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1. Flux-averaged neutrino cross section from the Euclidian response
w. Noemi Rocco (FNAL)

2. Semi-Exclusive nucleon knockout: RDWIA and INC
w. R. Gonzalez-Jimenez, N. Rocco, J. Isaacson, K. Niewczas, 
J.M. Udias, F. Sanchez, A. Ershova, N. Jachowicz 

3. What data do we need to constrain the exclusive cross section?
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Euclidian response function

Calculated in Green’s function Monte-Carlo  (see A. Lovato’s talk)

Laplace transform
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Euclidian response function

Calculated in Green’s function Monte-Carlo  (see A. Lovato’s talk)

Inverse Laplace

         (yuk!!)
Can we calculate observables 

directly from the Euclidian response ?



Energy-averaged neutrino cross section
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Energy-averaged neutrino cross section

Property of the Laplace transform



Energy-averaged neutrino cross section

Is the Euclidian response

→ Can compute weighted integrals of the response from the Euclidian response

→ The energy-averaged cross section is a weighted integral of the response



Energy-dependence of vi(ω, Ef , q)

All v-factors can be decomposed in five functions of ω 

With known inverse Laplace transforms



Energy-dependence of vi(ω, Ef , q)

The energy-averaged cross section is given by five integrals of the Responses

For n = (0,1,2)

Energy weighted sum rules:

E
f
 – dependent integrals:

Energy weighted sum rules:

For n = (1,2)



Energy-dependence of vi(ω, Ef , q)

The energy-averaged cross section is given by five integrals of the Responses

For n = (0,1,2)

Energy weighted sum rules:

E
f
 – dependent integrals:

Energy weighted sum rules:

For n = (1,2)

Only the n-th moments of the response:

Are non-trivial to compute



Numerical evaluation of n-th moment of the Response

We develop a robust method to compute higher moments with uncertainty from E(τ)

Sub-percent accuracy for n=1,2
With toy-model response
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With toy-model response



Energy-averaged cross section: toy model response



Contributions from ω-dependence

ωR(ω) and R(ω)/(ω+E
f
)

Dominated by 2 integrals:

Second moment is negligible:

    Dependence enters as ω2/q2



Flux-averaged cross sections
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Flux-averaged cross sections

Replace v(ω, E
f 
, q) → v(ω, E

f 
, q) Φ(ω+E

f
)

Fit with 2th order 
polynomial

Need up to 4th moment of the Response

Since 2th moment is negligible

3rd moment



Flux-averaged cross sections

Excellent results with toy-model response!



Realistic responses: PWIA with realistic spectral function

We address two main uncertainties 

1. Integral is restricted to the physical region ω < q

Upper limit q < ∞ ! Need to correct for contribution from ω ϵ [q,∞] 

The large-ω dependence comes from high-p
m
 contributions (SRC)



Realistic responses: PWIA with realistic spectral function

We address two main uncertainties 

1. Integral is restricted to the physical region ω < q

2. Euclidian response has uncertainty, is noisy

We assign a realistic statistical uncertainty based on the magnitude:

→ Calculate observables with ensembles of E(τ) sampled within uncertainty
To propagate uncertainty to observables 



Energy-dependent integrals

 



Energy-dependent integrals

 
Fractional uncertainty 
from noise

F
shape

 ~ 0.15 F
0



Energy-dependent integrals

 
Fractional uncertainty 
from noise

F
shape

 ~ 0.15 F
0

Universal correction
From momentum 
distribution 

Of percent-level



Realistic responses: uncertainties small and under control

1. Euclidian response has uncertainty: is noisy
→ percent-level shape uncertainties under control

2. Integral is restricted to the physical region ω < q
→ Corrections come from large p

m
 region

Inversion of Laplace = nucleus specific, sensitive to low-ω region
Instead : need estimation of large-ω behavior: 
 == Small corrections & driven by SRC ~ universal !

Paper and code soon: [A.N. & N. Rocco, arxiv:2506.xxxx] 



From inclusive to (semi)-exclusive cross sections

Electron experiments A(e,e’p)B*: Measure 1 specific kinematic (usually)
       Strict kinematic cuts : specific state B*

→ This is exclusive

Neutrino experiments A(ν,μp) X:  Measure a range of kinematics
The residual system is many states X
→ This is semi-inclusive/semi-exclusive



From inclusive to (semi)-exclusive cross sections

Electron experiments A(e,e’p)B*: Measure 1 specific kinematic (usually)
       Strict kinematic cuts : specific state B*

→ This is exclusive

Neutrino experiments A(ν,μp) X:  Measure a range of kinematics
The residual system is many states X
→ This is semi-inclusive/semi-exclusiveNeed information on all accessible final-states X
(impossible?) 

Use the Intranuclear Cascade (INC) approximation



Input to the INC in generators

Some implementations in generators: Only inclusive cross section
→ The generator invents the nucleon final-state

[A.N., S. Gardiner, A. Papadopoulo, S. Dolan, R. Gonzalez-Jimenez, arxiv:2302.12182]



Terminology : RDWIA  RPWIA  & PWIA

-Relativistic Distorted Wave Impulse Approximation (RDWIA)

Distorted wave function for final-state



-Relativistic Distorted Wave Impulse Approximation (RDWIA)

- Relativistic Plane Wave Impulse Approximation (RPWIA)

By treating the final-state wavefunction as a plane-wave:

→ Neglect all final-state interactions

Terminology : RDWIA  RPWIA  & PWIA



-Relativistic Distorted Wave Impulse Approximation (RDWIA)

- Plane-Wave Impulse Approximation  (PWIA)

The initial state is assumed proportional to a positive-energy spinor:

One obtains a factorized expression (‘spectral function approach’)

Terminology : RDWIA  RPWIA  & PWIA



-Relativistic Distorted Wave Impulse Approximation (RDWIA)

- Relativistic Plane Wave Impulse Approximation (RPWIA)

- Plane-Wave Impulse Approximation  (PWIA)

Remove elastic FSI

Project onto particle spinors

Remember

● All results use the same spectral function but different final-state
 → can consistently check effect of FSI

Terminology : RDWIA  RPWIA  & PWIA



RDWIA with real potential
- Energy-Dependent Relativistic Mean-Field (ED-RMF)

Final-state in real potential → suitable for FSI in inclusive cross section

12C(e,e’)X
ED-RMF

RPWIA

[R. Gonzalez-Jimenez et al Phys. Rev. C 100, 045501 (2019)]



RDWIA with optical (complex) potential

- Relativistic Optical Potential (ROP)

Final-state in complex potential →  suitable for FSI in exclusive cross section

[Udias et al. PRC48, 2731]

-‘Standard’ approach for
FSI in exclusive (e,e’p) 
analysis

E.g. recent Jlab analyses 
of 40Ar & 48Ti
[PRD 107, 012005]
[PRD 105, 112002]



RDWIA with optical (complex) potential

- Relativistic Optical Potential (ROP)

Final-state in complex potential →  suitable for FSI in exclusive cross section

[Udias et al. PRC48, 2731]

-‘Standard’ approach for
FSI in exclusive (e,e’p) 
analysis

E.g. recent Jlab analyses 
of 40Ar & 48Ti
[PRD 107, 012005]
[PRD 105, 112002]The OP removes nucleons that undergo inelastic FSI = A(e,e’p)B*

↔ 
For neutrinos  need to know where the nucleon goes = A(ν,μp)X



Where do the nucleons go ? : Intranuclear Cascade model (INC) 

Production of final-state 

Restrict to 1-body operator

Classical approximation

Intranuclear Cascade



Production of final-state 

Restrict to 1-body operator

Classical approximation

Intranuclear Cascade

ROP

ED-RMF INC

Where do the nucleons go ? : Intranuclear Cascade model (INC) 



Results from NEUT INC with simple spectral function 

Input : EDRMF with
 Simple spectral functions 



Results from NEUT : simple spectral function 

Input : EDRMF with
 Simple spectral functions 

After INC:

NEUT result matches exclusive
Calculation in the peaks!

[A.N. et al. PRC 105, 054603]



Results from NEUT : simple spectral function 

Extended study:
1. Argon target & MicroBooNE data

2. Realistic spectral functions

3. Comparison of many INC: ACHILLES, NEUT, NuWro, INCL

4. Many kinematic observables



Kinematic distributions : ACHILLES INC

 

Flux-folded with MicroBooNE flux



● 40Ar spectral functions
[Butkevich PRC 85, 065501] 
& [Jlab, PRD 107, 012005]

● 48Ti from Jlab 
[PRD 107, 012005]

● 56Fe  
[Benhar et al. NPA 579, 493]

● 40Ca 
[Butkevich PRC 85, 065501]

Large variation in E
m
 profiles to check sensitivity of observables

  

Realistic spectral functions



Observables for MicroBooNE flux-averaged signal

Observables that do not correlate p
p

 and p
μ
 in flux-averaged data: no sensitivity

Find no sensitivity to missing energy, only to momentum distribution 

 

Sensitivity to the spectral function



 

Significant variation between different INCs: ‘transparency’

We understand (mostly) the INC variation
(you’ll need to read the paper)

Less ‘transparent’:

The difference in absorption between
ROP and INC
as function of T

p 
?



 

MicroBooNE data

-Difference RPWIA vs RDWIA
~ 10 % 

-Variation in INCs
~10 % ACHILLES, NuWro, NEUT
Large difference in INCL



 

MicroBooNE data

-Difference RPWIA vs RDWIA
~ 10 % 

-Variation in INCs
~10 % ACHILLES, NuWro, NEUT
Large difference in INCL

Phase space populated by 
INC & multi-nucleon knockout

Should be underpredicted



 

MicroBooNE data

-Difference RPWIA vs RDWIA
~ 10 % 

-Variation in INCs
~10 % ACHILLES, NuWro, NEUT
Large difference in INCL

Phase space dominated by
Direct knockout
An increase is needed ?

[T Franco-Munoz et al. PRC 108 064608]
[Lovato et al arxiv:2312.12545]

Interference with 2-body ?

Increase axial form factor ? 

Misinterpretation of the data ?



 

Summary: INCs and all that stuff

- The INC relies on a classical factorized approximation
→ Agreement with exclusive calculations to 0.5th order
→ Unclear when this approximation is valid → further study needed

- Can use realistic spectral functions + distorted waves as input
→ [PhysRevC.110.054611] and [PhysRevC.105.054603]
→ Recently implemented in NEUT : [J. McKean et al. Arxiv:2502.10629]
→ Can use ACHILLES for electron/neutrino scattering studies consistently

- Comparison to data might need enhancement in ‘direct knockout’

→ Interference 1-2 body ?
→ Increase axial form factor ?

→ Constraints from (e,e’p) ?



Constraints from data: What data do we need ?

Focus here on electron scattering data

- Mainz Microtron (MaMI) : capability for precision experiments
→ See talk R. Gonzalez-Jimenez : (e,e’pπ-) experiment
→ See talk S. Bacca : current and future planned data

I will discuss CLAS
→ Have inclusive & semi-inclusive measurements from e4nu

I give my view on how we can learn more from CLAS data



[M. Khachatryan et al. (e4nu) Nature 599, 565 (2021)]

CLAS data: The ‘full’ problem

The data mimic a neutrino experiment 



[M. Khachatryan et al. (e4nu) Nature 599, 565 (2021)]

CLAS data: The ‘full’ problem

The data mimic a neutrino experiment 

Interpreting the data is very hard!

Should use the capabilities of electron
Beams to get more information!

Can do a 0π experiment truly without pions

Can do a true 1p experiment



γ*p →pπ0

γ*n →nπ0

γ*p →nπ+

γ*n →pπ-

πQE
πaN →Nπa

πABS
πNN →NN

πCEX
π+/-N ⟷π0N

1p0π

 γ*N →Nππ
γ*NN →Nnπ

...

Stuff

γ*n →n

γ*p →p

γ*NN →pn

QE
NN →NN

CEX
p/nN →n/pN

inel
NN →NNπ/m

Experimental 
cuts

Where does the complexity come from

Need to describe all channels simultaneously!



Qμ=( ω, q )

known/
measured

1p

Inferred

1e-

Controlling missing energy

1-proton 1-electron measurement

→ Events in full lepton/proton
Phase space
(like a neutrino experiment)

Missing energy to control the
Content of the full final-state
(not like a neutrino experiment!)



Can do a ‘0π’ measurement
Without detecting/subtracting

pions 

NuWro CC Eν = 2 GeV

Simulation: CLAS kinematics 

1-proton 1-electron measurement

Missing energy to control the
Content of the full final-state



γ*p →pπ0

γ*n →nπ0

γ*p →nπ+

γ*n →pπ-

πQE
πaN →Nπa

πABS
πNN →NN

πCEX
π+/-N ⟷π0N

1p0π

 γ*N →Nππ
γ*NN →Nnπ

...

Stuff

γ*n →n

γ*p →p

γ*NN →pn

QE
NN →NN

CEX
p/nN →n/pN

inel
NN →NNπ/m

Experimental 
cuts

The full problem 



γ*p →pπ0

γ*n →nπ0

γ*p →nπ+

γ*n →pπ-

πQE
πaN →Nπa

πABS
πNN →NN

πCEX
π+/-N ⟷π0N

1p0π

 γ*N →Nππ
γ*NN →Nnπ

...

Stuff

γ*n →n

γ*p →p

γ*NN →pn

QE
NN →NN

CEX
p/nN →n/pN

inel
NN →NNπ/m

Experimental 
cuts

Cuts in missing energy : E
m 

< M
π
 

Now we can study
Proton knockout and INC

In detail! 



Direct
knockout

Correlations + MEC 

Rescattering + MEC + 
Correlations

Setting increasingly difficult constraints 



Direct
knockout

Correlations + MEC 

Rescattering + MEC + 
Correlations

Excitation energy distributions

Setting increasingly difficult constraints 

If you can’t match direct knockout,
No chance for rescattering



Direct
knockout

Correlations + MEC 

Rescattering + MEC + 
Correlations

Excitation energy distributions

Setting increasingly difficult constraints 

If you can’t match direct knockout,
No chance for rescattering

We need to open Pandora’s box
But maybe step-by-step...
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