\tau) \rightarrow (c\tau + d)^{2k_Y} \rho_Y(\gamma) Y(\tau)$ \longrightarrow Modular forms of weight 2

From J.T. Penedo's talk at DISCRETE 2018

$$Y(a_1, \dots, a_6 | \tau) \equiv \frac{d}{d\tau} \left(\sum_{i=1}^6 a_i \log \eta_i(\tau) \right)$$

$$\sum_{i} a_{i} = 0$$

Lowest weight forms arrange into:

$$Y_{2}(\tau) = \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \end{pmatrix} \text{ doublet 2}$$
$$Y_{3'}(\tau) = \begin{pmatrix} Y_{3}(\tau) \\ Y_{4}(\tau) \\ Y_{5}(\tau) \end{pmatrix} \text{ triplet 3'}$$

$$Y_1(\tau) \equiv Y(1, 1, \omega, \omega^2, \omega, \omega^2 | \tau)$$

$$Y_2(\tau) \equiv Y(1, 1, \omega^2, \omega, \omega^2, \omega | \tau)$$

$$Y_3(\tau) \equiv Y(1, -1, -1, -1, 1, 1 | \tau)$$

$$Y_4(\tau) \equiv Y(1, -1, -\omega^2, -\omega, \omega^2, \omega | \tau)$$

$$Y_5(\tau) \equiv Y(1, -1, -\omega, -\omega^2, \omega, \omega^2 | \tau)$$

Correct dimension (5) Products generate higher weight forms

From J.T. Penedo's talk at DISCRETE 2018

$$\begin{split} X(a_1, \dots, a_6 \,|\, \tau) &\equiv \sum_{i=1}^6 a_i \frac{\mathrm{d}}{\mathrm{d}\tau} \log \eta_i(\tau) \,, \qquad \sum_{i=1}^6 a_i = 0 \\ X_5(\tau) &= \begin{pmatrix} X_1(\tau) \\ X_2(\tau) \\ X_3(\tau) \\ X_3(\tau) \\ X_4(\tau) \\ X_5(\tau) \end{pmatrix} &\equiv c \begin{pmatrix} -\frac{1}{\sqrt{6}} X \left(-5, 1, 1, 1, 1, 1 \,|\, \tau\right) \\ X(0, 1, \zeta^4, \zeta^3, \zeta^2, \zeta \,|\, \tau) \\ X(0, 1, \zeta^3, \zeta, \zeta^4, \zeta^2 \,|\, \tau) \\ X(0, 1, \zeta^2, \zeta^4, \zeta, \zeta^3 \,|\, \tau) \\ X(0, 1, \zeta, \zeta^2, \zeta^3, \zeta^4 \,|\, \tau) \end{pmatrix} \,, \qquad \zeta = e^{2\pi i/5} \end{split}$$

 A_5 quintet of weight 2 modular forms

11 = 5 + 3 + 3'

C. Franc, G. Mason, Ramanujan J. 41 (2016) 233

How to construct the triplets?

Jacobi theta function

Jacobi theta function:

$$\theta_3(z,\tau) = \sum_{n=-\infty}^{\infty} \exp\left(\pi i n^2 \tau + 2\pi i n z\right)$$

Useful properties:

S. Kharchev, A. Zabrodin, J. Geom. Phys. 94 (2015) 19

$$\begin{aligned} \theta_3(z+1,\tau) &= \theta_3(z,\tau) \,, \quad \theta_3(z+\tau,\tau) = e^{-\pi i (2z+\tau)} \theta_3(z,\tau) \\ \theta_3(z+1/2,\tau) &= \theta_4(z,\tau) \,, \quad \theta_3(z+\tau/2,\tau) = e^{-\pi i (z+\tau/4)} \theta_2(z,\tau) \\ \theta_3(z,\tau+1) &= \theta_4(z,\tau) \,, \quad \theta_3(z/\tau,-1/\tau) = \sqrt{-i\tau} e^{\pi i z^2/\tau} \theta_3(z,\tau) \end{aligned}$$

 θ_1, θ_2 and θ_4 are auxiliary theta functions

Alternative construction invoking Klein forms has been worked out in G.-J. Ding, S.F. King, X.-G. Liu, PRD 100 (2019) 115005

12 seed functions

$$\begin{aligned} \alpha_{1,-1}(\tau) &\equiv \theta_3 \left(\frac{\tau+1}{2}, 5\tau \right) & \alpha_{2,-1}(\tau) \equiv e^{2\pi i \tau/5} \theta_3 \left(\frac{3\tau+1}{2}, 5\tau \right) \\ \alpha_{1,0}(\tau) &\equiv \theta_3 \left(\frac{\tau+9}{10}, \frac{\tau}{5} \right) & \alpha_{2,0}(\tau) \equiv \theta_3 \left(\frac{\tau+7}{10}, \frac{\tau}{5} \right) \\ \alpha_{1,1}(\tau) &\equiv \theta_3 \left(\frac{\tau}{10}, \frac{\tau+1}{5} \right) & \alpha_{2,1}(\tau) \equiv \theta_3 \left(\frac{\tau+8}{10}, \frac{\tau+1}{5} \right) \\ \alpha_{1,2}(\tau) &\equiv \theta_3 \left(\frac{\tau+1}{10}, \frac{\tau+2}{5} \right) & \alpha_{2,2}(\tau) \equiv \theta_3 \left(\frac{\tau+9}{10}, \frac{\tau+2}{5} \right) \\ \alpha_{1,3}(\tau) &\equiv \theta_3 \left(\frac{\tau+2}{10}, \frac{\tau+3}{5} \right) & \alpha_{2,3}(\tau) \equiv \theta_3 \left(\frac{\tau}{10}, \frac{\tau+3}{5} \right) \\ \alpha_{1,4}(\tau) &\equiv \theta_3 \left(\frac{\tau+3}{10}, \frac{\tau+4}{5} \right) & \alpha_{2,4}(\tau) \equiv \theta_3 \left(\frac{\tau+1}{10}, \frac{\tau+4}{5} \right) \end{aligned}$$

$$\begin{split} Y(c_{1,-1}, \dots, c_{1,4}; c_{2,-1}, \dots, c_{2,4} | \tau) &\equiv \sum_{i,j} c_{i,j} \frac{\mathrm{d}}{\mathrm{d}\tau} \log \alpha_{i,j}(\tau) , \qquad \sum_{i,j} c_{i,j} = 0 \\ Y_{5}(\tau) &= \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \\ Y_{3}(\tau) \\ Y_{4}(\tau) \\ Y_{5}(\tau) \end{pmatrix} &\equiv \begin{pmatrix} -\frac{1}{\sqrt{6}} Y \left(-5,1,1,1,1,1; -5,1,1,1,1,1 | \tau \right) \\ Y(0,1,\zeta^{4},\zeta^{3},\zeta^{2},\zeta; 0,1,\zeta^{4},\zeta^{3},\zeta^{2},\zeta | \tau) \\ Y(0,1,\zeta^{3},\zeta,\zeta^{4},\zeta^{2}; 0,1,\zeta^{3},\zeta,\zeta^{4},\zeta^{2} | \tau) \\ Y(0,1,\zeta^{2},\zeta^{4},\zeta,\zeta^{3}; 0,1,\zeta^{2},\zeta^{4},\zeta,\zeta^{3} | \tau) \\ Y(0,1,\zeta^{2},\zeta^{4},\zeta,\zeta^{3}; 0,1,\zeta^{2},\zeta^{4},\zeta,\zeta^{3} | \tau) \end{pmatrix} \\ Y_{3}(\tau) &= \begin{pmatrix} Y_{6}(\tau) \\ Y_{7}(\tau) \\ Y_{8}(\tau) \end{pmatrix} \equiv \begin{pmatrix} \frac{1}{\sqrt{2}} Y \left(-\sqrt{5},-1,-1,-1,-1,-1,-1;\sqrt{5},1,1,1,1 | \tau \right) \\ Y(0,1,\zeta^{4},\zeta^{3},\zeta^{2},\zeta; 0,-1,-\zeta^{4},-\zeta^{3},-\zeta^{2},-\zeta | \tau) \\ Y(0,1,\zeta,\zeta^{2},\zeta^{3},\zeta^{4}; 0,-1,-\zeta,-\zeta^{2},-\zeta^{3},-\zeta^{4} | \tau) \end{pmatrix} \\ Y_{3}(\tau) &= \begin{pmatrix} Y_{9}(\tau) \\ Y_{10}(\tau) \\ Y_{11}(\tau) \end{pmatrix} \equiv \begin{pmatrix} \frac{1}{\sqrt{2}} Y \left(\sqrt{5},-1,-1,-1,-1,-1,-1;-\sqrt{5},1,1,1,1,1 | \tau \right) \\ Y(0,1,\zeta^{3},\zeta,\zeta^{4},\zeta^{2}; 0,-1,-\zeta^{3},-\zeta,-\zeta^{4},-\zeta^{2} | \tau) \\ Y(0,1,\zeta^{2},\zeta^{4},\zeta,\zeta^{3}; 0,-1,-\zeta^{2},-\zeta^{4},-\zeta,-\zeta^{3} | \tau) \end{pmatrix} \end{split}$$

*A*₅ quintet and triplets of weight 2 modular forms P.P. Novichkov, J.T. Penedo, S.T. Petcov, AT, JHEP **04** (2019) 174

Modular forms of higher weight at level 5

Weight 4: $Y_i Y_j$ 66 combinations - 45 constraints = 21 independent combinations

$$\begin{split} Y_{1}^{(4)} &= Y_{1}^{2} + 2Y_{3}Y_{4} + 2Y_{2}Y_{5} \\ Y_{3}^{(4)} &= \begin{pmatrix} -2Y_{1}Y_{6} + \sqrt{3} Y_{5}Y_{7} + \sqrt{3} Y_{2}Y_{8} \\ \sqrt{3} Y_{2}Y_{6} + Y_{1}Y_{7} - \sqrt{6} Y_{3}Y_{8} \\ \sqrt{3} Y_{2}Y_{6} + Y_{1}Y_{7} - \sqrt{6} Y_{3}Y_{8} \\ \sqrt{3} Y_{5}Y_{6} - \sqrt{6} Y_{4}Y_{7} + Y_{1}Y_{8} \end{pmatrix} \\ Y_{3}^{(4)} &= \begin{pmatrix} \sqrt{3} Y_{1}Y_{6} + Y_{5}Y_{7} + Y_{2}Y_{8} \\ Y_{3}Y_{6} - \sqrt{2} Y_{2}Y_{7} - \sqrt{2} Y_{4}Y_{8} \\ Y_{4}Y_{6} - \sqrt{2} Y_{3}Y_{7} - \sqrt{2} Y_{5}Y_{8} \end{pmatrix} \\ Y_{4}^{(4)} &= \begin{pmatrix} 2Y_{4}^{2} + \sqrt{6} Y_{1}Y_{2} - Y_{3}Y_{5} \\ 2Y_{2}^{2} + \sqrt{6} Y_{1}Y_{3} - Y_{4}Y_{5} \\ 2Y_{2}^{2} + \sqrt{6} Y_{1}Y_{3} - Y_{4}Y_{5} \\ 2Y_{2}^{2} - Y_{2}Y_{3} + \sqrt{6} Y_{1}Y_{4} \\ 2Y_{3}^{2} - Y_{2}Y_{4} + \sqrt{6} Y_{1}Y_{5} \end{pmatrix} \\ Y_{4}^{(4)} &= \begin{pmatrix} Y_{4}^{(4)} + \sqrt{6} Y_{1}Y_{2} - Y_{3}Y_{5} \\ 2Y_{2}^{2} + \sqrt{6} Y_{1}Y_{3} - Y_{4}Y_{5} \\ 2Y_{2}^{2} - Y_{2}Y_{3} + \sqrt{6} Y_{1}Y_{4} \\ 2Y_{3}^{2} - Y_{2}Y_{4} + \sqrt{6} Y_{1}Y_{5} \end{pmatrix} \\ Y_{5}^{(4)} &= \begin{pmatrix} \sqrt{3} Y_{5}Y_{7} - \sqrt{3} Y_{2}Y_{8} \\ -2Y_{3}Y_{6} - \sqrt{2} Y_{2}Y_{7} \\ 2Y_{4}Y_{6} + \sqrt{2} Y_{2}Y_{7} \\ 2Y_{4}Y_{6} + \sqrt{2} Y_{5}Y_{8} \\ Y_{5}Y_{6} + \sqrt{2} Y_{4}Y_{7} + \sqrt{3} Y_{1}Y_{8} \end{pmatrix} \\ \end{split}$$

P.P. Novichkov, J.T. Penedo, S.T. Petcov, AT, JHEP 04 (2019) 174

N\k

5

0

2

4

1 11 **21** 31

6