Modularity of Calabi-Yau Fourfolds and Applications to M-Theory Fluxes

Based on work in collaboration with H. Jockers and P. Kuusela

Sören Kotlewski

The Arithmetic of Calabi-Yau Manifolds

MITP, 20th March 2025

Outline

- 1. Motivation: Flux Compactifications in String Theory
- 2. Modularity of Calabi-Yau Manifolds
- 3. The Deformation Method for Calabi-Yau Fourfolds
- 4. Example of a modular Calabi-Yau Fourfold
- 5. Conclusions

Motivation: Supersymmetric Flux Vacua

Type IIB string theory compactified on a family of CY 3-folds X_z^3

• Orientifold projection gives 4d, $\mathcal{N} = 1$ SUGRA as low energy EFT Internal three-form fluxes $F, H \in H^3(X_z^3, \mathbb{Z})$ provide a superpotential

[Gukov, Vafa, Witten, 2000]

$$W = \int_{X_z^3} \Omega(z) \wedge (F - au H)$$

W furnishes a scalar potential

$$V(z,\tau) = e^{\kappa} (|\nabla_z W|^2 + |\nabla_\tau W|^2)$$

Supersymmetric vacuum constraints: $V(z, \tau) = W(z, \tau) = 0$, i.e.

$$\partial_z W = 0$$
 , $\partial_\tau W = 0$, $W = 0$

implying in particular

$$F, H \in \left(H^{2,1}(X_z^3, \mathbb{C}) \oplus H^{1,2}(X_z^3, \mathbb{C})\right) \cap H^3(X_z^3, \mathbb{Z})$$

[Taylor, Vafa, 2000

Motivation: M-Theory Fluxes

M-theory compactified on a family of CY 4-folds X_z^4

► Low energy description: 3d, $\mathcal{N} = 1$ SUGRA Superpotential from internal four-form flux $G \in H^4(X_z^4, \mathbb{Z})$:

$$W = \int_{X_z^4} \Omega(z) \wedge G$$

► Similarly: Supersymmetric flux vacua only if $\partial_z W = W = 0$ implying $G \in H^4(X_z^4, \mathbb{Z}) \cap (H^{4,0}(X_z^4, \mathbb{C}) \oplus H^{2,2}(X_z^4, \mathbb{C}) \oplus H^{0,4}(X_z^4, \mathbb{C}))$

Question: Under which conditions does X_z^4 admit such a sublattice?

 \Rightarrow Modularity

[Kachru, Nally, Yang, 2020], [Candelas, de la Ossa, van Straten, 2021], [Candelas, De la Ossa, Kuusela, McGovern, 2023]

Modularity: Elliptic Curve \mathcal{E}

Consider an elliptic curve \mathcal{E}/\mathbb{F}_p defined over finite fields:

 $\mathcal{E}/\mathbb{F}_p = \Gamma^{\mathrm{fr}_p}$ set of fixed points of the frobenius action

$$\operatorname{fr}_{p}:(x_{1},\ldots,x_{n})\mapsto(x_{1}^{p},\ldots,x_{n}^{p})$$

Lefschetz fixed-point theorem:

$$N_p(\mathcal{E}) = |\Gamma^{\mathrm{fr}_p}| = \sum_{k=0}^{2} (-1)^k \mathrm{tr}(\mathrm{Fr}_p^k) = 1 - a_p + p$$

Frobenius endomorphisms on p-adic cohomology groups

$$\operatorname{Fr}_p^k: H^k(\mathcal{E}, \mathbb{Q}_p) \to H^k(\mathcal{E}, \mathbb{Q}_p)$$

Characteristic polynomial of Fr_p^1 :

$$R_1^p(\mathcal{E},T) = \det(\mathbb{1} - T(\mathsf{Fr}_p^1)^{-1}) = 1 - a_p T + p T^2$$

Modularity of Elliptic Curves:

$$f(\tau) = \sum_{p \text{ prime}} a_p q^p \qquad q = e^{2\pi i \tau}$$

defines a weight-two modular form.

Modularity: The local Zeta-Function

Define the local zeta function

$$\zeta_p(X,T) := \exp\left(\sum_{r=1}^\infty N_{p^r}(X) \frac{T^r}{r}\right)$$

as generating function for the point counts $N_{p^r}(X) = |X/\mathbb{F}_{p^r}|$

Weil Conjectures:

[Weil, 1949]

$$\zeta_{p}(X,T) = \frac{R_{1}^{p}(X,T) \cdots R_{2n-1}^{p}(X,T)}{R_{0}^{p}(X,T) \cdots R_{2n}^{p}(X,T)}$$

 $R_k^{\rho}(X, T) = \det(\mathbb{1} - T(\operatorname{Fr}_p^k)^{-1})$ characteristic polynomials of the Frobenius endomorphisms $\operatorname{Fr}_p^k : H^k(X, \mathbb{Q}_p) \to H^k(X, \mathbb{Q}_p)$

For elliptic curves:

$$\zeta_p(\mathcal{E},T) = \frac{1-a_pT+pT^2}{(1-T)(1-pT)}$$

for $a_p = p + 1 - N_p(\mathcal{E})$

Modularity: Serre's Modularity Conjecture

Serre's Modularity Conjecture: [Serre, 1975]

One-to-one correspondence between two-dimensional representations $\rho: Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{F}_{p^r})$ and modular forms that are Hecke eigenforms.

Note: $\langle fr_p \rangle \subseteq Gal(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ is dense subgroup. • $Fr_p^k: H^k(X, \mathbb{Q}_p) \rightarrow H^k(X, \mathbb{Q}_p)$: b^k -dimensional reps. of $Gal(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ • Reps. of $Gal(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ can be lifted to reps. of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$

For elliptic curves: Modularity of \mathcal{E} is a special case of Serre as $b^1(\mathcal{E}) = 2$.

If
$$H^{k}(X, \mathbb{Q}_{p}) = \Lambda_{p} \oplus \Sigma_{p}$$
 such that $\operatorname{Fr}_{p}(\Lambda_{p}) \subseteq \Lambda_{p}$:
 $\operatorname{Fr}_{p}|_{\Lambda_{p}} : \Lambda_{p} \to \Lambda_{p}$ defines a dim (Λ_{p}) -dimensional (sub-)rep. of fr_p
 $\operatorname{If} H^{k}(X, \mathbb{Z}) = \Lambda \oplus \Sigma$, then $H^{k}(X, \mathbb{Q}_{p}) = \Lambda_{p} \oplus \Sigma_{p}$ for almost all p .

Modularity: Modular Calabi-Yau manifolds

We call a Calabi-Yau n-fold X modular if

$$H^n(X, \mathbb{Q}_p) = \Lambda_p \oplus \Sigma_p$$
 , $\operatorname{Fr}_p(\Lambda_p) \subseteq \Lambda_p$, $\dim(\Lambda_p) = 2$

for almost all primes p.

Properties of modular Calabi-Yau manifolds:

- Fr_p $|_{\Lambda_p}$ defines a two-dimensional representation of Gal $(\overline{\mathbb{Q}}/\mathbb{Q})$.
- The characteristic polynomial $R_n^p(X, T)$ factorizes

$$R_n^p(X,T) = R_{\Lambda}^p(X,T) \cdot R_{\Sigma}^p(X,T)$$

for almost all primes p.

► If X is modular, $R^{p}_{\Lambda}(X, T) = 1 - a_{p}p^{\alpha}T + p^{\beta}T^{2}$ for some $\alpha, \beta \in \mathbb{N}_{0}$. The a_{p} determine the corresponding modular form via

$$f(au) = \sum_p a_p q^p \qquad q = e^{2\pi i au}$$

Modularity: Relation to Flux Vacua

Recall for type IIB string fluxes on a CY threefold X_3 :

$$F, H \in H^3(X_3, \mathbb{Z}) \cap \left(H^{2,1}(X_3, \mathbb{C}) \oplus H^{1,2}(X_3, \mathbb{C})\right)$$

for a supersymmetric flux vacuum. Hence

$$\Lambda_{\mathrm{flux}} := \langle F, H \rangle_{\mathbb{Q}} \subseteq H^{3}(X_{3}, \mathbb{Q})$$

defines a two-dimensional sub-representation

Necessary condition for supersymmetric flux vacua:

 X_3 has to be a modular Calabi-Yau threefold!

[Kachru, Nally, Yang, 2020], [Candelas, De la Ossa, Kuusela, McGovern, 2023] M-Theory fluxes on a CY fourfold X_4 :

 $G\in H^4(X_4,\mathbb{Z})\cap \left(H^{4,0}(X_4,\mathbb{C})\oplus H^{2,2}(X_4,\mathbb{C})\oplus H^{0,4}(X_4,\mathbb{C})
ight)$

Modular Fourfolds: Possibilities for Modularity

Two different choices of two-dimensional sub-reps. $\Lambda \subseteq H^4(X_4, \mathbb{Q})$:

"Attractor points":

$$\Lambda_{\mathsf{att}} \subseteq H^{4,0}(X_4,\mathbb{C}) \oplus H^{2,2}(X_4,\mathbb{C}) \oplus H^{0,4}(X_4,\mathbb{C})$$

Mimic the behaviour of rank-two attractor points of Calabi-Yau threefolds

"Attractive K3-points":

$$\Lambda_{\mathsf{AK3}} \subseteq H^{3,1}(X_4,\mathbb{C}) \oplus H^{1,3}(X_4,\mathbb{C})$$

Geometric origin from (a tate-twist of) an attractive K3 surface

Sufficient condition for *M*-theory flux vacua:

 X_4 attractor point \Rightarrow any $G \in \Lambda_{att}$ defines a suitable M-theory flux

[Jockers, S.K., Kuusela, 2023]

Recall that $R_n^p(X, T) = \det(\mathbb{1} - T(\operatorname{Fr}_p^n)^{-1})$

For a family of CY-threefolds X_z :

$$abla \mathsf{Fr}_{\rho}^{3} = \rho \mathsf{Fr}_{\rho}^{3}
abla$$

abla: Gauss-Manin connection on the vector bundle given by $H^3(X_z, \mathbb{Q}_p)$

Let $F_p(z)$ denote the matrix representing Fr_p^3 and $U_p(z) = F_p^{-1}(z)$, then

$$U_{\rho}(z) = E(\tilde{z}^{\rho})^{-1}U_{\rho}(0)E(\tilde{z})$$
 $\tilde{z} := \operatorname{Teich}_{\rho}(z)$

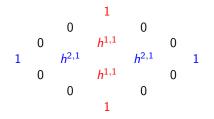
for $E_{ij}(z) = \mathcal{D}_i \varpi_j(z)$ the period matrix

• The D_i are generators of the Picard-Fuchs ideal

• For
$$h^{2,1} = 1$$
: $\mathcal{D}_i = \theta_z^i = (z\partial_z)^i$ for $i = 0, ..., 4$.

[Candelas, de la Ossa, Elmi, van Straten, 2019] [Candelas, de la Ossa, Kuusela, 2024]

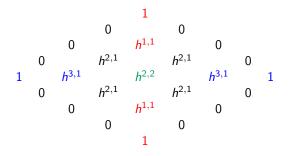
The Hodge diamond of a Calabi-Yau threefold



horizontal and vertical Hodge structure are separated
 The horizontal Hodge structure is determined by D_iΩ(z)

$$\zeta_{p}(X,T) = \frac{R_{3}^{p}(X,T)}{(1-T)(1-pT)^{h^{1,1}}(1-p^{2}T)^{h^{1,1}}(1-p^{3}T)}$$

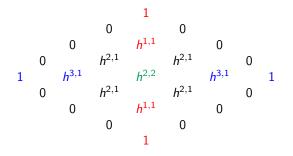
The Hodge diamond of a Calabi-Yau fourfold



H^{2,2}(*X*, ℂ) = *H*^{2,2}_h(*X*, ℂ) ⊕ *H*^{2,2}_v(*X*, ℂ) ⊕ *H*^{2,2}_⊥(*X*, ℂ)
 Assume Fr⁴_p to be compatible with this decomposition

$$\zeta_{p}(X,T) = \frac{R_{3}^{p}(X,T)R_{5}^{p}(X,T)}{(1-T)(1-pT)^{h^{1,1}}R_{4}^{p}(X,T)(1-p^{3}T)^{h^{1,1}}(1-p^{4}T)}$$

The Hodge diamond of a Calabi-Yau fourfold



H^{2,2}(*X*, ℂ) = *H*^{2,2}_h(*X*, ℂ) ⊕ *H*^{2,2}_v(*X*, ℂ) ⊕ *H*^{2,2}_⊥(*X*, ℂ)
 Assume Fr⁴_p to be compatible with this decomposition

$$\zeta_{p}(X,T) = \frac{R_{3}^{p}(X,T)R_{5}^{p}(X,T)}{(1-T)(1-pT)^{h^{1,1}}R_{h}^{p}(X,T)R_{\perp}^{p}(X,T)(1-p^{3}T)^{h^{1,1}}(1-p^{4}T)}$$

Under this assumption, the deformation method can be applied to compute $R_h^p(X, T)$:

$$R_h^p(X_z, T) = \det(\mathbb{1} - TU_p(z))$$

for

$$U_p(z) = E^{-1}(\tilde{z}^p)\tilde{U}_p(0)E(\tilde{z})$$

As in the threefold case

Note: R_h^p probes only the $2(h^{3,1}+1) + h_h^{2,2}$ dimensional subspace

$$\langle \ \Omega(z), \mathcal{D}_i \Omega(z) \ \rangle \subseteq H^4(X, \mathbb{Q}_p)$$

Consider the family of Hulek-Verrill fourfolds

$$X_{z_i} := \left\{ 1 + \frac{z_1}{x_1} + \dots + \frac{z_6}{x_6} = 0 \ , \ 1 + x_1 + \dots + x_6 = 0 \right\} \subset (\mathbb{C}^{\star})^6 \subset \mathbb{P}^7$$

[Hulek, Verrill, 2005]

- To obtain an effective one-parameter model, restrict to the diagonal z₁ = ··· = z₆ = z which we denote by X_z
- Fundamental period:

$$\varpi_0(z) = \sum_{n_1 + \dots + n_6 = k} \binom{k}{n}^2 z^k$$

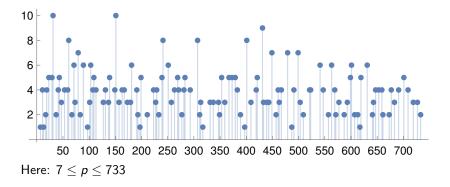
is annihilated by a degree five Picard-Fuchs operator

This subfamily realizes an effective model of horizontal Hodge type (1,1,1,1,1)

For $z \in \overline{\mathbb{Q}}$, X_z is modular if $R_h^p(X_{\overline{z}}, T)$ factorizes quadratically for any $\overline{z} \in \mathbb{F}_p$ representing z, i.e.

 $\bar{z} \equiv z \mod p$

Histogram of points $\bar{z} \in \mathbb{F}_p$ s.t. $R_h^p(X_{\bar{z}}, T)$ factorizes quadratically



Reconstruction of the modular point $z \in \overline{\mathbb{Q}}$:

Collection of points $\bar{z} \in \mathbb{F}_p$ with quadratic factorization

prime p	$ar{z}\in\mathbb{F}_p$				
<i>p</i> = 11	1	6	8	10	
p = 13	1				
p = 17	1	15			

prime p	$ar{z} \in \mathbb{F}_p$				
p = 19	1	2	7	17	
p = 23	1	4	5	12	

(Rational) solution $z \in \mathbb{Q}$ s.t. X_z is modular:

$$z = 1$$

• Tested for all primes $11 \le p \le 733$

No additional modular point found

Coefficients a_p of quadratic factor

$$R^p_{\Lambda}(X_1,T) = 1 - a_p p T + p^2 T^2$$

give q-expansion of a unique Hecke eigenform in $S_3(\Gamma_0(15), \chi_{-15})$

[Bönisch, Fischbach, Klemm, Nega, Safari, 2020]

There is a two-dimensional sublattice

$$\Lambda_{\mathsf{AK3}} = \left[H^{3,1}(X_1,\mathbb{C}) \oplus H^{1,3}(X_1,\mathbb{C}) \right] \cap H^4(X_1,\mathbb{Z})$$

In particular

rticular

$$\nabla_{z}\Pi(z)|_{z=1} = -\frac{3}{28} \left(2\frac{L_{3}(1)}{\pi^{2}} \begin{pmatrix} 12\\5\\20\\-50\\10 \end{pmatrix} + i\frac{L_{3}(2)}{\pi^{3}} \begin{pmatrix} 0\\5\\24\\-80\\20 \end{pmatrix} \right)$$

as expected from Deligne's Conjecture

How about fluxes?

- Attractive K3-point! $\Rightarrow \Lambda_{AK3}$ does **not** provide suitable fluxes
- However: $G := C \cdot \operatorname{Re}(\Omega(z=1)) \in \Sigma$, $C \in \mathbb{R}$

$$\Sigma = \left[H^{4,0}(X_1,\mathbb{C}) \oplus H^{2,2}_h(X_1,\mathbb{C}) \oplus H^{0,4}(X_1,\mathbb{C}) \right] \cap H^4(X_1,\mathbb{Z})$$

Geometric Interpretation: There is a birational description

 $X_z \stackrel{\text{bir.}}{\sim} \mathcal{E}_{\varphi,z} imes_{\mathbb{P}^1} \operatorname{K3}_{\varphi,z}$

where

$$\begin{split} \mathcal{E}_{\varphi,z} &= \left\{ 1 + y_0 + y_1 + y_2 = 0 \ , \ 1 + \frac{\varphi}{y_0} + \frac{z}{y_1} + \frac{z}{y_2} = 0 \right\} \subset \mathbb{P}^4 \\ \mathsf{K3}_{\varphi,z} &= \left\{ 1 + y_3 + y_4 + y_5 + y_6 = 0 \ , \ 1 + \frac{\varphi/z}{y_3} + \frac{1}{y_4} + \frac{1}{y_5} + \frac{1}{y_6} = 0 \right\} \subset \mathbb{P}^5 \end{split}$$

are the lower dimensional analogs of X_z

For z = 1,

- $\mathcal{E}_{1,z}$ is a singular fibre of Kodaira-type I_3
- ► K3_{1,z} is attractive (and hence modular)

This observation singles out a pair of cycles which is responsible for modularity on X_z

Conclusions

Modularity is a useful tool to search for M-theory flux vacua

- ▶ "Attractor-point" \Rightarrow Sublattice Λ_{att} realizes suitable fluxes
- Modularity is not a necessary criterion.

Restrictions and Assumptions

- Analysis restricted to horizontal part $H_h^4(X, \mathbb{C})$ of cohomology
- Need to assume that Fr_p^4 is compatible with this decomposition
- Search restricted to algebraic moduli space $z \in \overline{\mathbb{Q}}$

Based on the numerics:

- Construction of Frobenius action is self-consistent
- Modular structure in accordance with Deligne's conjecture and geometric interpretation
- A posteori justification for the assumptions