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“AB-INITIO” NUCLEAR THEORY

Illustration by APS / Alan Stonebraker



CONSISTENT HAMILTONIAN AND CURRENTS
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A guide to Feynman diagrams in the many-body problem
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THE QUANTUM MANY-BODY PROBLEM



 Mean field: nucleons are independent particles subject to an average nuclear potential

THE MEAN-FIELD APPROXIMATION
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The mean-field ground-state wave function is a Slater determinant

THE MEAN-FIELD APPROXIMATION
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�0(x1, . . . , xA) = A[�n1(x1) . . .�nA(xA)]



QUANTUM MONTE CARLO METHODS
Continuum nuclear QMC uses a coordinate-space representation of many-body wave functions.

• No difficulties in treating high-
resolution nuclear forces

• Access to high-momentum 
components of the nuclear wave 
functions;

R. Cruz-Torres et al., Nature Phys. 17 (2021) 3, 306

• Limited to relatively light nuclear 
systems



VARIATIONAL MONTE CARLO
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VARIATIONAL MONTE CARLO

SRC region



FIG. 3. Spectra of A=4–12 nuclei. The energy spectra obtained with the NV2+3-Ia chi-

ral interactions are compared to experimental data. Also shown are results obtained with the

phenomenological AV18+IL7 interactions.

6 Stoks, V.G.J., Klomp, R.A.M., Rentmeester, M.C.M. & de Swart, J.J. Partial-wave analysis of

all nucleon-nucleon scattering data below 350 MeV. Phys. Rev. C 48, 792 (1993).

7 Friar, J.L., Gibson, B.F. & Payne, G.L. Recent Progress in Understanding Trinucleon Proper-

ties. Annu. Rev. Nucl. Part. Sci. 34, 403 (1984).

8 Pudliner, B.S., Pandharipande, V.R., Carlson, J., Pieper, S.C. &Wiringa, R.B. QuantumMonte

Carlo calculations of nuclei with A  7. Phys. Rev. C 56, 1720 (1997).
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DMC methods project out the ground-state using an imaginary-time propagation
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DIFFUSION MONTE CARLO

J. Carlson, Phys. Rev. C 36, 2026 (1987) M. Piarulli, AL et al. PRL 120, 052503 (2018)



NEUTRINO-NUCLEUS SCATTERING
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CONTENTS 20

final state
��Y f

↵
with momentum Pµ

f = (E f ,P f ), and momentum conservation implies qµ =

pµ
e � pe

0µ = Pµ
f �Pµ

i . Furthermore, the interaction proceeds through the exchange of a space-
like virtual photon, for which q2

µ = w2 �q2 < 0†. In electron-induced reactions w and q can
vary independently (provided that |q| > w), as opposed to reactions induced by real photons
where |q|= w . In elastic reactions w = 0 (neglecting the recoil of the nucleus), which implies
|Yii =

��Y f
↵
. Reactions in which w 6= 0 are instead called inelastic. To different values of

w = E f �Ei, correspond different excitation energies of the nucleus. As w increases to a
few MeV, low-lying (discrete) nuclear excited states can be accessed. For energies transferred
of the order of ⇠ 10� 30 MeV, giant resonance modes in the continuum spectrum of the
nucleus are excited, while for values of wq.e. ⇠ q2/(2m) quasi-elastic effects dominate, in
which the reaction is in first approximation well described as if electrons were scattered off
single nucleons. Beyond the quasi-elastic energy region, meson production can be observed.
A schematic representation of the double differential cross section for electron scattering at a
fixed value of momentum transfer q is provided in Figure 7.

Because in inelastic electron scattering w and q can vary independently, for each value
of excitation energy w , one can study the matrix elements’ behavior as a function of the
momentum transfer. In particular, by varying q one changes the spatial resolution of the
electron probe, which is µ 1/|q|. At low values of momentum transfer, electron scattering
reactions probe long ranged dynamics, while at higher values of momentum transfer shorter
distance phenomena are tested, where dynamics from heavier mesons and baryons become
relevant.

Figure 7. (Color online) Schematic representation of the double differential cross section at
fixed value of momentum transfer.

Cross sections for elastic scattering and scattering to discrete excited states, for which
the transferred energy w is fixed, are expressed in terms of longitudinal (or charge) and
transverse (or magnetic) form factors, which are functions of the momentum transferred
q = |q|, and provide information on the e.m. charge and current spatial distributions inside
the nucleus. The double differential cross section for inclusive processes, in which only
the scattered electron is detected, is expressed in terms of the longitudinal and transverse

† The four-vector squared qµ qµ is here denoted with q2
µ .

Image courtesy of S. Pastore
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RESPONSE FUNCTIONS
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EUCLIDEAN RESPONSES
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VALIDATION WITH ELECTRON SCATTERING
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FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!
+
el

d! e�!⌧
R↵(q,!)

[Gp

E
(q,!)]2

, (2)

where Gp

E
(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!el is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵
(q)e�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,

(3)
where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E
(q,!) [15]. The

calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E0) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?

f
� E0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.
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where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
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FIG. 4. MiniBooNE flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties
are from Ref. [41]. The additional 10.7% normalization uncertainty is not shown here.

the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-
crease produced by two-body currents in the GFMC cal-
culations (di↵erence between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ⌫ case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as ✓µ changes from 0� to about 90�, the ⌫ cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.

IV. CONCLUSIONS

We have reported on an ab initio study, based on re-
alistic nuclear interactions and electroweak currents, of
neutrino (and antineutrino) inclusive scattering on 12C in
the CCQE regime of the MiniBooNE and T2K data. Nu-
clear response functions have been calculated with QMC
methods and, therefore, within the description of nuclear
dynamics that we have adopted here, fully include the
e↵ects of many-body correlations induced by the inter-
actions in the initial and final states, and correctly ac-
count for the important (constructive) interference be-
tween one- and two-body current contributions. This
interference leads to a significant increase in the cross-
section results obtained in impulse approximation, and
is important for bringing theory into much better agree-
ment with experiment.

The nucleon and nucleon-to-� electroweak form fac-
tors entering the currents have been taken from mod-
ern parameterizations of elastic electron scattering data
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FIG. 4. MiniBooNE flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties
are from Ref. [41]. The additional 10.7% normalization uncertainty is not shown here.

the (spurious) excess strength in the PWIA cross sections
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crease produced by two-body currents in the GFMC cal-
culations (di↵erence between the GFMC 1b and GFMC
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FIG. 4. MiniBooNE flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties
are from Ref. [41]. The additional 10.7% normalization uncertainty is not shown here.

the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-
crease produced by two-body currents in the GFMC cal-
culations (di↵erence between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ⌫ case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as ✓µ changes from 0� to about 90�, the ⌫ cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.

IV. CONCLUSIONS

We have reported on an ab initio study, based on re-
alistic nuclear interactions and electroweak currents, of
neutrino (and antineutrino) inclusive scattering on 12C in
the CCQE regime of the MiniBooNE and T2K data. Nu-
clear response functions have been calculated with QMC
methods and, therefore, within the description of nuclear
dynamics that we have adopted here, fully include the
e↵ects of many-body correlations induced by the inter-
actions in the initial and final states, and correctly ac-
count for the important (constructive) interference be-
tween one- and two-body current contributions. This
interference leads to a significant increase in the cross-
section results obtained in impulse approximation, and
is important for bringing theory into much better agree-
ment with experiment.

The nucleon and nucleon-to-� electroweak form fac-
tors entering the currents have been taken from mod-
ern parameterizations of elastic electron scattering data
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FIG. 4. MiniBooNE flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties
are from Ref. [41]. The additional 10.7% normalization uncertainty is not shown here.

the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-
crease produced by two-body currents in the GFMC cal-
culations (di↵erence between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ⌫ case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as ✓µ changes from 0� to about 90�, the ⌫ cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.

IV. CONCLUSIONS

We have reported on an ab initio study, based on re-
alistic nuclear interactions and electroweak currents, of
neutrino (and antineutrino) inclusive scattering on 12C in
the CCQE regime of the MiniBooNE and T2K data. Nu-
clear response functions have been calculated with QMC
methods and, therefore, within the description of nuclear
dynamics that we have adopted here, fully include the
e↵ects of many-body correlations induced by the inter-
actions in the initial and final states, and correctly ac-
count for the important (constructive) interference be-
tween one- and two-body current contributions. This
interference leads to a significant increase in the cross-
section results obtained in impulse approximation, and
is important for bringing theory into much better agree-
ment with experiment.

The nucleon and nucleon-to-� electroweak form fac-
tors entering the currents have been taken from mod-
ern parameterizations of elastic electron scattering data
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FIG. 6. T2K flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed as a
function of the muon momentum pµ for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties are
from Ref. [43].

view of the large errors and large normalization uncer-
tainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis.

Of course, many challenges lie ahead, to mention just
three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [66], could conceiv-
ably be incorporated in the present GFMC approach, it
is out of the question that such an approach could be uti-
lized to describe the �-resonance region of the cross sec-
tion or, even more remotely, extended to nuclei with mass
number much larger than 12, at least for the foreseeable
future. In fact, it maybe unnecessary, as more approxi-
mate methods exist to deal e↵ectively with some of these
challenges, including factorization approaches based on
one- and two-nucleon spectral functions [24, 67] or on
the short-time approximation of the nuclear many-body

propagator [63] for relativity and pion production, and
auxiliary-field-di↵usion Monte Carlo methods [68] to de-
scribe the ground states of medium-weight nuclei. We
are optimistic that the next few years will witness sub-
stantive progress in the further development and imple-
mentation of these approximate methods to address the
high-energy region of the nuclear electroweak response.
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view of the large errors and large normalization uncer-
tainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis.

Of course, many challenges lie ahead, to mention just
three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [66], could conceiv-
ably be incorporated in the present GFMC approach, it
is out of the question that such an approach could be uti-
lized to describe the �-resonance region of the cross sec-
tion or, even more remotely, extended to nuclei with mass
number much larger than 12, at least for the foreseeable
future. In fact, it maybe unnecessary, as more approxi-
mate methods exist to deal e↵ectively with some of these
challenges, including factorization approaches based on
one- and two-nucleon spectral functions [24, 67] or on
the short-time approximation of the nuclear many-body

propagator [63] for relativity and pion production, and
auxiliary-field-di↵usion Monte Carlo methods [68] to de-
scribe the ground states of medium-weight nuclei. We
are optimistic that the next few years will witness sub-
stantive progress in the further development and imple-
mentation of these approximate methods to address the
high-energy region of the nuclear electroweak response.
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view of the large errors and large normalization uncer-
tainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis.

Of course, many challenges lie ahead, to mention just
three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [66], could conceiv-
ably be incorporated in the present GFMC approach, it
is out of the question that such an approach could be uti-
lized to describe the �-resonance region of the cross sec-
tion or, even more remotely, extended to nuclei with mass
number much larger than 12, at least for the foreseeable
future. In fact, it maybe unnecessary, as more approxi-
mate methods exist to deal e↵ectively with some of these
challenges, including factorization approaches based on
one- and two-nucleon spectral functions [24, 67] or on
the short-time approximation of the nuclear many-body

propagator [63] for relativity and pion production, and
auxiliary-field-di↵usion Monte Carlo methods [68] to de-
scribe the ground states of medium-weight nuclei. We
are optimistic that the next few years will witness sub-
stantive progress in the further development and imple-
mentation of these approximate methods to address the
high-energy region of the nuclear electroweak response.
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function of the muon momentum pµ for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties are
from Ref. [43].
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ably be incorporated in the present GFMC approach, it
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The nucleon's axial form factor is crucial for modeling neutrino-nucleus interactions;

ELEMENTARY AMPLITUDES

Scarce (old) experimental data available 

Lattice-QCD calculations are essential

A. Meyer et al., Ann. Rev. Nucl. Part. Sci. 72 (2022) 205
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FIG. 7. The flux-folded GFMC cross sections for selected bins in cos ✓µ, obtained by replacing in the dipole parametrization
the cuto↵ ⇤A ⇡ 1 GeV with the value e⇤A ⇡ 1.15 GeV, more in line with a current LQCD determination [47]. The first two rows
correspond to the MiniBooNE flux-folded ⌫µ and ⌫µ CCQE cross sections, respectively; the last row corresponds to the T2K
⌫µ CCQE data. In the theoretical curves the total one- plus two-body current contribution to the cross section is displayed.

which are of course quite accurate. These calculations
suggest a larger value of ⇤A may be appropriate. We
investigate the implications of this finding by presenting
in Fig. 7 the flux-folded cross sections (for MiniBooNE
and selected bins in cos ✓µ), obtained by replacing in the
dipole parametrization the cuto↵ ⇤A ⇡ 1 GeV with the
value e⇤A ⇡ 1.15 GeV. As expected, this leads generally
to an increase of the GFMC predictions over the whole
kinematical range. Since the dominant terms in the cross
section proportional to the transverse and interference re-
sponse functions tend to cancel for ⌫µ, the magnitude of
the increase turns out to be more pronounced for ⌫µ than
for ⌫µ—as a matter of fact, the ⌫µ cross sections are re-
duced at backward angles (0.1  cos ✓µ  0.2). Overall,
it appears that the harder cuto↵ implied by the LQCD

calculation of GA(Q2) improves the accord of theory with
experiment, marginally for ⌫µ and more substantially for
⌫µ. In view of the large errors and large normalization un-
certainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis. Indeed more precise nucleon
form factors can be obtained through further lattice QCD
calculations or experiments on the nucleon and deuteron,
respectively.

Of course, many challenges remain ahead, to mention
just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [81], could conceiv-

We have considered a value of the axial mass 
more in line with recent LQCD determinations 

<latexit sha1_base64="uDgyLUyq8IoANBSOzcJKTI4D4B4="></latexit>

⇤̃A = 1.15GeV

AL et al., Physical Review X 10, 031068 (2020)
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Z-expansion parameterizations of axial form factors, consistent with experimental or LQCD data

D. Simons, et al, JPG in press (2025)
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FIG. 2. The nucleon axial form factor FA(Q
2) determined us-

ing fits to neutrino-deuteron scattering data using the model-
independent z expansion from Ref. [65] (D2 Meyer et al.)
are shown as a blue band in the top panel. LQCD results
are shown for comparison from Ref. [30] (LQCD Bali et al.,
green), Ref. [34] (LQCD Park et al., red) and Ref. [35] (LQCD
Djukanovic et al., purple). Bands show combined statistical
and systematic uncertainties in all cases, see the main text
for more details. A dipole parameterization with MA = 1.0
GeV and a 1.4% uncertainty [107] is also shown for compari-
son (black). The lower panel shows the absolute value of the
di↵erence between D2 Meyer et al. and LQCD Bali et al.
results divided by their uncertainties added in quadrature,
denoted �FA/�; very similar results are obtained using the
other LQCD results.

factor results determined from experimental neutrino-
deuteron scattering data in Ref. [65]. Fits were performed
using results with Q

2
 1 GeV2 in Refs. [30, 34, 65] and

with Q
2
 0.7 GeV2 in Ref. [35] with the parameteri-

zation provided by the z expansion used to extrapolate
form factor results to larger Q

2. Clear agreement be-
tween di↵erent LQCD calculations can be seen. However,
the LQCD axial form factor results are 2-3� larger than
the results of Ref. [65] for Q

2 & 0.3 GeV2. The e↵ects of
this form factor tension on neutrino-nucleus cross section
predictions is studied using nuclear many-body calcula-
tions with the GFMC and SF methods in Sec. IV below.
The LQCD results of Refs. [30, 34] lead to nearly in-
distinguishable cross-section results that will be denoted
“LQCD Bali et al./Park et al.” or “LQCD” below and
used for comparison with the deuterium bubble-chamber
analysis of Ref. [65], denoted “D2 Meyer et al.” or “D2”
below.

IV. FLUX-AVERAGED CROSS SECTION
RESULTS

To evaluate both the nuclear model and nucleon axial
form factor dependence of neutrino-nucleus cross-section
predictions and their agreement with data, the GFMC
and spectral function methods are used to predict flux-
averaged cross sections that can be compared with data
from the T2K and MiniBooNE experiments. The Mini-
BooNE data for this comparison is a double di↵eren-
tial CCQE measurement where the main CC1⇡+ back-
ground has been subtracted using a tuned model [13],
and the T2K data is a double di↵erential CC0⇡ measure-
ment [114]. Muon neutrino flux-averaged cross sections
were calculated from

d�

dTµd cos ✓µ

=

Z
dE⌫�(E⌫)

d�(E⌫)

dTµd cos ✓µ

, (43)

where �(E⌫) are the normalized ⌫µ fluxes from Mini-
BooNE and T2K. Details on the neutrino fluxes for
each experiment can be found in the references above.

d�(E⌫)
dTµd cos ✓µ

are the corresponding inclusive cross sections

computed using the GFMC and SF methods as described
in Sec. II.

The fractional contribution of the axial form factor
to the one-body piece of the MiniBooNE flux-averaged
cross section is determined by including only pure axial
and axial-vector interference terms in the cross section
and shown in Fig. 3. These pure axial and axial-vector
interference terms account for half or more of the to-
tal one-body cross section for most Tµ and cos ✓µ, which
emphasizes the need for an accurate determination of the
nucleon axial form factor.

Figures 4 and 5 show the GFMC and SF predictions for
MiniBooNE and T2K, respectively, including the break-
down into one-body and two-body contributions. For
these comparisons we use the D2 Meyer et al. z expan-
sion for FA. Two features of the calculations should be
noted before discussing the results of these comparisons.
First, the uncertainty bands in the SF come only from the
axial form factor, while the GFMC error bands include
axial form factor uncertainties as well as a combination
of GFMC statistical errors and uncertainties associated
with the maximum-entropy inversion. Secondly, the axial
form factor enters into the SF only in the one-body term,
in contrast to the GFMC prediction where it enters into
both the one-body and one and two-body interference
term.

Below in Table I we quantify the di↵erences between
GFMC and SF predictions for both MiniBooNE and
T2K. The percent di↵erence in the di↵erential cross sec-
tions at each model’s peak are shown. The GFMC predic-
tions are up to 20% larger in backwards angle regions for
MiniBooNE and 13% larger for T2K in the same back-
ward region. The agreement between GFMC and SF
predictions is better at more forward angles but a 5-10%
di↵erence persists.
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form factor enters into the SF only in the one-body term,
in contrast to the GFMC prediction where it enters into
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term.

Below in Table I we quantify the di↵erences between
GFMC and SF predictions for both MiniBooNE and
T2K. The percent di↵erence in the di↵erential cross sec-
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MiniBooNE and 13% larger for T2K in the same back-
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MiniBooNE 0.2 < cos ✓µ < 0.3 0.5 < cos ✓µ < 0.6 0.8 < cos ✓µ < 0.9
SF Di↵erence in d�peak (%) 16.3 17.1 9.3

GFMC Di↵erence in d�peak (%) 18.6 17.1 12.2

T2K 0.0 < cos ✓µ < 0.6 0.80 < cos ✓µ < 0.85 0.94 < cos ✓µ < 0.98
SF di↵erence in d�peak (%) 15.3 8.2 3.3

GFMC di↵erence in d�peak (%) 15.8 8.0 4.6

TABLE II. Percent increase in d�
dTµd cos ✓µ

at the quasielastic peak between predictions using LQCD Bali et al./Park et al.

z expansion versus D2 Meyer et al. z expansion nucleon axial form factor results.

FIG. 7. The ⌫µ flux-averaged di↵erential cross sections for MiniBooNE. The top panel shows Spectral Function predictions in
three bins of cos ✓µ with the D2 Meyer et al. z expansion FA in blue, as well as the LQCD Bali et al./Park et al. z expansion
FA in green. The dipole parameterization with MA = 1.0 GeV is shown without uncertainties as a black line. The lower
panel shows GFMC predictions using the same set of axial form factors, although in the GFMC case systematic uncertainties
including those arising from inversion of the Euclidean response functions are included in all results and the MA = 1.0 GeV
dipole form factor results are therefore shown as a black band.

dipole parameterization of FA as well as modified dipole
parameterizations of C

A

5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
15% variation in either C

A

5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.

Focusing now on FA, Figs. 7 and 8 compare flux-
averaged cross sections with di↵erent axial form factor
determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
Bali et al./Park et al. z expansion. One can see that

the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ

corresponding to backward angles and higher Q
2. This

is quantified in Table II, which shows the percentage dif-
ference in the peak values of d�

dTµd cos ✓µ
for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
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FIG. 6: Top row: one-peak responses obtained via the UQ-NN architecture (green band), compared to Ent-NN
(dashed orange line) and the original response (blue solid line). Bottom row: corresponding Euclidean responses

with varying noise level.

FIG. 7: Same as Fig. 6 for the two-peaks dataset.

emerge in the low-! region, despite no response func-
tions in the training dataset have more than two peaks.
We ascribe the origin of this rich structure to the noise
added to the Euclidean, which may yield a three-peak
structure in some of the reconstructed R̂(✓). Secondly,
for the lowest noise level, � = 10�4, UQ-NN fails to pre-
cisely capture the ! dependence of the original response
function, even in the QE peak region. We checked that
Ent-NN (and even Phys-NN) su↵ers from similar limi-
tations. One possible reason for this behavior are nu-
merical errors associated with numerically computing the
Laplace transform — see Eq. (3) — when generating the
training data set. The latter could be larger than the

estimated 10�5 value, especially for responses with two
peaks. Another possibility is the uncertainty inherent to
the neural-network model, which includes the set of opti-
mal parameters found in the training procedure and the
training itself. To better estimate the latter, we plan on
using deep Bayesian Neural Network [45, 46], which in
the context on Nuclear Physics, have proven reliable in
predicting masses and radii of several nuclei across the
nuclear chart, with quantified uncertainties.
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emerge in the low-! region, despite no response func-
tions in the training dataset have more than two peaks.
We ascribe the origin of this rich structure to the noise
added to the Euclidean, which may yield a three-peak
structure in some of the reconstructed R̂(✓). Secondly,
for the lowest noise level, � = 10�4, UQ-NN fails to pre-
cisely capture the ! dependence of the original response
function, even in the QE peak region. We checked that
Ent-NN (and even Phys-NN) su↵ers from similar limi-
tations. One possible reason for this behavior are nu-
merical errors associated with numerically computing the
Laplace transform — see Eq. (3) — when generating the
training data set. The latter could be larger than the

estimated 10�5 value, especially for responses with two
peaks. Another possibility is the uncertainty inherent to
the neural-network model, which includes the set of opti-
mal parameters found in the training procedure and the
training itself. To better estimate the latter, we plan on
using deep Bayesian Neural Network [45, 46], which in
the context on Nuclear Physics, have proven reliable in
predicting masses and radii of several nuclei across the
nuclear chart, with quantified uncertainties.

K. Raghavan, AL, Phys.Rev.C 110 (2024) 2, 025504

QUANTIFYING THE INVERSION UNCERTAINTY
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FIG. 4. Flux averaged double di↵erential cross section for MiniBooNE. The nonrelativistic GFMC results (nr) are compared
to the results obtained in the ANB. They both include one- and two-body current contributions. The open circles are the cross
section to which the background reported in Ref. [32] is added.

applying the two-fragment model in the LAB frame in
the limit of large A, i.e. using the kinetic energy derived
from the relativistic momentum as discussed above.

IV. FLUX-AVERAGED CROSS SECTIONS

We compute the CC inclusive cross sections for di↵er-
ent kinematic setups, relevant for the MiniBooNE [22],
T2K [23], and MINER⌫A [24] experiments. Their in-
coming neutrino fluxes are characterized by average en-
ergies ranging from 700 MeV for T2K up to 6 GeV of the
medium-energy NuMI beam in MINER⌫A. Therefore,
the cross section receives contributions from the high mo-
mentum region of the phase space, where a proper treat-
ment of relativistic e↵ects become relevant. We account
for the latter by evaluating the GFMC electroweak re-
sponses in the ANB frame and boosting them back to
the LAB fram. As argued above, since the ANB frame
minimizes relativistic e↵ects, we find that applying the
two-fragment model brings about minimal di↵erences.

A. MiniBooNE

Our theoretical calculations for the flux averaged dou-
ble di↵erential cross section for the MiniBooNE kinemat-
ics are shown in Fig. 4. Both the nonrelativistic and
ANB results include one- and two-body current contri-
butions. The black squares correspond to the ‘CCQE-
like’ data reported in Ref. [32], whose extraction from
experimental measurements entails some model depen-
dence [41]. In particular, an irreducible ’non-CCQE’
background, mainly consisting of the production of a sin-
gle ⇡+ which is either absorbed or remains otherwise un-
detected [8, 42, 43], is estimated using the NUANCE
generator [44], and subtracted from the data. This
background is partly constrained by their own measure-
ment [45], but inconsistencies in the description of the
MiniBooNE ⇡+ production data and data from T2K [46]
and MINER⌫A [47] have been pointed out [41, 48–50].
Hence, to better gauge the uncertainties associated with
this procedure, it is best practice to add this background
back to the data points; we show the resulting distribu-
tion in Fig. 4 as empty circles. Finally, one should keep
in mind that the MiniBooNE collaboration reports an
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applying the two-fragment model in the LAB frame in
the limit of large A, i.e. using the kinetic energy derived
from the relativistic momentum as discussed above.

IV. FLUX-AVERAGED CROSS SECTIONS

We compute the CC inclusive cross sections for di↵er-
ent kinematic setups, relevant for the MiniBooNE [22],
T2K [23], and MINER⌫A [24] experiments. Their in-
coming neutrino fluxes are characterized by average en-
ergies ranging from 700 MeV for T2K up to 6 GeV of the
medium-energy NuMI beam in MINER⌫A. Therefore,
the cross section receives contributions from the high mo-
mentum region of the phase space, where a proper treat-
ment of relativistic e↵ects become relevant. We account
for the latter by evaluating the GFMC electroweak re-
sponses in the ANB frame and boosting them back to
the LAB fram. As argued above, since the ANB frame
minimizes relativistic e↵ects, we find that applying the
two-fragment model brings about minimal di↵erences.

A. MiniBooNE

Our theoretical calculations for the flux averaged dou-
ble di↵erential cross section for the MiniBooNE kinemat-
ics are shown in Fig. 4. Both the nonrelativistic and
ANB results include one- and two-body current contri-
butions. The black squares correspond to the ‘CCQE-
like’ data reported in Ref. [32], whose extraction from
experimental measurements entails some model depen-
dence [41]. In particular, an irreducible ’non-CCQE’
background, mainly consisting of the production of a sin-
gle ⇡+ which is either absorbed or remains otherwise un-
detected [8, 42, 43], is estimated using the NUANCE
generator [44], and subtracted from the data. This
background is partly constrained by their own measure-
ment [45], but inconsistencies in the description of the
MiniBooNE ⇡+ production data and data from T2K [46]
and MINER⌫A [47] have been pointed out [41, 48–50].
Hence, to better gauge the uncertainties associated with
this procedure, it is best practice to add this background
back to the data points; we show the resulting distribu-
tion in Fig. 4 as empty circles. Finally, one should keep
in mind that the MiniBooNE collaboration reports an

A. Nikolakopoulos, at al., Phys. Rev. C 109 (2024) 1, 014623



GFMC: many-body basis

AFDMC: single-spinor basis

<latexit sha1_base64="HIHzVs6ssFvI/btvru+VR8wlIZU="></latexit>

|Si ⌘ C"""| """i+ C""#| ""#i+ · · ·+ C###| ###i
<latexit sha1_base64="KqGs3oZArZXG6/Qx/xssR4LX9E4="></latexit>

|Si ⌘ (u1| "i1 + d1| #i1)⌦ . . . (uA| "iA + dA| #iA)

BEYOND 12C WITH THE AFDMC



10

FIG. 7. Euclidean isoscalar density response function of
4He at q = 600 MeV obtained with the AFDMC (solid or-
ange circles) and GFMC (blue solid band) methods using the
AV8P+UIX and AV18+IL7 Hamiltonians, respectively.

applicability to 16O is more questionable, owing to the
limitations inherent to using linearized spin-isospin de-
pendent correlations. In future works, we plan on cor-
recting these variational estimates within perturbation
theory, as in Eq. 29. For this reason, here we do not at-
tempt inverting the Laplace transform either using Maxi-
mum Entropy [87, 88] or the recently developed machine-
learning inversion protocols [89, 90]. Rather, we focus on
the computational feasibility of this quantity within the
AFDMC, which can tackle larger nuclei than the GFMC,
previously applied only up to 12C.

In Figure 7, we compare the 4He Euclidean isoscalar
density response function computed with the AFDMC
and GFMC methods using as input the AV8P+UIX and
AV18+IL7 Hamiltonians, respectively. Despite the dif-
ferent NN and 3N forces, the Euclidean response func-
tions are close to each other up to the largest value of
imaginary time we consider, τ = 0.5 MeV−1. This agree-
ment is reassuring, as it corroborates both the AFDMC
implementation of the Euclidean response-function calcu-
lation and the accuracy of the method, despite somewhat
different input Hamiltonians.

The 4He Euclidean isoscalar density response function
shown in Figure 7 has been computed by carrying out
DMC-UC propagations to remove the bias associated
with the fermion sign problem. However, when tack-
ling larger nuclei such as 16O, the unconstrained prop-
agation yields sizable statistical fluctuations in the Eu-
clidean response, primarily arising from the somewhat
oversimplified correlation operator of Eq.(13). In Fig-
ure 8, we display the Euclidean isoscalar density response
function of 16He at q = 400 MeV corresponding to the
AV8P+UIX Hamiltonian. The DMC-UC results, de-
noted by the blue solid circles, start exhibiting large sta-
tistical fluctuations after around τ = 0.004 MeV−1. On
the other hand, employing the same DMC-CP approxi-
mation used in ground-state calculations dramatically re-

FIG. 8. Euclidean isoscalar density response function of 16O
at q = 400 MeV with the AV8P+UIX Hamiltonian. The
blue solid circles and the orange solid squares denote the un-
constrained and constrained imaginary-time propagations, re-
spectively.

duces the noise, making it possible to reach much larger
imaginary times. In the region τ < 0.004 MeV−1, the
DMC-CP and DMC-UC responses are consistent within
statistical error, suggesting that the constrained-path ap-
proximation does not significantly bias the Monte Carlo
estimates. Note that carrying out the DMC-UC calcu-
lations required about ten million CPU hours on Intel-
KNL to keep the statistical noise under control, while
the DMC-CP calculations are significantly cheaper. In
the future, we plan to explore the contour-deformation
techniques developed in Ref. [91] to reduce the statistical
uncertainty plaguing the unconstrained results.
Figure 9 displays the Euclidean isoscalar density re-

sponse function at momentum transfers of q = 400 MeV,
q = 600 MeV, and q = 800 MeV, computed within the
DMC-CP approximation using the AV8P+UIX Hamil-

FIG. 9. DMC-CP Euclidean isoscalar density response func-
tion of 16O at q = 400 MeV (blue circles), q = 600 MeV
(orange squares), and q = 800 MeV (green triangles) com-
puted with the AV8P+UIX Hamiltonian.
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The auxiliary-field diffusion Monte Carlo method can treat 16O sampling the spin-isospin

BEYOND 12C WITH THE AFDMC

We developed the AFDMC to allow for the calculation of Euclidean response functions

4He 16O

A. Gnech, et al., Phys.Rev. C 111 (2025) 2, 024314
24
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Antisymmetry is built in the ansatz

 NFS IN COORDINATE SPACE
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 V (X;p) = eU(X;p) ⇥ �(X;p)

The expressivity is augmented 
through message-passing back 
flow transformations

4

Figure 1. Schematic illustration of the backflow transformation, which transforms single-particle coordinates ri 2 Rd (black
dots, top left) to quasi-particle coordinates �ri 2 Cd via the MPNN (black/white dots for real/imaginary part, top right).
The MPNN constructs an initial graph that consists of an initial feature vector (dark grey) and a hidden state (green). This
graph is then transformed via messages, defined in Eq. 7, to another graph consisting of the initial feature vectors and an
updated hidden state (indicated by di↵erent coloring). After the final iteration, the node states are linearly transformed to

the quasi-particle positions �ri = W · h(T )
i , which now contain information about all particles (D is the dimension of the last

graph’s nodes).

orbitals are a natural choice: �k(r) = exp [ik · r] with
k = 2⇡

L
n where n 2 Zd. To take into account spin, we use

the spin-orbitals �µ(r, s) = �kµ(r)�sµ,s, where s denotes
the spin of the particle at position r, and each spin-orbital
is characterized by the quantum numbers µ = (kµ, sµ).
This choice of orbitals allows us to fix the total momen-
tum of the system ktot =

P
N

i=1 ki. Furthermore, the
choice of orbitals allows us to factorize the determinant
into a product of determinants of up and down spin or-
bitals.

D. MP-NQS for the Electron Gas

To specialize the MP-NQS architecture to the HEG,
we only need to define the initial feature vectors. Since
the HEG is invariant under continuous translations and
spin inversion, we do not input single-particle informa-
tion (single-particle positions/spins) to the initial node
features. Instead, we use a learnable embedding vector
e 2 RD1 , that does not depend on the particle index i.
For the edge features, we use the translation invariant
particle-distances rij = ri � rj and their norm. To dis-
tinguish same- and opposite-spin pairs without breaking
the spin-inversion symmetry of the problem, we input
products of the form si · sj = ±1 to the edge features.

Overall, we get the following initial feature vectors:

x(0)
i

= e (15)

x(0)
ij

= [rij , krijk, si · sj ]. (16)

Notice that with this choice, the resulting backflow coor-
dinate yi preserves the spin quantum number si of the
particle i exactly.

To respect the PBCs of the simulation box, we apply
the method introduced in Ref. [21]. The components of
a vector r 2 Rd (where r can represent a single-particle
position vector ri or a distance vector rij) are mapped
to a Fourier basis r 7!

⇥
sin

�
2⇡
L
r
�
, cos

�
2⇡
L
r
�⇤

2 R2d and
the norm of the distance between two particles krijk is
replaced with a periodic surrogate krijk 7!

��sin
�
⇡

L
rij

���.
In sum, our Ansatz allows us to fix the total momen-

tum ktot, while being translation invariant and respecting
spin-inversion symmetry. Furthermore, the MP-NQS can
change the nodal surface with a number of variational pa-
rameters independent of the system size. The variational
Ansatz for the HEG uses around ⇠ 19000 variational pa-
rameters and can be trained within O(103) optimization
steps while reaching state-of-the-art accuracy. A detailed
comparison to other existing NQS approaches is given in
Appendix C.
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NUCLEAR RESPONSES WITH NQS

We consider the Lorentz Kernel 
(see Sonia’s talk on Monday)

30
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NUCLEAR RESPONSES WITH NQS
The first step in computing the LIT involves solving the inhomogeneous Schrödinger equation
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(H � E0 � !0 � i�)| Li = J | 0i

The LIT can be computed from the norm
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Imh L|J | 0i

E. Parnes, et al., arXiv:2504.20195 [nucl-th]
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Leveraging the Hermiticity of the Hamiltonian, we recast the norm as an overlap



NUCLEAR RESPONSES WITH NQS
Resolvent equation:

32
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2) Compute the global phase and norm
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In matrix form
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Maximizing the fidelity and then finding the norm
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FIG. 1. (Upper panel) LIT of the 2H dipole response function
computed at � = 10 MeV. The NQS calculations (orange cir-
cles) are compared to the numerically exact results (solid blue
line). (Lower panel) The statistical (blue circles), systematic
(orange circles), and total (green circles) errors of the NQS
calculations are shown alongside the di↵erence between the
numerically exact and NQS results (solid red line).

� → 0, !0 ≈ !, and L → (⇡��)R, we may conclude that
�L�L ∝�(1 −F)��. Implying that smaller values of �
not only lead to a more complicated wave function, but
also demand higher accuracy in solving the LIT equation.

Once the values of the LIT and its uncertainties are
estimated on a grid of N discrete values of !0, we need
to invert the integral transform to retrieve the response
function. To this aim, we employ two inversion methods.
The first is a regularized version of the standard inversion
procedure introduced in Ref. [38], which relies on a suit-
able basis expansion of the response function. The second
is an improved version of the so-called Bryan’s version of
the Maximum Entropy method [48]. Both methods are
discussed in detail in the Supplemental material. The
advantage of the latter method lies in its ability to prop-
agate the uncertainties in L(!0,�) into the reconstructedR(!) using Bayes’ theorem.

Results.— Although the method discussed above is en-
tirely general and applicable to a broad range of self-
bound systems modeled by NQS in continuum Hilbert
spaces, we demonstrate its e↵ectiveness in computing
nuclear photoabsorption cross-sections. At interme-
diate energies, the transition current is well approxi-
mated by the translation-invariant dipole operator Ô =∑A

i qi (zi −Zcm), where qi is the charge of nucleon i, zi
is the z component of its position vector, and Zcm de-

notes the z component of the center-of-mass vector of
the nucleus.

As a first application, we consider the deuteron, as
this simple system allows us to benchmark the NQS-
LIT method against a virtually exact numerical solution
of the ordinary di↵erential equation that determines the
ground-state and LIT wave functions. Since model “o”
does not include tensor or spin-orbit terms,  0 and  L

contain only the s-wave and p-wave contributions, re-
spectively, the di↵erential equations to be solved depend
only on the distance between the proton and the neutron.
As shown in the upper panel of Fig. 1, the NQS results
agree with the exact solution to an accuracy better than
1% — both are obtained with � = 10 MeV. This accuracy
is compared in the lower panel of Fig. 1 with the error
bound we determined, and is found to be much better
for all values of !.

Inverting the LIT using the basis expansion proce-
dure and maximum-entropy algorithms discussed earlier,
we can recover the energy dependence of the response
functions and the associated uncertainties. The total
photoabsorption cross section is then given by ��(!) =
4⇡2↵!R(!), where ↵ is the fine-structure constant. In
Fig. 2, we compare the NQS predictions with experimen-
tal data from Ref. [49]. The basis expansion inversion
method shows excellent agreement with the experimen-
tal data, regardless of the numberNmax of basis functions
used to expand the response—we verified that increasing
the basis size up to N = 16 did not a↵ect the results. The
inversion based on maximum-entropy also yields cross
sections that agree well with the data, within uncertain-
ties. This agreement is particularly remarkable given the
simplicity of the input Hamiltonian. In this regard, we
note that two-body currents are implicitly accounted for

FIG. 2. Deuteron photo-disintegration cross section as a func-
tion of photon energy, obtained from NQS calculations of the
LIT. The basis function results (solid orange lines) and the
Maximum Entropy reconstruction (blue histogram with er-
ror bars) show good agreement with experimental data from
Ref. [49].
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FIG. 1. (Upper panel) LIT of the 2H dipole response function
computed at � = 10 MeV. The NQS calculations (orange cir-
cles) are compared to the numerically exact results (solid blue
line). (Lower panel) The statistical (blue circles), systematic
(orange circles), and total (green circles) errors of the NQS
calculations are shown alongside the di↵erence between the
numerically exact and NQS results (solid red line).

� → 0, !0 ≈ !, and L → (⇡��)R, we may conclude that
�L�L ∝�(1 −F)��. Implying that smaller values of �
not only lead to a more complicated wave function, but
also demand higher accuracy in solving the LIT equation.

Once the values of the LIT and its uncertainties are
estimated on a grid of N discrete values of !0, we need
to invert the integral transform to retrieve the response
function. To this aim, we employ two inversion methods.
The first is a regularized version of the standard inversion
procedure introduced in Ref. [38], which relies on a suit-
able basis expansion of the response function. The second
is an improved version of the so-called Bryan’s version of
the Maximum Entropy method [48]. Both methods are
discussed in detail in the Supplemental material. The
advantage of the latter method lies in its ability to prop-
agate the uncertainties in L(!0,�) into the reconstructedR(!) using Bayes’ theorem.

Results.— Although the method discussed above is en-
tirely general and applicable to a broad range of self-
bound systems modeled by NQS in continuum Hilbert
spaces, we demonstrate its e↵ectiveness in computing
nuclear photoabsorption cross-sections. At interme-
diate energies, the transition current is well approxi-
mated by the translation-invariant dipole operator Ô =∑A

i qi (zi −Zcm), where qi is the charge of nucleon i, zi
is the z component of its position vector, and Zcm de-

notes the z component of the center-of-mass vector of
the nucleus.

As a first application, we consider the deuteron, as
this simple system allows us to benchmark the NQS-
LIT method against a virtually exact numerical solution
of the ordinary di↵erential equation that determines the
ground-state and LIT wave functions. Since model “o”
does not include tensor or spin-orbit terms,  0 and  L

contain only the s-wave and p-wave contributions, re-
spectively, the di↵erential equations to be solved depend
only on the distance between the proton and the neutron.
As shown in the upper panel of Fig. 1, the NQS results
agree with the exact solution to an accuracy better than
1% — both are obtained with � = 10 MeV. This accuracy
is compared in the lower panel of Fig. 1 with the error
bound we determined, and is found to be much better
for all values of !.

Inverting the LIT using the basis expansion proce-
dure and maximum-entropy algorithms discussed earlier,
we can recover the energy dependence of the response
functions and the associated uncertainties. The total
photoabsorption cross section is then given by ��(!) =
4⇡2↵!R(!), where ↵ is the fine-structure constant. In
Fig. 2, we compare the NQS predictions with experimen-
tal data from Ref. [49]. The basis expansion inversion
method shows excellent agreement with the experimen-
tal data, regardless of the numberNmax of basis functions
used to expand the response—we verified that increasing
the basis size up to N = 16 did not a↵ect the results. The
inversion based on maximum-entropy also yields cross
sections that agree well with the data, within uncertain-
ties. This agreement is particularly remarkable given the
simplicity of the input Hamiltonian. In this regard, we
note that two-body currents are implicitly accounted for

FIG. 2. Deuteron photo-disintegration cross section as a func-
tion of photon energy, obtained from NQS calculations of the
LIT. The basis function results (solid orange lines) and the
Maximum Entropy reconstruction (blue histogram with er-
ror bars) show good agreement with experimental data from
Ref. [49].

We considered a dipole transition
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FIG. 3. (Upper panel) LIT of the 4He dipole response function
computed at � = 10 MeV. The NQS calculations (orange cir-
cles) are compared to the highly-accurate EIHH results (solid
blue line). (Lower panel) The statistical (blue circles), sys-
tematic (orange circles), and total (green circles) errors of the
NQS calculations are shown alongside the di↵erence between
the EIHH and NQS results (solid red line).

by means of the Siegert theorem [50].

In Fig. 3, we compare the LITs of 4He computed
using the NQS approach with those obtained via the
e↵ective interaction hyperspherical harmonics (EIHH)
method [51], which provides extremely accurate solutions
for A ≤ 4 nuclei. Similar to the deuteron case, excellent
agreement is also achieved for 4He. A detailed analysis
of the errors, shown in the lower panel of Fig. 3, reveals
that the maximum discrepancy between NQS and EIHH
remains at the percent level, except in the high-energy
region of the spectrum, where the LIT is already small.
Our theoretical error bound is significantly looser, ex-
ceeding 20% for certain ! � 75 MeV, indicating the need
for refined error estimates.

Finally, in Fig.4, we present the photodisintegration
cross section of 4He, obtained by inverting the LIT com-
puted within the NQS framework, and compare it with
experimental data from Ref.[6]. Similar to the deuteron
case, both the basis-expansion inversion method and the
maximum entropy approach yield results that agree re-
markably well with experiment, especially considering
the simplicity of the input Hamiltonian. In fact, the
agreement appears even better than that achieved in
Refs. [23, 52], which used higher-resolution chiral Hamil-
tonians. Notably, the position of the peak is accurately
reproduced without the need to shift the theoretical

curves to match the experimental threshold. We note
that these cross sections were obtained with � = 10 MeV;
however, we explicitly verified that using � = 5 MeV pro-
duces fully compatible results, with the basis-expansion
inversion curves overlapping.

Conclusions.— In this work, we introduced a com-
putational protocol that combines variational Monte
Carlo methods based on NQS with the LIT technique
to address the challenging problem of computing dy-
namical properties of self-bound systems in continuous
spaces. While this framework is applicable to quan-
tum many-body systems spanning a wide range of energy
scales—including atoms and molecules—our initial focus
is on applications in nuclear physics. Our approach ex-
tends the reach of high-resolution continuum QMCmeth-
ods to low-energy response functions, including those rel-
evant for photodisintegration cross sections, which un-
til now have only been computed using basis-expansion
methods [21, 23, 26, 27].

In addition to providing accurate estimates of the re-
sponse functions, our protocol enables a reliable assess-
ment of both statistical and systematic uncertainties.
The statistical uncertainties can be readily estimated
through Monte Carlo sampling. To address the system-
atic component, we derived a general error-bound lemma
applicable to all LIT-based methods. We validated this
bound numerically through comparisons with highly ac-
curate few-body calculations. This analysis revealed that
the upper bound on the error can occasionally be overly
conservative, underscoring the need for further refine-
ment of the theoretical estimates.

Both the statistical and systematic uncertainties of the
LIT are propagated to the response function by lever-
aging an advanced version of the Maximum Entropy

FIG. 4. Photo-disintegration cross section of 4He as a func-
tion of photon energy, obtained from NQS calculations of the
LIT. The basis function results (solid orange lines) and the
Maximum Entropy reconstruction (blue histogram with er-
ror bars) show good agreement with experimental data from
Ref. [6].
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FIG. 3. (Upper panel) LIT of the 4He dipole response function
computed at � = 10 MeV. The NQS calculations (orange cir-
cles) are compared to the highly-accurate EIHH results (solid
blue line). (Lower panel) The statistical (blue circles), sys-
tematic (orange circles), and total (green circles) errors of the
NQS calculations are shown alongside the di↵erence between
the EIHH and NQS results (solid red line).

by means of the Siegert theorem [50].

In Fig. 3, we compare the LITs of 4He computed
using the NQS approach with those obtained via the
e↵ective interaction hyperspherical harmonics (EIHH)
method [51], which provides extremely accurate solutions
for A ≤ 4 nuclei. Similar to the deuteron case, excellent
agreement is also achieved for 4He. A detailed analysis
of the errors, shown in the lower panel of Fig. 3, reveals
that the maximum discrepancy between NQS and EIHH
remains at the percent level, except in the high-energy
region of the spectrum, where the LIT is already small.
Our theoretical error bound is significantly looser, ex-
ceeding 20% for certain ! � 75 MeV, indicating the need
for refined error estimates.

Finally, in Fig.4, we present the photodisintegration
cross section of 4He, obtained by inverting the LIT com-
puted within the NQS framework, and compare it with
experimental data from Ref.[6]. Similar to the deuteron
case, both the basis-expansion inversion method and the
maximum entropy approach yield results that agree re-
markably well with experiment, especially considering
the simplicity of the input Hamiltonian. In fact, the
agreement appears even better than that achieved in
Refs. [23, 52], which used higher-resolution chiral Hamil-
tonians. Notably, the position of the peak is accurately
reproduced without the need to shift the theoretical

curves to match the experimental threshold. We note
that these cross sections were obtained with � = 10 MeV;
however, we explicitly verified that using � = 5 MeV pro-
duces fully compatible results, with the basis-expansion
inversion curves overlapping.

Conclusions.— In this work, we introduced a com-
putational protocol that combines variational Monte
Carlo methods based on NQS with the LIT technique
to address the challenging problem of computing dy-
namical properties of self-bound systems in continuous
spaces. While this framework is applicable to quan-
tum many-body systems spanning a wide range of energy
scales—including atoms and molecules—our initial focus
is on applications in nuclear physics. Our approach ex-
tends the reach of high-resolution continuum QMCmeth-
ods to low-energy response functions, including those rel-
evant for photodisintegration cross sections, which un-
til now have only been computed using basis-expansion
methods [21, 23, 26, 27].

In addition to providing accurate estimates of the re-
sponse functions, our protocol enables a reliable assess-
ment of both statistical and systematic uncertainties.
The statistical uncertainties can be readily estimated
through Monte Carlo sampling. To address the system-
atic component, we derived a general error-bound lemma
applicable to all LIT-based methods. We validated this
bound numerically through comparisons with highly ac-
curate few-body calculations. This analysis revealed that
the upper bound on the error can occasionally be overly
conservative, underscoring the need for further refine-
ment of the theoretical estimates.

Both the statistical and systematic uncertainties of the
LIT are propagated to the response function by lever-
aging an advanced version of the Maximum Entropy

FIG. 4. Photo-disintegration cross section of 4He as a func-
tion of photon energy, obtained from NQS calculations of the
LIT. The basis function results (solid orange lines) and the
Maximum Entropy reconstruction (blue histogram with er-
ror bars) show good agreement with experimental data from
Ref. [6].
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MCMC “with swap” used to sample the posterior: no need to fix α
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FIG. 2. Posterior distribution of ↵ corresponding to three di↵erent prior models: basis function (upper panel), LIT (middle
panel), and flat (lower panel).
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FIG. 2. Posterior distribution of ↵ corresponding to three di↵erent prior models: basis function (upper panel), LIT (middle
panel), and flat (lower panel).
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Computed the photo-absorption cross section with quantified uncertainties
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FIG. 1. (Upper panel) LIT of the 2H dipole response function
computed at � = 10 MeV. The NQS calculations (orange cir-
cles) are compared to the numerically exact results (solid blue
line). (Lower panel) The statistical (blue circles), systematic
(orange circles), and total (green circles) errors of the NQS
calculations are shown alongside the di↵erence between the
numerically exact and NQS results (solid red line).

� → 0, !0 ≈ !, and L → (⇡��)R, we may conclude that
�L�L ∝�(1 −F)��. Implying that smaller values of �
not only lead to a more complicated wave function, but
also demand higher accuracy in solving the LIT equation.

Once the values of the LIT and its uncertainties are
estimated on a grid of N discrete values of !0, we need
to invert the integral transform to retrieve the response
function. To this aim, we employ two inversion methods.
The first is a regularized version of the standard inversion
procedure introduced in Ref. [38], which relies on a suit-
able basis expansion of the response function. The second
is an improved version of the so-called Bryan’s version of
the Maximum Entropy method [48]. Both methods are
discussed in detail in the Supplemental material. The
advantage of the latter method lies in its ability to prop-
agate the uncertainties in L(!0,�) into the reconstructedR(!) using Bayes’ theorem.

Results.— Although the method discussed above is en-
tirely general and applicable to a broad range of self-
bound systems modeled by NQS in continuum Hilbert
spaces, we demonstrate its e↵ectiveness in computing
nuclear photoabsorption cross-sections. At interme-
diate energies, the transition current is well approxi-
mated by the translation-invariant dipole operator Ô =∑A

i qi (zi −Zcm), where qi is the charge of nucleon i, zi
is the z component of its position vector, and Zcm de-

notes the z component of the center-of-mass vector of
the nucleus.

As a first application, we consider the deuteron, as
this simple system allows us to benchmark the NQS-
LIT method against a virtually exact numerical solution
of the ordinary di↵erential equation that determines the
ground-state and LIT wave functions. Since model “o”
does not include tensor or spin-orbit terms,  0 and  L

contain only the s-wave and p-wave contributions, re-
spectively, the di↵erential equations to be solved depend
only on the distance between the proton and the neutron.
As shown in the upper panel of Fig. 1, the NQS results
agree with the exact solution to an accuracy better than
1% — both are obtained with � = 10 MeV. This accuracy
is compared in the lower panel of Fig. 1 with the error
bound we determined, and is found to be much better
for all values of !.

Inverting the LIT using the basis expansion proce-
dure and maximum-entropy algorithms discussed earlier,
we can recover the energy dependence of the response
functions and the associated uncertainties. The total
photoabsorption cross section is then given by ��(!) =
4⇡2↵!R(!), where ↵ is the fine-structure constant. In
Fig. 2, we compare the NQS predictions with experimen-
tal data from Ref. [49]. The basis expansion inversion
method shows excellent agreement with the experimen-
tal data, regardless of the numberNmax of basis functions
used to expand the response—we verified that increasing
the basis size up to N = 16 did not a↵ect the results. The
inversion based on maximum-entropy also yields cross
sections that agree well with the data, within uncertain-
ties. This agreement is particularly remarkable given the
simplicity of the input Hamiltonian. In this regard, we
note that two-body currents are implicitly accounted for

FIG. 2. Deuteron photo-disintegration cross section as a func-
tion of photon energy, obtained from NQS calculations of the
LIT. The basis function results (solid orange lines) and the
Maximum Entropy reconstruction (blue histogram with er-
ror bars) show good agreement with experimental data from
Ref. [49].
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FIG. 3. (Upper panel) LIT of the 4He dipole response function
computed at � = 10 MeV. The NQS calculations (orange cir-
cles) are compared to the highly-accurate EIHH results (solid
blue line). (Lower panel) The statistical (blue circles), sys-
tematic (orange circles), and total (green circles) errors of the
NQS calculations are shown alongside the di↵erence between
the EIHH and NQS results (solid red line).

by means of the Siegert theorem [50].

In Fig. 3, we compare the LITs of 4He computed
using the NQS approach with those obtained via the
e↵ective interaction hyperspherical harmonics (EIHH)
method [51], which provides extremely accurate solutions
for A ≤ 4 nuclei. Similar to the deuteron case, excellent
agreement is also achieved for 4He. A detailed analysis
of the errors, shown in the lower panel of Fig. 3, reveals
that the maximum discrepancy between NQS and EIHH
remains at the percent level, except in the high-energy
region of the spectrum, where the LIT is already small.
Our theoretical error bound is significantly looser, ex-
ceeding 20% for certain ! � 75 MeV, indicating the need
for refined error estimates.

Finally, in Fig.4, we present the photodisintegration
cross section of 4He, obtained by inverting the LIT com-
puted within the NQS framework, and compare it with
experimental data from Ref.[6]. Similar to the deuteron
case, both the basis-expansion inversion method and the
maximum entropy approach yield results that agree re-
markably well with experiment, especially considering
the simplicity of the input Hamiltonian. In fact, the
agreement appears even better than that achieved in
Refs. [23, 52], which used higher-resolution chiral Hamil-
tonians. Notably, the position of the peak is accurately
reproduced without the need to shift the theoretical

curves to match the experimental threshold. We note
that these cross sections were obtained with � = 10 MeV;
however, we explicitly verified that using � = 5 MeV pro-
duces fully compatible results, with the basis-expansion
inversion curves overlapping.

Conclusions.— In this work, we introduced a com-
putational protocol that combines variational Monte
Carlo methods based on NQS with the LIT technique
to address the challenging problem of computing dy-
namical properties of self-bound systems in continuous
spaces. While this framework is applicable to quan-
tum many-body systems spanning a wide range of energy
scales—including atoms and molecules—our initial focus
is on applications in nuclear physics. Our approach ex-
tends the reach of high-resolution continuum QMCmeth-
ods to low-energy response functions, including those rel-
evant for photodisintegration cross sections, which un-
til now have only been computed using basis-expansion
methods [21, 23, 26, 27].

In addition to providing accurate estimates of the re-
sponse functions, our protocol enables a reliable assess-
ment of both statistical and systematic uncertainties.
The statistical uncertainties can be readily estimated
through Monte Carlo sampling. To address the system-
atic component, we derived a general error-bound lemma
applicable to all LIT-based methods. We validated this
bound numerically through comparisons with highly ac-
curate few-body calculations. This analysis revealed that
the upper bound on the error can occasionally be overly
conservative, underscoring the need for further refine-
ment of the theoretical estimates.

Both the statistical and systematic uncertainties of the
LIT are propagated to the response function by lever-
aging an advanced version of the Maximum Entropy

FIG. 4. Photo-disintegration cross section of 4He as a func-
tion of photon energy, obtained from NQS calculations of the
LIT. The basis function results (solid orange lines) and the
Maximum Entropy reconstruction (blue histogram with er-
ror bars) show good agreement with experimental data from
Ref. [6].
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EXTENDED FACTORIZATION SCHEME
One-body current
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FIG. 11. Double-di↵erential cross section for the ⌫µ + 12C ! µ� + X process at E⌫ = 1000MeV,

✓µ = 30� (upper panel), and E⌫ = 1000MeV, ✓µ = 70� (lower panel). The di↵erent curves are the

same as in Fig. 10.
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FIG. 10. Electron- 12C scattering cross sections for four di↵erent combinations of Ee and ✓e.

The short-dashed (blue) line and dashed (red) line correspond to the one- and two-body current

contributions, respectively. The IA results in the quasi-elastic peak has been corrected to include

FSI following Ref. [18]. The dash-dotted (magenta) lines represnt ⇡ production contributions. The

solid (black) line is the total results obtained summing the three di↵erent terms. Note that all of

them have been obtained using the generalized factorization scheme and the SF of Ref. [11].

The results obtained for the double-di↵erential CC ⌫µ-12C scattering cross sections are

shown in Fig. 11 for E⌫ = 1 GeV, ✓µ = 30� (upper panel), and E⌫ = 1 GeV, ✓µ = 70� (lower

panel). The calculations have been carried out within the same framework employed in the

electromagnetic case. The only additional ingredients are the axial terms in the di↵erent

current operators and in the ⇡-production amplitudes. Consistently with the results of

Fig. 10 and with Ref. [29], the relative strength of the MEC contribution increases with the

scattering angle, reflecting the primarily transverse nature of this term even when axial terms

are present. To the best of our knowledge, precise inclusive neutrino double-di↵erential cross

section data covering the �(1232) region are not available, yet. Comparing our theoretical

calculations with such data requires a convolution with the neutrino energy spectrum of the

experiments.

23

N. Rocco, et al. Physical Review C 100, 045503 (2019)



INTERFERENCE PUZZLE

42

3

yXyy

yXyk

yXy9

yXye

yXy3

ԇ յ�Ӽϵ զ(J
2o

φ )

:6J* Ԅφս
:6J* Ԅφս�ϵս
SqA�
qQ`H/ /�i�
a�+H�v /�i�

yXyy

yXyk

yXy9

yXye

yXy3

ԇ յ�Ӽϵ զ(J
2o

φ )

yXyy

yXyk

yXy9

yXye

yXy3

y 8y Ryy R8y kyy k8y jyy j8y 9yy

ԇ յ�Ӽϵ զ(J
2o

φ )

ᆂ(J2o)

FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!
+
el

d! e�!⌧
R↵(q,!)

[Gp

E
(q,!)]2

, (2)

where Gp

E
(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!el is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵
(q)e�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,

(3)
where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E
(q,!) [15]. The

calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E0) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?

f
� E0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
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fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform
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QMC-BASED INTRANUCLEAR CASCADE

Final state interactions

Introduction

MC generators

NuWro

Final state interactions
FSI
Intranuclear cascade
LP effect
Formation time
NOMAD
NC π
Summary

MB NCEL analysis

Backup slides

Tomasz Golan NuWro @ HEP UW 39 / 61

FSI describe the propagation of particles created in a primary
neutrino interaction through nucleus

All MC generators (but GIBUU) use intranuclear cascade model

Ingredients: 
• Propagation of particles  
• Elastic scattering 
• Pion Production  
• Pion Absorption  

Figure from T. Golan

Developed a semi-classical intra-nuclear cascade that assume classical propagation between 
consecutive scatterings and use QMC configurations as inputs;
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QMC-BASED INTRANUCLEAR CASCADE
Accept/reject algorithm based on a “cylinder” and a 
“gaussian” distributions
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A standard mean free path approach is also 
implemented 
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PROTON-CARBON CROSS SECTION

• Define a proton bean with kinetic energy 
Tp, uniformly distributed over A

• Propagate each proton in time and check 
for scattering at each step;

• Monte Carlo cross section defined as:

�MC = A
Nscat

Ntot

7

path, allowing us to proceed to more complex tests of our
INC.

B. Proton-carbon Scattering Data

Reproducing the proton-nucleus cross section measure-
ments is an important test of the accuracy of the INC
model. Proton-nucleus scattering probes the nucleon-
nucleon cross section which is typically divided into two
pieces, the reaction and the elastic cross sections,

�tot = �R + �el. (12)

In the elastic part, no energy is transferred into nuclear
excitation and the nucleus remains unbroken, that is n+
A ! n+A. The reaction cross section includes transition
to nuclear excited states, n + A ! n + A⇤, as well as
inelastic reactions n + A ! X.

Several experiments have been carried out to deter-
mine the total reaction cross section, see for example
Refs. [66–71]. The latter is typically obtained by measur-
ing the total cross section from the change in intensity of
a calibrated proton beam traversing a carbon target and
then subtracting the calculated elastic cross section.

We compute �R neglecting Coulomb interactions, as
they are expected to contribute mostly to �el. We obtain
the proton-carbon scattering cross section by the follow-
ing simulation (with a di↵erent setup from the proposed
algorithm of Fig. 2). We define a beam of protons with
energy E, uniformly distributed over an area A (orthogo-
nal to the proton momenta). Note that A � ⇡R2, where
R is the radius of the carbon nucleus. The carbon nucleus
is situated in the center of the beam. We propagate each
proton in time and check for scattering at each step. The
Monte Carlo reaction cross section is then defined as the
area of the beam times the fraction of scattered events,
namely,

�MC = A
Nscat

Ntot
. (13)

This is not exactly the experimentally measured reaction
cross section. Angular and/or momentum acceptances
for the attenuated beam are finite, and we do not in-
clude these e↵ects in our calculation. Nevertheless, we
do not expect such e↵ects to change our results signif-
icantly, and thus �MC should be a good approximation
of the reaction cross section. Moreover, imposing Pauli
blocking on both outgoing nucleons will e↵ectively sup-
press the contribution of elastic transitions.

The two panels of Fig. 6 display the proton-carbon
scattering cross sections as a function of the proton ki-
netic energy. In the upper panel our Monte Carlo simu-
lations are compared with experimental data in the en-
tire energy region in which data are available [71], while
the lower panel focuses on proton kinetic energies below
200 MeV. The curves correspond to di↵erent implemen-
tations of the INC. These implementations are composed
of three ingredients, namely,

FIG. 6: Proton-carbon scattering total cross section as
a function of the incoming proton kinetic energy. In the

upper panel the entire energy range for which
experimental data are available is shown. In the lower
panel the low energy region is magnified. The red and
blue curves correspond to the cylinder algorithm where
the mean field (MF) and quantum Monte Carlo (QMC)
configurations have been used, respectively. The green
and orange curves are the same but for the Gaussian
interaction probability. The results displayed in purple
refers to the mean free path (MFP) calculations. The
solid and dashed curves corresponds to the use of the

GEANT4 [64] and NASA [65] parametrization of the cross
section in the interaction probability, respectively. The

data points are from Ref. [71]

1. Nuclear configuration: quantum Monte Carlo
(QMC) or mean field (MF);

2. Interaction model: cylinder (cyl), Gaussian
(Gauss), or mean free path (MFP);

3. Nucleon-nucleon cross section: elastic (El) or total
(Tot).

J. Isaacson, et al., Physical Review C 103, 015502 (2021)
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FIG. 7: Carbon transparency as a function of the
proton kinetic energy. The di↵erent curves indicate
di↵erent approaches used as described in Fig. 6. The
experimental data are taken from Refs. [4, 6, 7, 74–76]

energy and scattering angle of the electron, one can un-
ambiguously define the momentum q transferred to the
target nucleus. The direction and the momentum of the
nucleon in the final state has to be determined apply-
ing energy- and momentum-conservation relations and
accounting for the Fermi motion of the struck nucleon in
the initial state. It follows that defining the kinematics of
the hadronic final state after the hard scattering depends
on the nuclear model of choice. However, in the analysis
of di↵erent experiments, the data are given as a function
of the average nucleon momentum (and kinetic energy)
given by p = q (Tp =

p
|q|2 + m2

N � mN ).
In Fig. 7 we compare the nuclear transparency data

from Refs. [4, 74] to our predictions. The di↵erent lines
are the same as for Fig. 6. We find an overall satis-
factory agreement between the Gaussian and cylinder
curves with the experimental data once inelastic e↵ects
are taken into consideration; this corresponds to the re-
sults using the NASA parametrization for the nucleon-
nucleon cross sections. For moderate to large values of
the proton kinetic energy, pions play an important role
in quenching the transparency. Moreover, the Gaussian
and cylinder curves exhibit correct behavior consistent
with the data also for small Tp where the simplified MFP
model described above fails. As in Fig. 6, we observe
very small di↵erences between the QMC and MF calcu-
lations. For low and intermediate kinetic energies, the
transparency obtained from the MFP approach is much
smaller than the corresponding results for the cylinder
and Gaussian curves.

Finally, we discuss the origin of the discrepancies be-
tween the MFP and the cylinder algorithm with MF
configurations for the p-carbon cross section and carbon
transparency. Both approaches rely on the single-nucleon
density distribution to sample the initial nucleon posi-

p
�/⇡

d`

r1
p

�/⇡

d`
x
r1

FIG. 8: Left panel: a schematic picture of an external
proton scattering o↵ the nucleus. The distance from the

proton to the center of the nucleus is r1, and the
propagation step is d`. The radius of the cylinder is

given by
p

�/⇡ where � is the interaction cross section
between the proton and a background particle; d` is

also the height of the cylinder. Right panel: same as for
the left one, but for a nucleon kicked inside the nucleus.
This follows what is done in the nuclear transparency

event simulations.

tions (nuclear correlations are neglected) but use di↵er-
ent definitions of the interaction probability. The left
panel of Fig. 8 schematically shows one contribution to
the p-carbon cross section in which the proton is at a dis-
tance r1 larger than the nuclear radius. In the cylinder
algorithm, the interaction probability is equal to one if a
particle is present in the volume defined by: V = d` · �.
Both �pp and �np have a maximum for low proton mo-
mentum values. Hence, for low momenta, the probability
of interaction could be non-vanishing even when the pro-
jectile proton is far from the center of the nucleus.
On the other hand, within the MFP approach, if the
probe is outside the nucleus then the approximation of a
constant density ⇢(r1) = 0 within the volume V = d` · �
yields a vanishing interaction probability. This di↵erent
behaviour leads to a lower p-carbon cross section using
the MFP approach, as observed in Fig. 6. When com-
puting the nuclear transparency we kick a nucleon which
is located inside the nucleus as displayed in the right
panel of Fig. 8. In this case, assuming a constant density
is more likely to overestimate the interaction probabil-
ity, especially for low momenta where the cross section is
larger. This observation is consistent with Fig. 7 where
the MFP curves predict a larger number of interactions,
and therefore a lower nuclear transparency, for small Tp.

D. Correlation e↵ects

The role played by nuclear correlations in final state in-
teractions of the recoiling nucleon has been investigated
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NUCLEAR TRANSPARENCY

• Randomly sample a nucleon inside the 
nucleus from our configurations 

• Give the nucleon a kinetic energy Tp  and 
propagate it in the nuclear medium

TMC = 1� Nhits

Ntot

J. Isaacson, et al., Physical Review C 103, 015502 (2021)



ACHILLES
“A CHIcago Land Lepton Event Simulator”, ACHILLES. 

J. Isaacson, et al., Physical Review D 107, 033007 (2023)

Fp;n
1 ¼ Gp;n

E þ τGp;n
M

1þ τ
; Fp;n

2 ¼ Gp;n
M −Gp;n

E

1þ τ
; ð21Þ

with τ ¼ Q2=4m2
N . Therefore, the electromagnetic current

can be schematically written as jμ1b;EM ¼ jμγ;S þ jμγ;z where
the first is the isoscar term and the second is the isovector
multiplied by the isospin operators τz. The above set of
equations can be readily extended to the electroweak case
and highermultiplicity processes; an automation for arbitrary
leptonic tensors was developed in [79].
The use of a realistic spectral function combined with a

factorization scheme has proven to reproduce a large
fraction of the available electron scattering data (see
Ref. [96] and references therein). Over the past few years,
the factorization scheme has been extended to account for
two-nucleon currents and pion-production mechanisms
[59,88,97–100]. The focus of the present work is the
quasielastic region, and we leave the implementation of
additional channels to a future work.

B. Comparison to data

The first comparison between ACHILLES and data can
be found in Fig. 1 (for technical details of ACHILLES, see
Appendix B). We present the ACHILLES inclusive e-C
quasielastic cross section (red histogram) against data
as a function of the energy transfer ω. Data are taken
from several experiments at different incoming electron
energy and outgoing electron angle, from top left to bottom
right: 730 MeV and 37° [101]; 961 MeV and 37.5° [102];
1300MeVand 37.5° [102]; and 2500MeVand 15° [103]. In
all four cases, the quasielastic prediction of ACHILLES
matches the data well or is slightly below it. Although other
cross-section components are not included in ACHILLES
and could contribute to the first peak, we find this level of
agreement quite promising. Note that meson-exchange
currents provide additional strength in thedip regionbetween
the quasielastic and the resonance peak [84]. The second
peak has large contributions from resonance production, a
mechanism which has not yet been implemented in

FIG. 1. Comparison of the ACHILLES event generator to electron-carbon scattering data. Top left: scattering with an incoming energy
of 730 MeVat an angle of 37°; data are from [101]. Top right: scattering with an incoming energy of 961 MeVat an angle of 37.5°, data
are from [102]. Bottom left: scattering with an incoming energy of 1300 MeV at an angle of 37.5°, data are from [102]. Bottom right:
scattering with an incoming energy of 2500 MeV at an angle of 15°, data are from [103].
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033007-6

EQE ¼ 2mNϵþ 2mNEl −m2
l

2ðmN − El þ pl cos θlÞ
; ð31Þ

where mN is the mass of the nucleon, ϵ is the average
nucleon separation energy (we use 21 MeV for carbon),
ElðplÞ is the energy (momentum) of the outgoing lepton,
and θl is the angle of the outgoing lepton with respect to
the beam axis. The different scheme choices discussed in
this paper are compared to the measured EQE distribution
for a 1.159-GeV electron beam on carbon from the CLAS
data [76] in Fig. 4.
Here the peak around the beam energy is dominated by

the quasielastic contribution, while the tail towards lower
values of EQE is dominated by meson-exchange currents
and resonance production. Therefore, we only expect our
results to approximately reproduce the peak, which is what
is shown. The agreement with the data for larger values of
EQE is likely to be improved by the interference effects
neglected by intranuclear cascades. However, a more
detailed analysis of the discrepancy will be carried out
in the future when meson-exchange currents are included in
ACHILLES. Analogously to Fig. 3, this distribution has no
information about the outgoing protons contained within it.
Therefore, we expect that the prediction should be insen-
sitive to the cascade parameters, as can be seen in the small
spread of the colored lines.
In liquid argon time-projection chamber experiments,

such as MicroBooNE and DUNE, the ionization energy is
currently the primary means to reconstruct the incoming
neutrino energy. In this case, the calorimetric energy is
defined as

Ecal ¼
X

i

ðEi þ ϵiÞ; ð32Þ

where Ei is the energy of the lepton or pions or the kinetic
energy of the protons, and ϵ is the average nucleon

separation energy. In the CLAS data, Ecal was calculated
for events that contained exactly one detected proton and
zero detected pions [76]. The comparison between the
different schemes and the data is shown in Fig. 5, with
beam energies of 1159 MeV in the top panel, 2257 MeV in
the middle panel, and 4453 MeV in the bottom panel. Since
neutrons do not contribute to the calorimetric energy, we
expect this observable to be sensitive to the modeling of the
intranuclear cascade. The peak of these distributions corre-
spond to the beam energy and is dominated by the
quasielastic contribution. The tail towards lower energies

FIG. 4. Comparison of the quasielastic energy reconstructed for
an electron beam of 1159 MeV. Data are taken from Ref. [76].
The definition of EQE can be found in Eq. (31). The red dashed
vertical line marks the true beam energy.

FIG. 5. Comparison of the calorimetric energy reconstructed
for an electron beam of 1159 MeV (top), 2257 MeV (middle),
and 4453 MeV (bottom). Data are taken from Ref. [76]. The
definition of Ecal can be found in Eq. (32).
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ACHILLES
Included pion-production based on the DCC model and consistent pion propagation

J. Isaacson, N. Steinberg et al., in preparation



Wigner quasi-probability distributions retain the correlations between positions and momenta

WIGNER FUNCTIONS

53A. Tropiano, N. Rocco, R. B. Wiringa, in preparation



CONCLUSIONS AND OUTLOOK
• QMC methods allow for a multi-scale description of atomic nuclei, including:

• NQS are promising to extend the QMC to larger systems and to low-energy responses

• The extended factorization scheme allows to reach larger energy and model pion production

➡ Real-time dynamics in progress. 

➡ Inclusion of high-resolution interactions underway (positive test in cold atoms). 

➡ Response functions.

➡ Coordinate and momentum-space distributions.

➡ Wigner quasi-probability distributions.

➡ Spectral functions (not shown in this talk)

➡ Ongoing implementation in ACHILLES 


