Towards neutrino-nucleus scattering with coupled-cluster theory

In collaboration with:

B. Acharya, L. Doria, G. Hagen, W. Jiang, M. Mihovilovich, T. Papenbrock, C. Payne, I. Reis, J.E. Sobczyk

Sonia Bacca JGU mitp

Neutrinos and nuclei

Are elusive

Symmetry magazine

Their interactions with nuclei

ph.ed.ac.uk

oscillate

Symmetry magazine

might be own antiparticles

APS Carin Cain

is essential for interpreting the results of neutrino experiments and understand their properties

2

Coherent elastic neutrino scattering (CEvNS)

The neutrino exchanges a Z-boson with the nucleus, that recoils as a whole (no internal excitation).

Coherent up to neutrino energies of 50 MeV

Signature: tiny energy deposited by nuclear recoils in the target material.

First proposed in Freedman, PRD (1974)

First observed in Akimov et al. Science (2017)

Target nuclei: Cs, I, Ar, Na, Ge

3

Neutrino oscillations Next generation experiments

https://cerncourier.com/

Target nuclei: ¹²C, ¹⁶O, ⁴⁰Ar

https://lbnf-dune.fnal.gov/

Neutrino-nucleus interactions

5

Lepton-nucleus scattering

✓-A scattering

 $\nu_l/\bar{\nu}_l$

e-A scattering

 l^{\pm}

6

Lepton-nucleus scattering

✓-A scattering

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \,\mathrm{d}\omega} \bigg|_{\nu/\bar{\nu}} = \sigma_0 \left[\ell_{CC}\right]_{\nu/\bar{\nu}}$$

$$\frac{d^2\sigma}{d\Omega d\omega}\Big|_e = \sigma_M \left[\frac{Q^4}{q^4}\right]$$

$R_{CC} + \ell_{CL} R_{CL} + \ell_{LL} R_{LL} + \ell_T R_T \pm \ell_{T'} R_{T'}$

E4~ goals

- Develop a solid theory that works for both electrons and neutrinos
- Use electron-scattering data to validate the theory
- Use theory progress to motivate new experiments with electrons
- Quantify "nuclear physics uncertainties" in ~-physics while learning nuclear structure

Nuclear structure theory

9

The ab-initio approach

- Start from protons and neutrons
- Solve the quantum mechanics of A=Z+N interacting nucleons

$$H|\Psi\rangle = E|\Psi\rangle$$
$$H = T + V$$
$$V = V_{NN} + V_{3N} + \dots$$

from chiral effective field theory

Find numerically solutions with controlled approximations and assess errors

Credits: ORNL, LeJean Hardin and Andy Sproles

Exciting times

Reaching heavier and heavier nuclear systems

Fig. from B.Hu et al., Nature Phys. **18**, 1196 (2022)

11

How do we use ab-initio nuclear structure for neutrino physics?

- 1. Solve for the ground state
- 2. Calculate response functions

1. Solve for the ground state

Coupled-cluster theory

Hagen et al., Rep. Prog. Phys. 77, 096302 (2014)

$$|\psi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle = e^{T}|\phi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle$$

CCSD algorithm scales as ~A⁶

cluster expansion

CCSDT

CEvNS from the standard model

$$\frac{d\sigma}{dT}(E_{\nu},T) \simeq \frac{G_F^2}{4\pi} M \left[1 - \frac{MT}{2E_{\nu}^2}\right] Q_W^2 F_W^2(q^2)$$

Weak charge

 $Q_W = N - (1 - 4\sin^2\theta_W)Z$

Weak form factor

$$F_W(q^2) = \frac{1}{Q_W} \left[NF_n(q^2) - (1 - 4\sin^2\theta_W) ZF \right]$$

C. Payne, SB et al., Phys. Rev. C 100, 061304(R) (2019)

exp: in Mainz, Ottermann et. al., Nucl. Phys. A **379**, 396 (1982)

CEvNS from the standard model

C. Payne, SB et al., Phys. Rev. C 100, 061304(R) (2019)

Small nuclear structure uncertainty in the cross section: 2% at q=50 MeV

2. Calculate response functions

The continuum problem

$R(\omega) = \oint_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$

Exact knowledge limited

bound excited state

2-body break-up

•••

3-body break-up

A-body break-up

Excitation Energy

Lorentz Integral Transform

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

$$L(\sigma, \Gamma) = \frac{\Gamma}{\pi} \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2} + \frac{R(\omega$$

Reduce to a bound-state-like equation

$$(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = \Theta | \psi_0 \rangle \xrightarrow{\text{LIT-CC}} (\bar{H} - E_0 - \sigma + i\Gamma) | \tilde{\Psi}_R \rangle = \bar{\Theta} | \Phi_0 \rangle$$
$$\bar{H} = e^{-T} H e^T$$
$$\bar{\Theta} = e^{-T} \Theta e^T \qquad | \tilde{\Psi}_R \rangle = \hat{R} | \Phi_0 \rangle$$

SB et al., Phys. Rev. Lett. 111, 122502 (2013)

CC formulation of LIT: benchmark on 4He

<u>SB et al., Phys. Rev. Lett. 111, 122502 (2013)</u>

Medium-mass nuclei

<u>SB et al., PRC 90, 064619 (2014)</u>

Applications to lepton-nucleus scattering

Electron scattering with LIT-CC ⁴⁰Ca(e,e')X

Electron scattering with LIT-CC ¹⁶O(e,e')X

Electron scattering with LIT-CC ¹⁶O(e,e')X

BNN from Sobczyk, Rocco, Lovato, Phys. Lett. B 859 (2024) 139142

Acharya, Sobczyk, SB, et al. aXiv:2410.05962, to appear on PRL

What about higher energies?

Spectral function formalism

$$\sigma \propto |\mathcal{M}|^2 S(E,p)$$

Factorized interaction vertex (relativistic, pion production...) Spectral function

Probability of finding nucleon with (E, \mathbf{p}) in nuclear ground state

Spectral function formalism for ⁴He

Sobczyk, SB, et al., PRC 106, 034310(2022)

SCGF: Rocco, Barbieri, PRC 98 (2018) 022501

Spectral function formalism for 4He

Sobczyk, SB, et al., PRC 106, 034310(2022)

Spectral function formalism for ¹⁶O

<u>Sobczyk, SB, PRC 109, 044314 (2024)</u>

$e^{+16}O \rightarrow e' + X$

growing **q** momentum transfer \rightarrow final state interactions play minor role

SF works at high-energy/high-momentum

Spectral function formalism for ¹⁶O

LIT-CC works at low-energy/low-momentum

$e^{+16}O \rightarrow e' + X$

<u>Sobczyk, SB, PRC 109, 044314 (2024)</u>

growing **q** momentum transfer \rightarrow final state interactions play minor role

FSI for ¹⁶O from optical potential

$e + {}^{16}O \rightarrow e' + X$

<u>Sobczyk, SB, PRC 109, 044314 (2024)</u>

Towards neutrino scattering: T2K data With ab initio Spectral function

 $\nu_{\mu} + {}^{16}\mathrm{O} \to \mu^- + X$

Sobczyk, SB, PRC 109, 044314 (2024)

see talk by Immo Reis next week

e4~ experiments in Mainz

¹²C inelastic electron scattering

Mihovilovic, Doria et al, Few Body Syst. 65 (2024)

E=855 MeV/c, θ =70°

¹²C inelastic electron scattering

More kinematics...

⁴⁰Ar elastic electron scattering

Littich, Doria et al., arXiv:2503.18965

A1 with new gas-jet target

⁴⁰Ar inelastic electron scattering

Inelastic, in preparation

Total data on disk

Nucleus	Beam Energy (MeV)	Scattering angle (deg)	Target	Status
12 C	855	70	C-foil	Published
12 C	600	25	C-foil	Finalizing Analysis
12 C	600	28.8	C-foil	Finalizing Analysis
12 C	600	36	C-foil	Finalizing Analysis
12 C	600	60	C-foil	Finalizing Analysis
12 C	600	70	C-foil	Finalizing Analysis
⁴⁰ Ar	705	20	Jet Target	Analysis in progress
⁴⁰ Ar	705	32	Jet Target	Analysis in progress
16 0	600	30	Sapphire (Al ₂ O ₃)	Analysis Started
16 O	600	70	Sapphire (Al ₂ O ₃)	Analysis Started
44 Ti	600	30	Ti-foil	To analyze
44 Ti	600	70	Ti-foil	To analyze

Conclusions and outlook

- Remarkable progress in ab initio calculations
- Successful interplay of theory and experiment
- Electroweak processes are fascinating because they allow to connect nuclear physics to other areas of physics
- Challenges ahead of us: open-shell nuclei, exclusive cross sections, pion-production, consistent optical potentials, ...

Alexander von Humboldt

Stiftung/Foundation

The Lorentz integral transform (LIT)

The inversion is performed numerically with a regularization procedure (ill-posed problem)

Message: Inversions are stable if the LIT is calculated precisely enough

Uncertainty estimation (responses)

Assessing EFT truncation error

Order k EFT prediction: $y_k(p)$

EFT truncation error: $\delta y_k(p)$ =

Gaussian process (GP) to assess chiral truncation using 2 orders of expansion

$$y_{ref}(p) \sum_{n=0}^{k} c_n(p) \left(\frac{p}{\Lambda}\right)^n$$
$$= y_{ref}(p) \sum_{n=k+1}^{\infty} c_n(p) \left(\frac{p}{\Lambda}\right)^n$$

Draws from an underlying GP