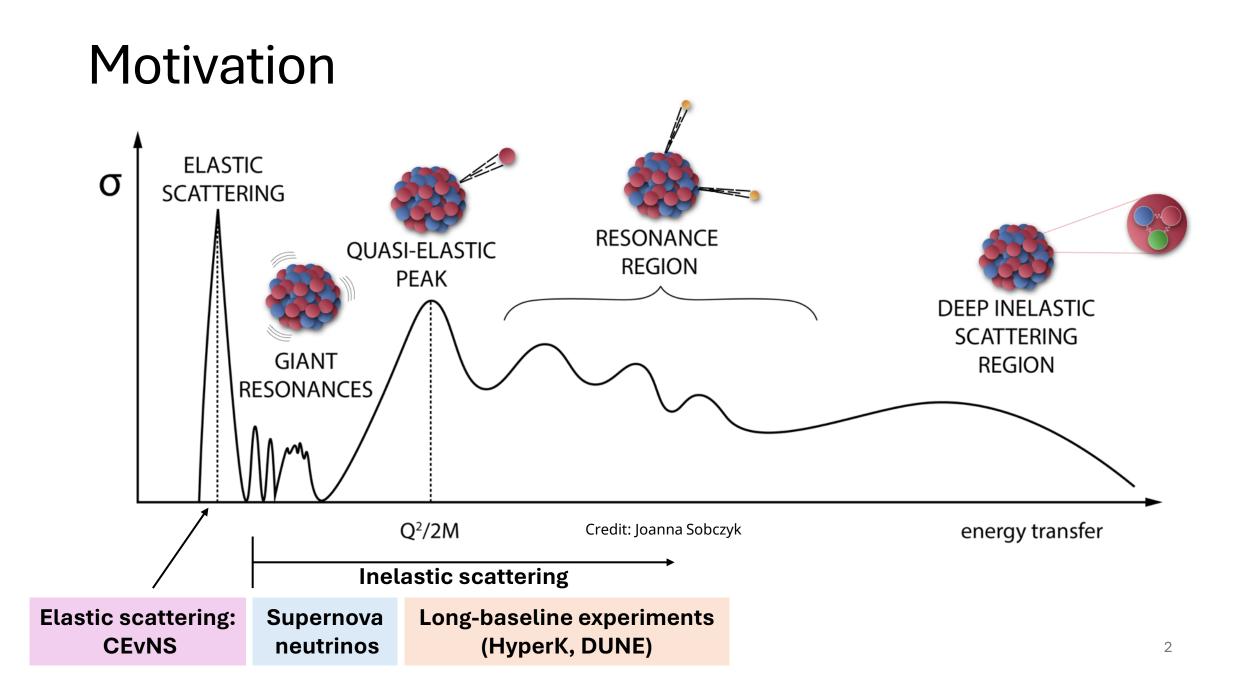
Response functions from a Chebyshev expansion

In collaboration with Joanna E. Sobczyk and Sonia Bacca Based on: arXiv:25XX.XXXX

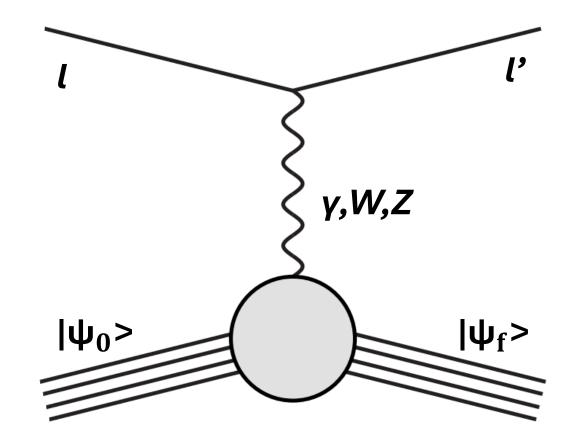
Immo Reis

Neutrino-Nucleus Interactions in the Standard Model and Beyond

MITP, Mainz, 20/05/2025



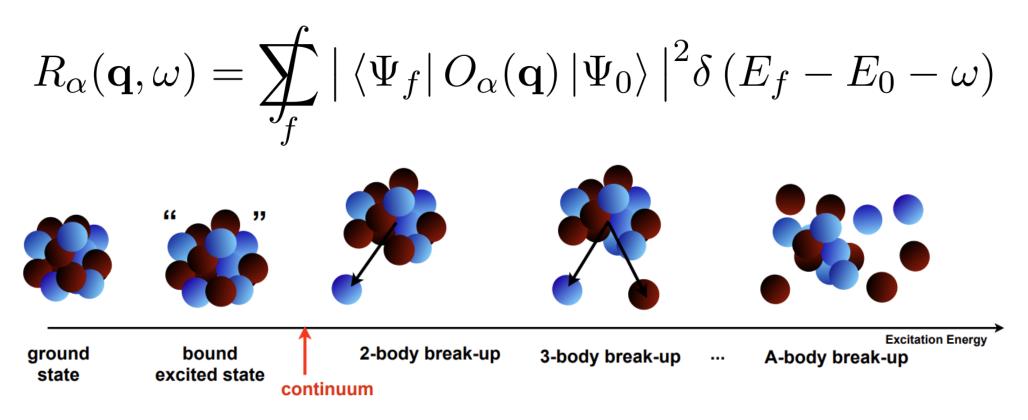
Lepton-Nucleus Scattering



$$\sigma \propto L^{\mu
u} R_{\mu
u}$$

lepton nuclear
tensor responses

Nuclear Response Functions



Bacca, Eur. Phys. J Plus 131, 107 (2016)

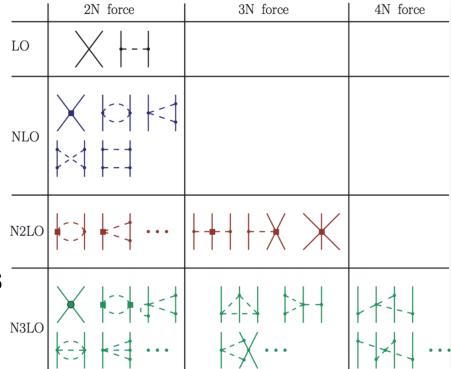
Hamiltonian & currents

EFT inspired products:

Order-by-order expansion of SM

interactions in Hamiltonian and currents

$$J = \sum_{i} j_i + \sum_{i < j} j_{ij} + \dots$$

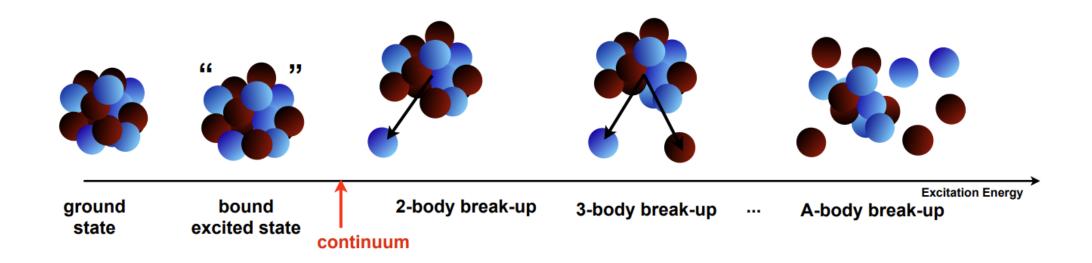


Many body problem

- Solve $H|\Psi\rangle = E|\Psi\rangle$
- Finite dimensional expansion in bound basis (harmonic oscillator)

$$|\Psi_0\rangle = \sum_k c_k |n_k l_k\rangle \qquad \hat{O}_{ij} = \langle n_i l_i ...| \hat{O} |n_j l_j ...\rangle$$

Many body problem

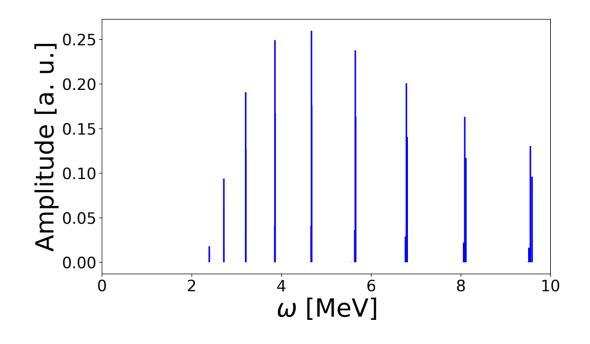


\rightarrow Finite number of eigenvalues of H and "pseudo continuum"

states" with bound state boundary conditions

Response in bound state approaches

$$R_{\alpha}(\mathbf{q},\omega) = \sum_{f} \left| \left\langle \Psi_{f} \right| O_{\alpha}(\mathbf{q}) \left| \Psi_{0} \right\rangle \right|^{2} \delta\left(E_{f} - E_{0} - \omega \right)$$



Diagonalizing H is computationally prohibitive for relevant nuclei

(but easy for our test case deuteron)

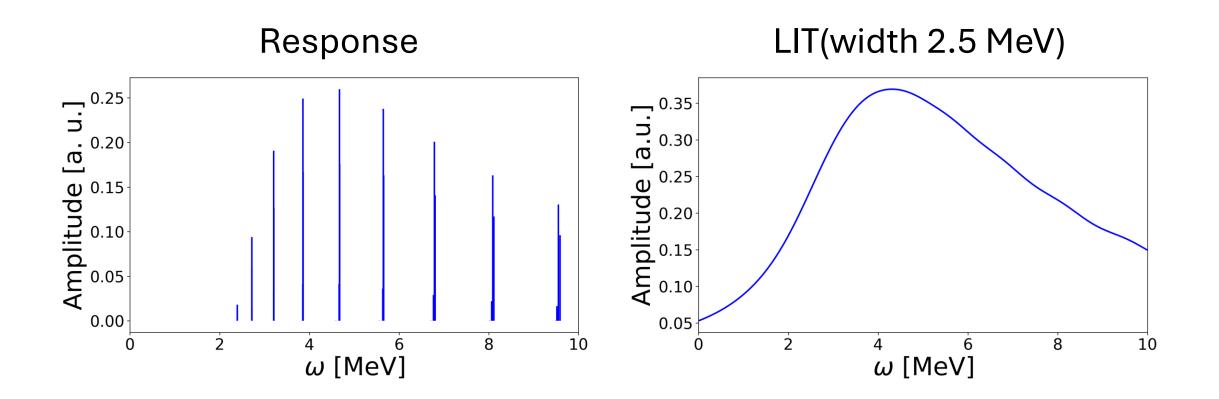
Integral transforms

• Can avoid the final states and the discrete nature of the response

$$\Phi(\sigma) = \int d\omega \, K(\sigma, \omega) R(\omega)$$
$$= \langle \Psi_0 | \, O^{\dagger}_{\alpha}(\mathbf{q}) K(\sigma, H - E_0) O_{\alpha}(\mathbf{q}) \, | \Psi_0 \rangle$$

• Kernels are usually some representation of delta function

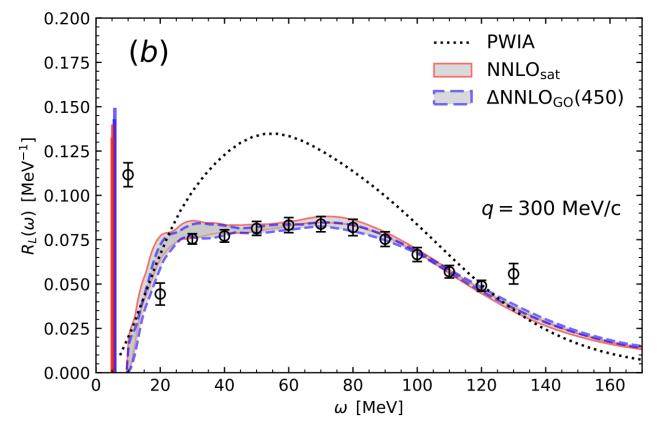
Integral transforms



10

Inversion

- We impose smoothness assumptions
- The inversion is not unique
 - \rightarrow How do we quantify errors?



Sobczyk et al., Phys.Rev.Lett. 127 (2021) 7, 072501

Expansion of the integral transform

$$K(\omega,\sigma) = \sum_{k}^{\infty} c_k(\sigma) T_k(\omega)$$

$$\Phi(\sigma) = \int d\omega \, K(\omega, \sigma) R(\omega) = \sum_{k}^{\infty} c_k(\sigma) m_k$$

$$m_k = \int d\omega \, T_k(\omega) R(\omega) = \langle \Psi_0 | \, O^{\dagger} T_k(H) O \, | \Psi_0 \rangle$$

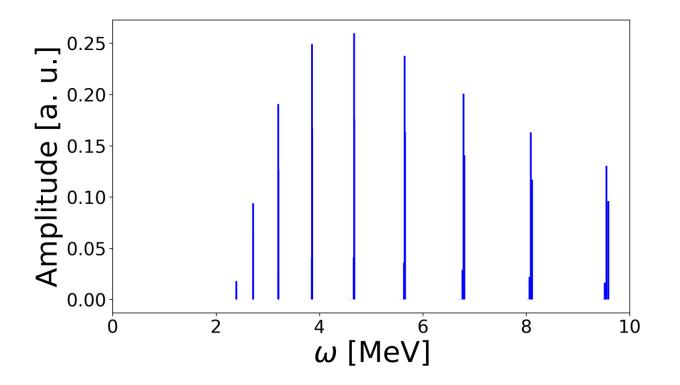
The Chebyshev approach

$$\begin{split} T_0(x) &= 1; \quad T_{-1}(x) = T_1(x) = x; \\ T_{n+1}(x) &= 2xT_n(x) - T_{n-1}(x) \\ h(\eta, \Delta) &= \int d\omega R(\mathbf{q}, \omega) f(\omega, \eta; \Delta) \quad \tilde{h}^{\Lambda}(\eta; \Delta) = \int \int d\sigma d\omega \, K(\omega, \sigma; \lambda) R(\mathbf{q}, \omega) f(\omega, \eta; \Delta) \\ \tilde{h}^{\Lambda}(\eta; \Delta - \Lambda) - Q^0 \Sigma &\leq h(\eta, \Delta) \leq \tilde{h}^{\Lambda}(\eta; \Delta + \Lambda) + Q^0 \Sigma \\ & \text{Sobczyk and Roggero, Phys. Rev. E 105 (2022) 5, 055310} \end{split}$$

 \rightarrow Keep things as local as possible: Kernel width O(10-100 keV)

 \rightarrow Need to establish a well motivated binning

Binning Strategy



- Each bin should contain a similar number of eigenvalues (>0)
- Bin edges should be in between eigenvalue clusters to minimize error

Density of states estimation

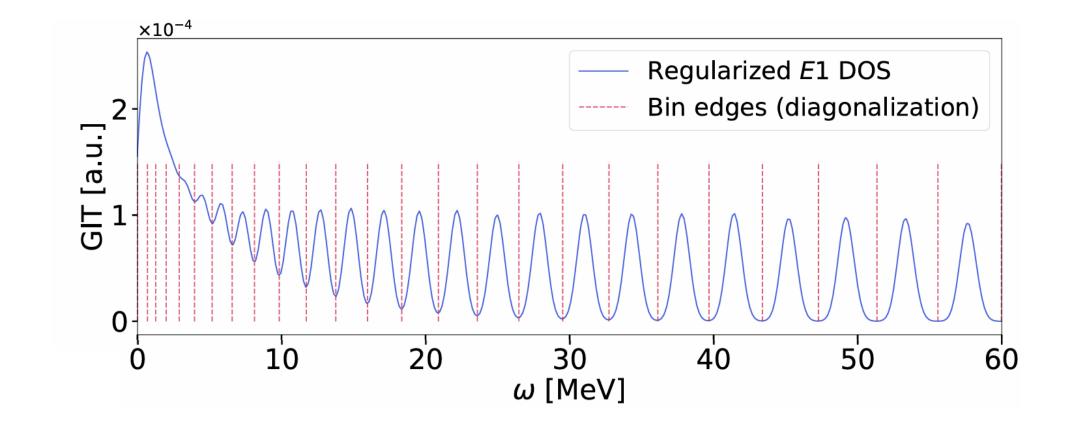
We compute moments of the form $\langle \Psi_0 | O^{\dagger} H^k O | \Psi_0 \rangle$

$$O |\Psi_0\rangle = \sum_n d_n |\Psi_n\rangle \qquad \qquad H^k O |\Psi_0\rangle = \sum_n d_n E_n^k |\Psi_n\rangle$$

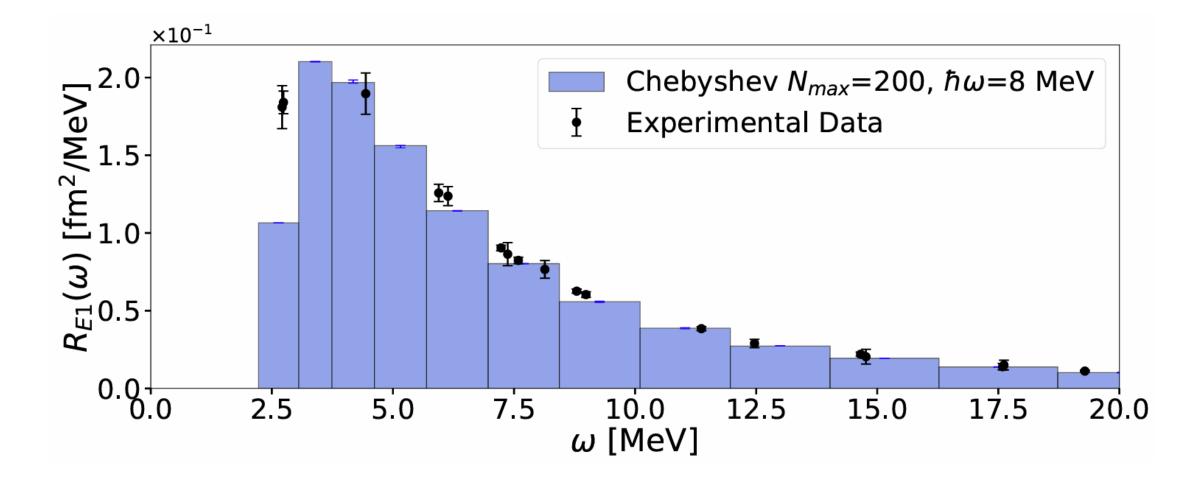
Draw $O\left|\Psi_{0}\right\rangle$ randomly so each eigenstate contributes equally to the moments

 \rightarrow Regularized estimate for the density of states

Regularized density of states

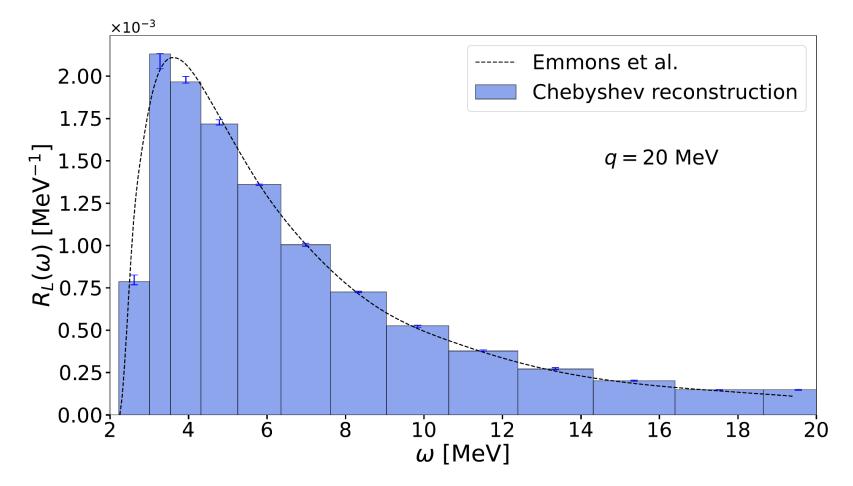


Results for E1



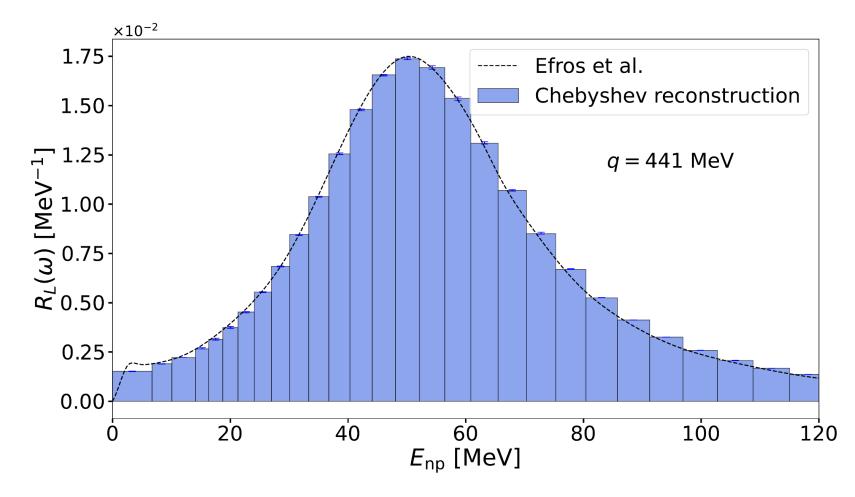
Data from H. Arenhövel and M. Sanzone, Few Body Syst. Suppl. 3, 1 (1991)

Longitudinal response



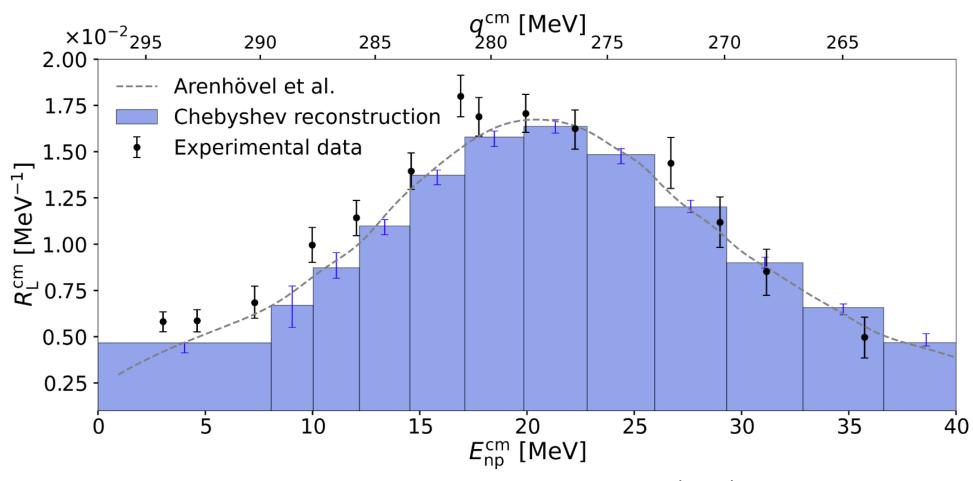
Emmons et al., J. Phys. G 48, 035101 (2021)

Longitudinal response



Efros et al., Few Body Syst. 14, 151 (1993)

Longitudinal response



B. P. Quinn et al., Phys. Rev. C 37, 1609 (1988)

Summary

- Chebyshev expansion produces responses with errors
- Regularized density of states can be obtained in the same framework
- Works well in the deuteron (test case) and should be extended to relevant nuclei

Questions for discussion

- How does rebinning work?
- Which BSM scenarios would be interesting to investigate? Which nuclei?
- What is most useful to calculate? Responses, flux-folded cross sections,