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We are interested in PDF factorization in

infrared safe observables in hadron-hadron
collisions.

Our example is dimuon production, as in

J.C.Collins, D.E.Soper and G.F.Sterman,
“Soft Gluons and Factorization,”
Nucl. Phys. B 308, 833 (1988)

This paper works at all orders, but it may be
helpful to look at just a first order example,
emphasizing the Glauber singularities.

See also

J.C.Collins, D.E.Soper and G.F.Sterman,

“Factorization for Short Distance Hadron - Hadron Scattering,”
Nucl. Phys. B 261, 104 (1985)



Some notation

p-$:p+az——|—p_$+—p-w

e Translations in = generated by p™.

e Translations in ™ generated by p~.

p°=2pTp —p°

e p° = 0 implies



Definition of PDFs

e For quarks,

1 [ dy™

fi/h(faﬂF) : 2| o

Y
I'="Pexp (zg/
0

e For gluons, a similar definition.

e PV (pl1; (0,7, 0)y" F;(0)p)

dz~AT(0,2~,0) ta)

e Renormalize with the MS prescription with scale .

e Note that y~ is small, y~ ~ 1/p™.



e Another way to write this:

1 [dy~ ov -
firn(& pr) = 3 Qy—w P Y (pl;(0,y,0)yT Fp,;(0)|p)

' = Pexp (—z’g/ dz~ AT (0,z7,0) ta>
=

X P exp (zg/ dz~ AT(0,2~,0) ta>
0




Factorization




e Consider the cross section to produce a muon pair with
virtuality Q% and rapidity y plus anything. Then
factorization claims

do

d()?dy

1 : do,
szdy - ;;/:cAdgA /degB fa//A(fA?l’L) fb/B(fB’M) b(,LL)

+0(m//Q?)

1 gt B
y:§log<q—_> xA:ey\/QQ/S rTp =€ y\/QQ/S

e This i1s the inclusive cross section. Unmeasured
hadrons in the final state are allowed.

e There are power suppressed corrections.



A simple contribution




e Hadron A moves in the + direction.
e Hadron B moves in the — direction.
e | show some of the parton lines.

e They can be quarks, antiquarks, or gluons.

e Choose integration region: large q—.



e A gluon with momentum ¢ is exchanged from
a spectator line in B to the active line in A.

e Let ¢ have large ¢, small ¢ and gq.
o We get

ko +
(ka4 q)* + i€

%a k‘;_fy_ — _+ k;‘,y—
2 . ~ —|— e & /y 2 .
kZ + ie 2ka g kz 4 1€
e~ M,

q~ k2 + ie
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e This gives us the gluon attached to the eikonal line
representing the PDF in hadron B.

S A

g k2 + ie

A

e What could go wrong?

II



A more difficult case

e Integration region with all components of ¢ small.
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e ook at this graph.

e LLook at A partons first.
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The A partons

e We consider all components of ¢ to be small.

e p and kI are large with kI < pI .
e p. and k_ are small.
e Neglect g™ compared to p; and k.

¢=1(0,9",q)
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>< °
2(pa — ka )(pa —ka —q) — (Pa — ka — q)? + ic

x(2m) 6(2(p — k) (0 — ko) — (P2 — k)?)
e There are poles in ¢g— very close to ¢ = 0, with opposite ie.

e It seems that something has gone wrong.
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The rest of the graph




e There are four graphs with the soft gluon attaching
to the spectator line.

e N AN

I L) AN

e We will need relations among these.



e p. and k_ are large with £, < p, .

o pf; and kf; are small.

e Neglect ¢— compared to p, and &, .

e Here the gluon propagator is included.
e We have an integral over ¢ .
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e There are poles in g™ very close to ¢ = 0, with opposite ie.

e It seems that something has gone wrong again.
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Initial state contribution




e We can perform the integration over ¢* for Gis:

dk+
Gra =
15— / /27T 2gtq~ —q2—|—1e
_+ kb— (pp — kb + q)° 17
X |p; — - i€
ka 2(py, — k) _
kn—q)? ]
X k;r—qu (ka_) - 1€

x(2m) 6(2(py, — Ky, ) (py, k+) (pv — K1)?)

e Gigs =01f g~ <O.

e For ¢— > 0, close contour in lower half g™ plane.
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Final state contribution




e After integrating over ¢*, Gpg is

e Grg needs q~ < 0.

e We leave Grg for later.

206



A second initial state
contribution



e What about G1g when the gluon enters the final state?”

e To make Gig cut, In Grg replace

/dq+ i / 276, (2 2)
[— 7T —_—
21 2qTq— — g? +ie +207q —4q
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e This gives
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e We see that Gis = G1s,cut-

/

e
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AN

e The same applies to the conjugate amplitudes.

| AN W

/1S IS
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Cancelations




e The final state contributions cancel.

N
i

e | omit the details of this.
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e Thus when we analyze the hadron A factor, the rest of the
oraph is independent of whether the gluon attaches to the
left of the cut or the right of the cut.

|

N G

-

| SR AN

e We can now use this property to analyze the factor for

hadron A.
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Hadron A




(pa - ka)z

<(2) 3o Iy
2(pa — ki)
e Write this as Ga = Gig + Grg.

2(pd — k)

)

1€
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Another final state
contribution
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e Manipulate Grg.

e Write the delta function as a difference of two denominator
factors with opposite ie terms. Only one of these contributes.

e J € /dk;
T 8k (pf — kD)2 ) 2
- _ (katq)? (Pa—ka—2q)’

- 1€

X
K 2k: 2(pa — k)
S —1
— — — (pa - ka - q)2 ‘
X — k. — |
S .
) 1
— — (pa - ka)2 .
X(—i) |p, — Kk, 2oF — k) i€

e Write the middle denominator factor as a delta function.



X - ]
Po T kg 2k — k1)
_ _ _ (pa — k, — CI)Z
X(Qﬂ-)5<pa - ka — 9 2(p+ k‘l‘)

e This is the negative of a graph Grg ¢t With a different cut.
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e If we include the factors for the Born level conjugate
amplitude for hadron A, Grg cyt is one of our graphs.

e We need to multiply both Grg and Gpg cut by the rest
of the graph, describing the gluon propagator and hadron B.

e But we have seen that the rest of the graph does not depend
on where the final state cut is.

e Thus, including the rest of the graph,

Grs + Grs.cus = 0
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Integration contour for initial
state contribution



e We conclude that we need only Gig.

O — J € /dk;
i 8k (pi — k)2 ) 2m

(katq)?® (Pa—ka—q)?® .

o |-
ke 2k 2(pd — ka )
L (katq)? ]

X _ka +q By 16_

— — (pa - ka)Q >

X (27) 0 — k

e This has no singularities in the upper halt ¢~ plane.



e We can thus deform the q— contour for G into
the upper half plane.

l J e /dka
AT Sk — kD)2 ) o

- - - (ka_l_q)Q .
X _ka +q By | 16_
1
— — — (pa o ka - q)2 .
X — k. — |
_pa a — g 2(p§ — kj) 1€
— — (pa - ka)Z >
X(Qﬂ-) 5<pa - ka
2(pa — ka )

e G5 has a final state pole in the upper half plane.

e We have seen that the contributions from deforming

past this pole will cancel when we include all of the graphs.

44



Consequence of the contour
deformation
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o (kataq?
X |k, +q = | 16_
_ _ _ (pa — ks — q)2
X LR
- — (pa - ka)Q )
X (27) 0 — k

e With large ¢, we can set g — 0.




e With g = 0 in G, we can now return the g~ contour
to the real axis.

® Ga(q), is Ga(q), where
¢=(0,q",0)
e With g = 0 the final state poles (which cancel) are

1

q— — 1€
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Using Ward identities




e Now we can apply Ward identities.
- T
J.-e=J"e = ——F¢
g~ — 1€

e This essentially attaches a future oriented eikonal line
to each vertex.

e Fikonal lines at internal vertices cancel.

e This leaves only the eikonal line at the annihilation vertex.

e Now summing over whether the soft gluon attaches
to the lett of the final state cut or to the right, the
entire effect of exchanging the soft gluon cancels.
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Intuitive picture

e The soft gluons see a parton jet with internal structure
in the initial state.

e Since the soft gluons have zero transverse momentum, they
cannot resolve the structure.

e They see only a color singlet incoming object.

e After the annihilation they see an object with unresolved
structure, but with color.

e The color is the anticolor of the annihilating quark.
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