DIS and SIS in neutrino scattering

Hallsie Reno, University of Iowa MITP, Neutrino-Nucleus Interactions in the SM and Beyond May 22, 2025

Work supported in part by the US DOE

Jeong & Reno, Phys Rev D 108 (2023) 113010

Neutrino cross sections

QE=quasi-elastic, RES=resonant, DIS=deep inelastic scattering

Neutrino cross sections with hypothetical FPF

Feng et al., J Phys G 3 (2023) 030501

Shown here: current measurements, plus potential for future Forward Physics Facility (FPF) measurements (statistical uncertainty only). FPF neutrinos mostly E>100 GeV, but still many events below 100 GeV. What is the role of low Q?

Inelastic cross sections

SIS, DIS, SOIL DIS

$$E = 7 \text{ GeV}$$

 $M_N E_{v_1} \underbrace{v_1 \cdot N \text{ Scattering}}_{3: \text{ DIS region}} \underbrace{Q^2 \ge 0}_{3: \text{ DIS region}} \underbrace{P_{v_1} = 7 \text{ GeV}}_{3: \text{ Soft DIS region}} \underbrace{Q^2 \ge 1}_{4: \text{ Soft DIS region}} \underbrace{Q^2 \ge 0}_{4: \text{ Soft DIS region}} \underbrace{P_{v_1} = 7 \text{ GeV}}_{4: \text{ Soft DIS region}} \underbrace{Q^2 \ge 0}_{4: \text{ Soft DIS region} \underbrace{Q^2 \ge 0}_{4: \text{ Soft DIS region}} \underbrace{Q^2 \ge 0}_{4: \text{ Soft DIS region} \underbrace{Q^2 \ge 0}_{4: \text{ Soft DIS region}} \underbrace{Q^2 \ge 0}_{4: \text{ Soft DIS region} \underbrace{Q^2 \ge 0}_{4: \text{ Soft DIS region}} \underbrace{Q^2 \ge 0}_{4: \text{ Soft DIS r$

CIC DIC coft DIC

Interest here: low Q^2 structure functions for inclusive cross sections

Look at inclusive meson production, Morfin and Athar have:

- All Q^2 , W < 2 GeV SIS
- $Q^2 > 1 \text{ GeV}^2$, W > 2 GeV DIS
- $Q^2 < 1 \text{ GeV}^2, W > 2 \text{ GeV} -$ "soft" DIS

Where:

- SIS resonant and non-resonant pion production
- DIS (more or less) pert QCD with partons
- soft DIS not scattering with quarks

2

Low Q^2 structure functions

shaded: not inelastic dashed: W= 2 GeVsolid: limit for (x, Q^2)

interested in Q²< 4 GeV², away from the resonance region

$$W^2 = Q^2 \left(\frac{1}{x} - 1\right) + m_N^2$$

Q² dependence of CC cross section

 $\bar{\nu}_{\mu}$ more sensitive to low Q^2 than ν_{μ} .

MITP, May 22, 2025

Jeong & Reno, Phys Rev D 108 (2023) 113010

Differential cross section

$$\begin{aligned} \frac{d^2 \sigma^{\nu(\bar{\nu})}}{dx \, dy} &= \frac{G_F^2 M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \Big(y^2 x F_1(x, Q^2) + (1 - y) F_2(x, Q^2) \\ &\pm x y (1 - \frac{y}{2}) F_3(x, Q^2) \Big) \,, \end{aligned}$$

Structure function strategies:

- Must match PDF approach at high Q^2 .
- Go directly to neutrino data and make fits (Candido... Garcia Soto et al. NNSFv)
- Use EM scattering as a guide, correct EM to CC, and for PCAC.
 - Bodek-Yang (BY) more directly tied to PDFs, standard implementation without PCAC.
 - We "patch and match" with parameterized (but theory-guided) structure functions from Capella et al. (CKMT).

Plan

- Brief review of Bodek-Yang prescription.
- Walk through what we have done with CKMT approach to get neutrino structure functions.
- Discussion points.

Bodek-Yang prescription

- Keep parton picture.
 - Advantage: use parton composition to go from EM to weak structure functions
 - Disadvantage: parton picture not relevant at low Q^2
- GRV98 go to low Q^2 modify with new x and Q^2 variables:

$$F_2^{\rm EM} = \sum e_q^2 \xi_w (\tilde{q}(\xi_w, Q^2) + \tilde{\bar{q}}(\xi_w, Q^2))$$

$$\xi_w = \frac{2x(Q^2 + B)}{Q^2(1+\rho) + 2Ax}$$

$$\xi_{wc} = \frac{2x(Q^2 + B + m_c^2)}{Q^2(1+\rho) + 2Ax}$$

$$A = 0.538 \text{ GeV}^2$$

$$B = 0.305 \text{ GeV}^2$$

$$m_c = 1.5 \text{ GeV}$$

$$\rho = (1 + 4M_N^2 x^2/Q^2)^{1/2}$$

$$\begin{split} \tilde{u}_{v} &= \frac{(1 - G_{D}^{2}) \cdot (Q^{2} + C_{2vu})}{Q^{2} + C_{1vu}} u_{v} \quad \text{(also} \\ \tilde{d}_{v} &= \frac{(1 - G_{D}^{2}) \cdot (Q^{2} + C_{2vd})}{Q^{2} + C_{1vd}} d_{v} \\ \tilde{\bar{u}} &= \frac{Q^{2}}{Q^{2} + C_{su}} \bar{u} \text{ (and sim. for } \tilde{\bar{d}}, \tilde{\bar{s}}) \end{split}$$

GRV98 LO PDFs, modified Nachtmann variable (more below), freeze below $Q_0^2 = 0.8 \text{ GeV}^2$, then multiplied by Q^2 dependent K-factors). See Bodek, Park, Yang, Nucl. Phys. B Proc. Suppl. 139, 113 (2005)

extra valence factors)

Bodek-Yang prescription

 $F_2(x,Q2)$ for deuteron, fit with solid red line. Dashed – GRV98LO

CKMT to ν : start with EM structure functions

 $Q^2 = 1.69 \ GeV^2$

BC=Bosted, Christy, Phys. Rev. C 81, 055213 (2010) parametrization of EM data.

- TMC is parton distribution function (PDF) approach that includes target mass (nucleon target) corrections, see e.g., Schienbein et al. J Phys G 35 (2008) 053101. See also Ruiz et al, Prog Part Nucl Phys 136 (2024) 104096
- CKMT= Capella et al. Phys. Lett. B 337, 358 (1994) phenomenological fit to averaged EM data.

CKMT EM structure functions

$$F_{2,EM}^{CKMT}(x,Q^2) = F_2^{sea}(x,Q^2) + F_2^{val}(x,Q^2)$$

 $= Ax^{-\Delta(Q^2)}(1-x)^{n(Q^2)+4}$
 $\times \left(\frac{Q^2}{Q^2+a}\right)^{1+\Delta(Q^2)}$
 $+ Bx^{1-\alpha_R}(1-x)^{n(Q^2)}\left(\frac{Q^2}{Q^2+b}\right)^{\alpha_R}$
 $\times \left(1+f(1-x)\right).$
Capella et al. Phys. Lett. B 337, 358 (1994)
Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)
 $Capella et al. Phys. Lett. B 337, 358 (1994)$
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)$
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Also Kaidalov & Merino, Eur.Phys. J. C10, 153 (1999)$
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Capella et al. Phys. Lett. B 337, 358 (1994)
 $Cap$$$$$$$$$$$$$$$$$$$$$

B and f from valence counting rules.

MITP, May 22, 2025

Currently looking at

improvements

Photon-proton scattering – low Q^2

Large x

 $F_{2,\text{EM}}^{\text{CKMT}}(x,Q^2) = F_2^{sea}(x,Q^2) + F_2^{val}(x,Q^2) \qquad n$ $= Ax^{-\Delta(Q^2)}(1-x)^{n(Q^2)+4}$ $\times \left(\frac{Q^2}{Q^2+a}\right)^{1+\Delta(Q^2)}$ $+ Bx^{1-\alpha_R}(1-x)^{n(Q^2)}\left(\frac{Q^2}{Q^2+b}\right)^{\alpha_R}$ $\times \left(1+f(1-x)\right). \qquad (6)$

$$n(0) = \frac{3}{2} \text{(dual parton model power)}$$
$$n(4 \text{ GeV}^2) = 2.3$$
$$n(10 \text{ GeV}^2) = 2.6$$

one extra power of (1-x) for down quark

naïve counting rules for partons: *n*= 3 for valence *n* = 7 for sea

Conversion to neutrino CC scattering

- Valence and sea normalization factors:
 - Conserved vector current dictates the low Q behavior of structure function for EM. Adapt A, B and f for neutrino scattering. B & f from valence counting at 2 GeV², A from sea relations.
- Ad hoc implementation of PCAC correction, so far.

$$\begin{split} \sigma_{\gamma p}^{\rm tot}(W^2) &= \frac{4\pi^2 \alpha_{\rm EM}}{Q^2} F_{2,{\rm EM}}^{\rm CKMT}(x,Q^2)|_{Q^2 \to 0} \\ &\simeq 4\pi^2 \alpha_{\rm EM} \left[\frac{A}{a} \left(\frac{W^2}{a} \right)^{\Delta_0} \right. \\ &+ \frac{B(1+f)}{b} \left(\frac{W^2}{b} \right)^{\alpha_R - 1} \right], \end{split}$$

Capella et al. Phys. Lett. B 337, 358 (1994)

 $F_L^{\text{PCAC}} = \frac{f_\pi^2 \sigma_\pi(W^2)}{\pi} f_{\text{PCAC}}(Q^2)$ $f_{\text{PCAC}}(Q^2) = \left(1 + \frac{Q^2}{M_{\text{PCAC}}^2}\right)^{-2}$ $\sigma_\pi \simeq X(W^2)^\epsilon + Y(W^2)^{-\eta_1}$

Kulagin & Petti, Phys. Rev. D 76, 094023 (2007)

Similar behavior to CKMT $p\gamma$ $\epsilon \simeq \Delta_0, \quad \eta_1 \simeq \alpha_R - 1$

MITP, May 22, 2025

Conversion to neutrino CC scattering

Δ_0	α_R	$a \; [{ m GeV}^2]$	$b [\text{GeV}^2]$	$c [\text{GeV}^2]$	$d [{ m GeV}^2]$
0.07684	0.4150	0.2631	0.6452	3.5489	1.1170
	Process	A	В	f	
	${ m EM}\ F_2$	0.1502	1.2064	0.15	
	$ u N \; F_2$	0.5967	2.7145	0.5962	
	$\nu N \ xF_3$	9.3955×10^{-3}	2.4677	0.5962	
	$\bar{\nu}N \ xF_3$	9.3955×10^{-3}	-2.4677	0.5962	

 B_{ν} and f_{ν} , from valence counting rules. For A_{ν} , pick to match NLO+TMC at Q²=10 GeV². F₃: valence plus small (strange) sea component, normalized to match NLO+TMC, GLS sum rule. Crude longitudinal structure function.

From pion scattering, functional form, match at $Q^2 = 0$: $A^{\rm PCAC} = 0.147$ $B^{\rm PCAC} = 0.256$ $F_{2,\text{CC}} = \begin{bmatrix} A^{\text{PCAC}} x^{-\Delta(Q^2)} (1-x)^{n(Q^2)+4} \end{bmatrix}$ $\times \quad \left(\frac{Q^2}{Q^2 + a}\right)^{\Delta(Q^2)}$ + $B^{\mathrm{PCAC}} x^{1-lpha_R} (1-x)^{n(Q^2)} \left(\frac{Q^2}{Q^2+b} \right)$ $\times \quad \left(1 + f(1-x)\right) \middle| f_{\rm PCAC}(Q^2)$ (16)

Weak structure functions

For $Q^2 > Q_0^2$ use PDFs, NLO QCD and target mass corrections (TMC):

$$F_{2,CC}(x,Q^2) = \sum_{q,q'} 2x (q(x,Q^2) + \bar{q}'(x,Q^2)) \longrightarrow F_{2,CC}^{\text{NLO+TMC}}(x,Q^2)$$

For $Q^2 < Q_0^2$ use phenomenological parameterization:

$$F_{2,\text{CC}}(x,Q^2) = \left[F_{2,\text{CC}}^{\text{CKMT}}(x,Q^2) + F_{2,\text{CC}}^{\text{PCAC}}(x,Q^2) \right] \text{ times normalization at } Q_0^2$$

Weak structure functions

Patch and match at $Q_0^2 = 4 \ GeV^2$, for $Q^2 < Q_0^2$:

$$\begin{split} F_{2,\mathrm{CC}}(x,Q^2) &= \begin{bmatrix} F_{2,\mathrm{CC}}^{\mathrm{CKMT}}(x,Q^2) + F_{2,\mathrm{CC}}^{\mathrm{PCAC}}(x,Q^2) \end{bmatrix} & \text{``CKMT+PCAC-NT''} \\ &\times \frac{F_{2,\mathrm{CC}}^{\mathrm{NLO}+\mathrm{TMC}}(x,Q_0^2)}{F_{2,\mathrm{CC}}^{\mathrm{CKMT}}(x,Q_0^2)} \,, & \text{``O PCAC: ``CKMT-NT''} \end{split}$$

- Compare with Bodek-Yang prescription
- Compare with NNSFv structure function inputs, where NNPDF fitting methodology for low *Q* structure functions is used. See Candido et al., JHEP 05 (2023) 149 and Alfonso Garcia Soto (here!).
- We have started with isoscalar nucleons.

Normalization factors

Before matching, at $Q^2 = 2 \text{ GeV}^2$.

Relative normalization at $Q^2 = 2 \text{ GeV}^2$.

NNSFnu so different? Evidence of PCAC in the data? No.

Jeong & Reno, Phys Rev D 108 (2023) 113010

MITP, May 22, 2025

NNSFnu so different? Evidence of PCAC in the data? No.

Jeong & Reno, Phys Rev D 108 (2023) 113010

MITP, May 22, 2025

DIS CC for ν_{μ} , ν_{τ} , $\bar{\nu}_{\mu}$, $\bar{\nu}_{\tau}$ for isoscalar targets

- CKMT+PCAC-NT extrapolation of EM fit plus PCAC corrections Jeong & Reno, Phys Rev D 108 (2023) 113010
- NNSFv using NNPDF fitting methodology for low Q structure functions with green error band Candido ... Garcia ... et al JHEP 05 (2023) 149
- Bodek-Yang prescription Bodek, Park, Yang, Nucl. Phys. B Proc. Suppl. 139, 113 (2005)

Jeong & Reno, Phys Rev D 108 (2023) 113010

Difference between blue-dashed and red is averaged "SIS" contribution. Dotted blue – no PCAC but otherwise equivalent to the red curve.

Jeong & Reno, Phys Rev D 108 (2023) 113010

DIS CC , u_{μ} , $\overline{
u}_{\mu}$ for Fe

- Blue solid and dashed nCTEQ15 PDFs for D, Fe
 - Very little change with Fe.
- Upper green D, lower green Fe
 - Much bigger difference.
 - Neutrino data not with light nuclei.

better agreement between approaches with Fe

Jeong & Reno, Phys Rev D 108 (2023) 113010

Neutrino data

Nuclear targets: Ne – BEBC Fe - CDHS, CCFR, NuTeV CuCO3 – CHARM (A~20)

Remarks

- Based on our CKMT+PCAC (patched and matched) extrapolation, the fraction contribution of low Q, W< 2 GeV for E>100 GeV in CC cross section is small, but is larger for low E, depends on W.
 - E = 50 GeV, $W_{\text{min}} = 1.4 \text{ GeV}$, $Q^2 < 2 \text{ GeV}^2$ accounts for ~15% of the v_{μ} CC cross section, ~30% of the \bar{v}_{μ} CC cross section.
- Thus, even above W=1.4, 2 GeV, modeling low Q structure functions for E<100 GeV is useful for FPF experiments, can have implications for DUNE. There will be 10's of thousands of $v_{\mu} + \bar{v}_{\mu}$ CC events at a potential future FPF in the energy range of 50-100 GeV in the high luminosity era.

More remarks

- The NNSFv structure function extrapolations to deuterium don't agree with our inputs.
 - Are nuclear corrections different for weak and EM scattering?
 - Small-x behavior is very different!
- CKMT+PCAC as implemented can be improved, or is there a better way?
 - Extensive fits to HERA data (ALLM), but hard to see how to convert to weak structure functions.
 - What is the right way to implement PCAC? We did a crude job.

ALLM

$$F_{2} = \frac{Q^{2}}{Q^{2} + m_{0}} (F_{2}^{P} + F_{2}^{R}) \qquad c_{P} = p_{5} + (p_{5} - p_{6}) \left[\frac{1}{1 + t^{p_{7}}} - 1\right]$$

$$F_{2}^{P} = c_{P} * x_{P}^{a_{P}} (1 - x_{B_{j}})^{b_{P}} \qquad a_{P} = p_{8} + (p_{8} - p_{9}) \left[\frac{1}{1 + t^{p_{10}}} - 1\right]$$

$$F_{2}^{R} = c_{R} * x_{R}^{a_{R}} (1 - x_{B_{j}})^{b_{R}} \qquad b_{P} = p_{11} + p_{12}t^{p_{13}}$$

$$\frac{1}{x_{P}} = 1 + \frac{W^{2} - m_{p}^{2}}{Q^{2} + p_{1}} \quad \text{where } m_{p} \text{ is the proton mass} \qquad c_{R} = p_{14} + p_{15}t^{p_{16}}$$

$$\frac{1}{x_{R}} = 1 + \frac{W^{2} - m_{p}^{2}}{Q^{2} + p_{2}} \qquad a_{R} = p_{17} + p_{18}t^{p_{19}}$$

$$b_{R} = p_{20} + p_{21}t^{p_{22}} .$$

$$t = \ln\left(\frac{\ln\frac{Q^{2} + p_{3}}{\ln\frac{p_{3}}{p_{4}}}\right)$$

HHT-ALLM

see https://arxiv.org/pdf/1704.03187

ALLM: H. Abramowicz et al., Phys.Lett. B 269, 465 (1991);H. Abramowicz and A. Levy (1997),[hep-ph/9712415].

HHT-ALLM: New fit to combined HERA data.

