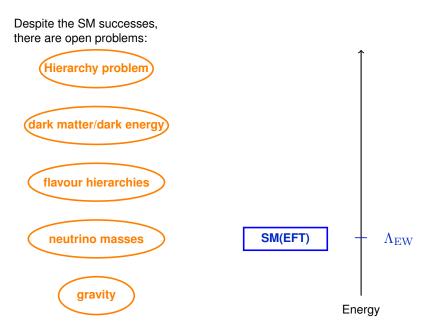
Flavour Physics: Current Status and Future Directions

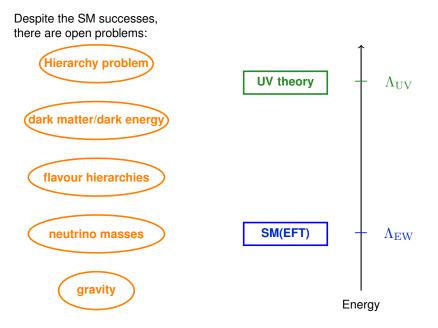
Marzia Bordone

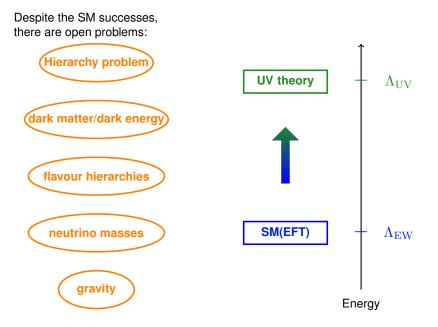
Flavour for New Physics at Present and Future Colliders

MITP

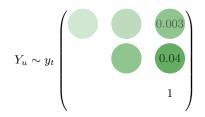
16.06.2025


Outline:


- 1. The problem of flavour
- 2. Open problems in hadronic physics
- 3. Beyond the LHC and Belle II


Despite the SM successes, there are open problems:

Despite the SM successes, there are open problems:


The (two) flavour problems

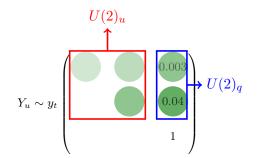
- 1. The SM flavour problem: The measured Yukawa pattern doesn't seem accidental
 - \Rightarrow Is there any deeper reason for that?

- 2. The NP flavour problem: If we regard the SM as an EFT valid below a certain energy cutoff Λ , why don't we see any deviations in flavour changing processes?
 - \Rightarrow Which is the flavour structure of BSM physics?

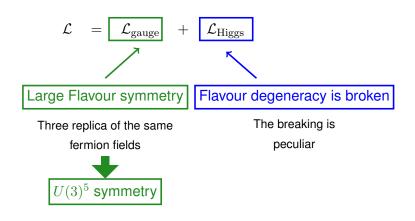
The SM flavour problem

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

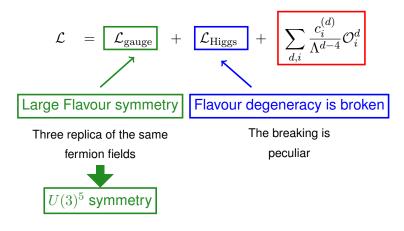
The SM flavour problem


$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

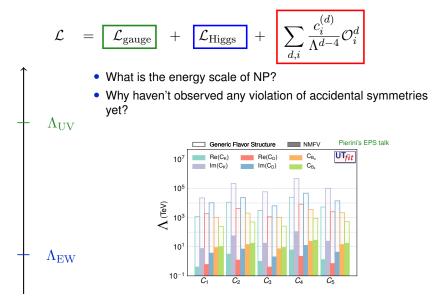
Exact $U(2)^n$ limit


The SM flavour problem

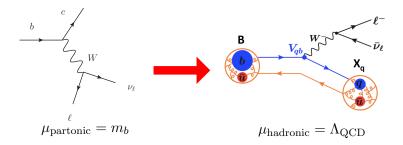
 $\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$


An approximate $U(2)^n$ is acting on the light families!

The NP flavour problem


• In the SM: accidental $U(3)^5 \rightarrow \text{approx } U(2)^n$

The NP flavour problem


- In the SM: accidental $U(3)^5 \rightarrow \text{approx } U(2)^n$
- What happens when we switch on NP?

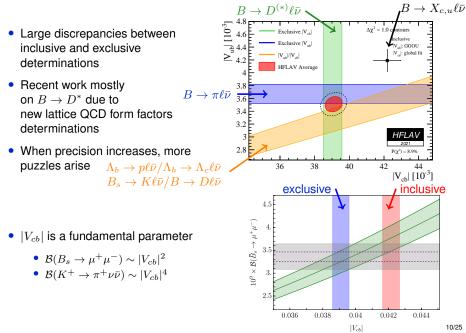
The NP flavour problem

no breaking of the $U(2)^n$ flavour symmetry at low energies

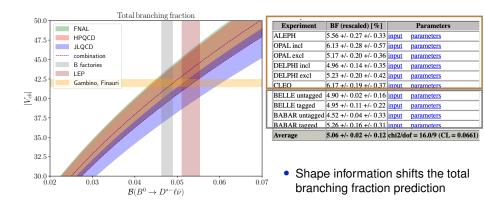
Partonic vs Hadronic

Fundamental challenge to match partonic and hadronic descriptions

Open problems in hadronic physics

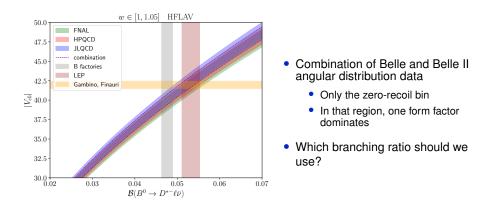

What are the open themes in hadronic physics?

1. Extraction of the CKM elements V_{cb} and V_{ub}


2. Non-local effects in $b \rightarrow s\ell\ell$

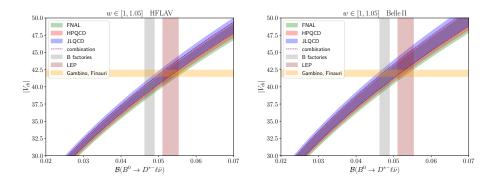
3. Non-leptonic decays

The $V_{cb} - V_{ub}$ puzzle



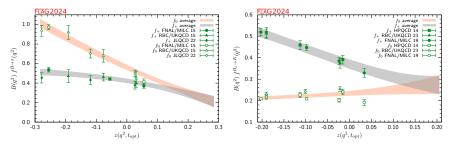
Exclusive V_{cb} from $B \rightarrow D^*$

Thanks to C. Schwanda for the averages!


Exclusive V_{cb} close to zero-recoil MB, A. Jüttner, '23 + WIP

B factories:
$$|V_{cb}| = 40.07 \pm 0.86$$

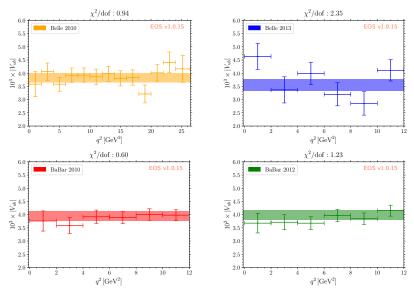
LEP: $|V_{cb}| = 42.37 \pm 1.09$


Exclusive *V*_{*cb*} **close** to **zero-recoil**

MB, A. Jüttner, '23 + WIP

B factories: $|V_{cb}| = 40.07 \pm 0.86$ LEP: $|V_{cb}| = 42.37 \pm 1.09$ B factories: $|V_{cb}| = 41.24 \pm 1.15$ LEP: $|V_{cb}| = 43.60 \pm 1.35$

A few words on exclusive V_{ub}

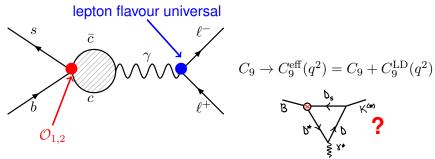


- There are tensions in the lattice determinations of f₀
- *f*₊ and *f*₀ are correlated through the kinematic constraint

$$f_+(q^2 = 0) = f_0(q^2 = 0)$$

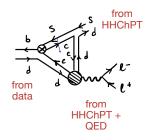
• The chiral continuum extrapolation using the helicity base or the "lattice" base has some tricky points and checks are ongoing

V_{ub} from $B \to \pi \ell \bar{\nu}$

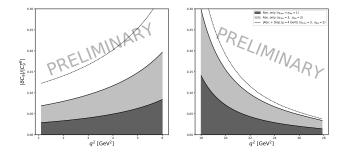


Not inflating uncertainties reveals a few tensions

Charm-loop effects in $b \rightarrow s\ell^+\ell^-$

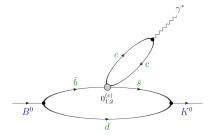

 \sim

$$\begin{aligned} \mathcal{H}_{\mathsf{eff}} &= -4 \frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[-\mathcal{C}_1 \mathcal{O}_1 - \mathcal{C}_2 \mathcal{O}_2 + \mathcal{C}_7 \mathcal{O}_7 + \mathcal{C}_9 \mathcal{O}_9 + \mathcal{C}_{10} \mathcal{O}_{10} \right] \\ \mathcal{O}_1 &= \left(\bar{s} \gamma^\mu P_L b \right) \left(\bar{c} \gamma_\mu c \right) \qquad \mathcal{O}_2 = \left(\bar{s} \gamma^\mu T^a P_L b \right) \left(\bar{c} \gamma_\mu T^a c \right) \\ \mathcal{O}_9 &= \left(\bar{s} \gamma^\mu P_L b \right) \left(\bar{\ell} \gamma_\mu \ell \right) \qquad \mathcal{O}_{10} = \left(\bar{s} \gamma^\mu P_L b \right) \left(\bar{\ell} \gamma_\mu \gamma_5 \ell \right) \\ \mathcal{O}_7 &= \left(\bar{s} \sigma^{\mu\nu} P_R b \right) F_{\mu\nu} \end{aligned}$$



[Ciuchini, Fedele, Franco, Paul, Silvestrini, Valli, '22]

Models for the rescattering



- Use of heavy hadron chiral perturbation theory + data + QED to determine the various vertices
- Better reliability at maximum q^2
- The tower of all possible combinations of states is accounted for by multiplicity factors based on the respective branching ratio
- Relative phases and how various contributions add up depend on unknown relative phases

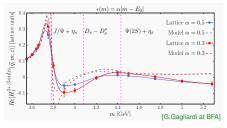
G. isidori, Z. Polonsky, A.Tinari, '24 + WIP

News from the lattice

$$H^{\mu}(\mathbf{q}) \sim \int_{E_0}^{\infty} \frac{dE}{2\pi} \frac{\rho^{\mu}(E,\mathbf{q})}{E - m_B - i\epsilon}$$

⇒ Spectral densities are connected to correlation functions

$$C^{\mu}(t,\mathbf{q}) \sim \int_{E_0}^{\infty} \frac{dE}{2\pi} e^{-Et} \rho^{\mu}(E,\mathbf{q})$$


One has to solve a very complicated inverse problem

News from the lattice

Solution: smeared correlators

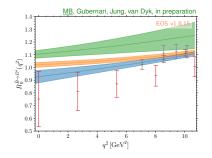
$$H^{\mu}(\mathbf{q}) \sim \int_{E_0}^{\infty} \frac{dE}{2\pi} \frac{\rho^{\mu}(E,\mathbf{q})}{E - m_B - i\epsilon} = \lim_{\epsilon \to 0} \int_{E_0}^{\infty} \frac{dE}{2\pi} \mathcal{K}_{\epsilon}(E,\mathbf{q}) \rho^{\mu}(E,\mathbf{q})$$

- The smearing makes the problem solvable in a finite volume
- This technique has been successfully applied to various problems like g-2 computation, inclusive semileptonic D decays

$$B_s \to \eta_s \ell^+ \ell^-$$

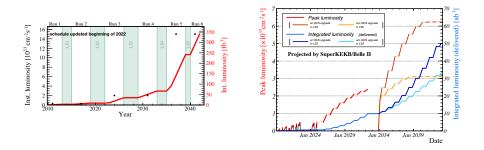
- Extend to $B \to K \ell^+ \ell^-$
- Attempt the $\epsilon \to 0$ limit
- Include more ensembles
- Perform non-perturbative renormalisation

The $B_{(s)} \rightarrow D^*_{(s)}K(\pi)$ decays


Why?

 \Rightarrow crucial inputs to extract fragmentation fractions from data

$$\begin{split} \mathcal{A}(\bar{B}^0_q \to D^{*+}_q L^-) &= -i \frac{G_F}{\sqrt{2}} V^*_{uq_2} V_{cb} a_1(D^{*+}_q L^-) f_L \\ &\times A^{\bar{B}_q \to D^*_q}_0(M^2_L) 2M_{D^*_q} \varepsilon^* (\lambda = 0) \cdot q \end{split}$$


- Currently a 4σ descrepancy <u>MB</u>, Huber, Gubernari, Jung, van Dyk, '20
- Initiated further works on power correction

M.L. Piscopo, A. Rusov, '23

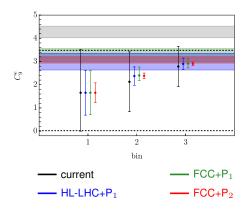
- New form factor analyses suggest a 15% downward shift in the scalar form factor
- This would reduce the tension with experimental data
- This is just for B → D^{*}, B → D is unchanged at the current status

Beyond the LHC and Belle II

- Both the LHCb and Belle II programs are supported by not only unprecedented datasets, but also by software and analysis improvements
- What can be yet improved?

FCC-ee flavour opportunities

FCC: combines some of the best features of pp colliders and B factories


- High statistics
- Relatively clean environment due to high boost of b quarks

Particle production (10^9)	B^0/\overline{B}^0	B^+/B^-	B_s^0/\overline{B}_s^0	B_c^+/\overline{B}_c^-	$\Lambda_b/\overline{\Lambda}_b$	$c\overline{c}$	$\tau^+ \tau^-$
Belle II	27.5	27.5	n/a	n/a	n/a	65	45
FCC-ee	620	620	150	4	130	600	170

- ⇒ unique opportunity to study flavour under all possible angles
- \Rightarrow all possible decay modes are accessible

$B \rightarrow K^* e^+ e^-$ at FCC-ee

- Reconstruction is as good as for muons
 - \Rightarrow estimated around $\sim 80\%^*$ in all phase space
- The statistical error is below 1% and half of what is expected from HL-LHC

- Only $\mathcal{B}(B \to K^* e^+ e^-)$
- High Lumy projections: $\sigma_{\rm stat} = \sigma_{\rm syst}$
- Theory projections:

 $P_1: \sigma_{F_i} \to \sigma_{F_i}/2,$ $P_2: \sigma_{F_i} \to \sigma_{F_i}/5,$

• Only with P_2 we can fully exploit the FCC-ee statistics

Conclusions

- Flavour physics is a powerful test for new physics living at different energy scales
- We have a lot of puzzles to solve, but this is just a sign of the advancements in both theory and experiments
- One of the most urgent puzzle to resolve concerns V_{cb} and V_{ub}
- Precise SM predictions are the key to unveiling potential NP signals
- The excellent experimental prospects, on the short and long term, combining with theory and experimental advancements

Appendix