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Motivation: Supersymmetric Flux Vacua
Type IIB string theory compactified on a family of CY 3-folds X 3

z

▶ Orientifold projection gives 4d, N = 1 SUGRA as low energy EFT

Internal three-form fluxes F ,H ∈ H3(X 3
z ,Z) provide a superpotential

[Gukov, Vafa, Witten, 2000]

W =

∫
X 3
z

Ω(z) ∧ (F − τH)

W furnishes a scalar potential

V (z , τ) = eK (|∇zW |2 + |∇τW |2)

Supersymmetric vacuum constraints: V (z , τ) = W (z , τ) = 0, i.e.

∂zW = 0 , ∂τW = 0 , W = 0

implying in particular

F ,H ∈
(
H2,1(X 3

z ,C)⊕ H1,2(X 3
z ,C)

)
∩ H3(X 3

z ,Z)

[Taylor, Vafa, 2000]



Motivation: M-Theory Fluxes

M-theory compactified on a family of CY 4-folds X 4
z

▶ Low energy description: 3d, N = 1 SUGRA

Superpotential from internal four-form flux G ∈ H4(X 4
z ,Z):

W =

∫
X 4
z

Ω(z) ∧ G

▶ Similarly: Supersymmetric flux vacua only if ∂zW = W = 0 implying

G ∈ H4(X 4
z ,Z) ∩

(
H4,0(X 4

z ,C)⊕ H2,2(X 4
z ,C)⊕ H0,4(X 4

z ,C)
)

Question: Under which conditions does X 4
z admit such a sublattice?

⇒ Modularity

[Kachru, Nally, Yang, 2020], [Candelas, de la Ossa, van Straten, 2021],

[Candelas, De la Ossa, Kuusela, McGovern, 2023]



Modularity: Elliptic Curve E
Consider an elliptic curve E/Fp defined over finite fields:

E/Fp = Γfrp set of fixed points of the frobenius action

frp : (x1, . . . , xn) 7→ (xp1 , . . . , x
p
n )

Lefschetz fixed-point theorem:

Np(E) = |Γfrp | =
2∑

k=0

(−1)ktr(Frkp) = 1− ap + p

Frobenius endomorphisms on p-adic cohomology groups

Frkp : Hk(E ,Qp) → Hk(E ,Qp)

Characteristic polynomial of Fr1p:

Rp
1 (E ,T ) = det(1− T (Fr1p)

−1) = 1− apT + pT 2

Modularity of Elliptic Curves:

f (τ) =
∑

p prime

apq
p q = e2πiτ

defines a weight-two modular form.



Modularity: The local Zeta-Function
Define the local zeta function

ζp(X ,T ) := exp

( ∞∑
r=1

Npr (X )
T r

r

)

as generating function for the point counts Npr (X ) = |X/Fpr |

Weil Conjectures: [Weil, 1949]

ζp(X ,T ) =
Rp
1 (X ,T ) · · ·Rp

2n−1(X ,T )

Rp
0 (X ,T ) · · ·Rp

2n(X ,T )

Rp
k (X ,T ) = det(1− T (Frkp)

−1) characteristic polynomials of the

Frobenius endomorphisms Frkp : Hk(X ,Qp) → Hk(X ,Qp)

For elliptic curves:

ζp(E ,T ) =
1− apT + pT 2

(1− T )(1− pT )

for ap = p + 1− Np(E)



Modularity: Serre’s Modularity Conjecture

Serre’s Modularity Conjecture: [Serre, 1975]

One-to-one correspondence between two-dimensional representations
ρ :Gal(Q̄/Q) → GL2(Fpr ) and modular forms that are Hecke eigenforms.

Note: ⟨frp⟩ ⊆ Gal(F̄p/Fp) is dense subgroup.

▶ Frkp :H
k(X ,Qp)→Hk(X ,Qp): b

k -dimensional reps. of Gal(F̄p/Fp)

▶ Reps. of Gal(F̄p/Fp) can be lifted to reps. of Gal(Q̄/Q)

For elliptic curves: Modularity of E is a special case of Serre as b1(E) = 2.

If Hk(X ,Qp) = Λp ⊕ Σp such that Frp(Λp) ⊆ Λp:

▶ Frp|Λp :Λp → Λp defines a dim(Λp)-dimensional (sub-)rep. of frp
▶ If Hk(X ,Z) = Λ⊕ Σ, then Hk(X ,Qp) = Λp ⊕ Σp for almost all p.



Modularity: Modular Calabi-Yau manifolds

We call a Calabi-Yau n-fold X modular if

Hn(X ,Qp) = Λp ⊕ Σp , Frp(Λp) ⊆ Λp , dim(Λp) = 2

for almost all primes p.

Properties of modular Calabi-Yau manifolds:

▶ Frp|Λp defines a two-dimensional representation of Gal(Q̄/Q).

▶ The characteristic polynomial Rp
n (X ,T ) factorizes

Rp
n (X ,T ) = Rp

Λ(X ,T ) · Rp
Σ(X ,T )

for almost all primes p.

▶ If X is modular, Rp
Λ(X ,T ) = 1− app

αT + pβT 2 for some α, β ∈ N0.

The ap determine the corresponding modular form via

f (τ) =
∑
p

apq
p q = e2πiτ



Modularity: Relation to Flux Vacua

Recall for type IIB string fluxes on a CY threefold X3:

F ,H ∈ H3(X3,Z) ∩
(
H2,1(X3,C)⊕ H1,2(X3,C)

)
for a supersymmetric flux vacuum. Hence

Λflux := ⟨F ,H⟩Q ⊆ H3(X3,Q)

defines a two-dimensional sub-representation

Necessary condition for supersymmetric flux vacua:

X3 has to be a modular Calabi-Yau threefold!

[Kachru, Nally, Yang, 2020], [Candelas, De la Ossa, Kuusela, McGovern, 2023]

M-Theory fluxes on a CY fourfold X4:

G ∈ H4(X4,Z) ∩
(
H4,0(X4,C)⊕ H2,2(X4,C)⊕ H0,4(X4,C)

)



Modular Fourfolds: Possibilities for Modularity

Two different choices of two-dimensional sub-reps. Λ ⊆ H4(X4,Q):

“Attractor points“:

Λatt ⊆ H4,0(X4,C)⊕ H2,2(X4,C)⊕ H0,4(X4,C)

Mimic the behaviour of rank-two attractor points of Calabi-Yau threefolds

“Attractive K3-points“:

ΛAK3 ⊆ H3,1(X4,C)⊕ H1,3(X4,C)

Geometric origin from (a tate-twist of) an attractive K3 surface

Sufficient condition for M-theory flux vacua:

X4 attractor point ⇒ any G ∈ Λatt defines a suitable M-theory flux

[Jockers, S.K., Kuusela, 2023]



Modular Fourfolds: Computing Rp
n (X ,T )

Recall that Rp
n (X ,T ) = det(1− T (Frnp)

−1)

For a family of CY-threefolds Xz :

∇Fr3p = pFr3p∇

∇: Gauss-Manin connection on the vector bundle given by H3(Xz ,Qp)

Let Fp(z) denote the matrix representing Fr3p and Up(z) = F−1
p (z), then

Up(z) = E (z̃p)−1Up(0)E (z̃) z̃ := Teichp(z)

for Eij(z) = Diϖj(z) the period matrix

▶ The Di are generators of the Picard-Fuchs ideal

▶ For h2,1 = 1: Di = θiz = (z∂z)
i for i = 0, . . . , 4.

[Candelas, de la Ossa, Elmi, van Straten, 2019]

[Candelas, de la Ossa, Kuusela, 2024]



Modular Fourfolds: Computing Rp
n (X ,T )

The Hodge diamond of a Calabi-Yau threefold

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

▶ horizontal and vertical Hodge structure are separated

▶ The horizontal Hodge structure is determined by DiΩ(z)

ζp(X ,T ) =
Rp
3 (X ,T )

(1− T )(1− pT )h1,1(1− p2T )h1,1(1− p3T )



Modular Fourfolds: Computing Rp
n (X ,T )

The Hodge diamond of a Calabi-Yau fourfold

1
0 0

0 h1,1 0
0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1
0 h2,1 h2,1 0

0 h1,1 0
0 0

1

▶ H2,2(X ,C) = H2,2
h (X ,C)⊕ H2,2

v (X ,C)⊕ H2,2
⊥ (X ,C)

▶ Assume Fr4p to be compatible with this decomposition

ζp(X ,T ) =
Rp
3 (X ,T )Rp

5 (X ,T )

(1− T )(1− pT )h1,1Rp
4 (X ,T )(1− p3T )h1,1(1− p4T )



Modular Fourfolds: Computing Rp
n (X ,T )

The Hodge diamond of a Calabi-Yau fourfold

1
0 0

0 h1,1 0
0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1
0 h2,1 h2,1 0

0 h1,1 0
0 0

1

▶ H2,2(X ,C) = H2,2
h (X ,C)⊕ H2,2

v (X ,C)⊕ H2,2
⊥ (X ,C)

▶ Assume Fr4p to be compatible with this decomposition

ζp(X ,T ) =
Rp
3 (X ,T )Rp

5 (X ,T )

(1− T )(1− pT )h1,1Rp
h (X ,T )Rp

⊥(X ,T )(1− p3T )h1,1(1− p4T )



Modular Fourfolds: Computing Rn
p (X ,T )

Under this assumption, the deformation method can be applied to
compute Rp

h (X ,T ):

Rp
h (Xz ,T ) = det(1− TUp(z))

for
Up(z) = E−1(z̃p)Ũp(0)E (z̃)

As in the threefold case

▶ Eij(z) = Diϖj(z) is the period matrix

▶ z̃ := Teichp(z)

Note: Rp
h probes only the 2(h3,1 + 1) + h2,2h dimensional subspace

⟨ Ω(z),DiΩ(z) ⟩ ⊆ H4(X ,Qp)



A Modular Example

Consider the family of Hulek-Verrill fourfolds

Xzi :=

{
1 +

z1
x1

+ · · ·+ z6
x6

= 0 , 1 + x1 + · · ·+ x6 = 0

}
⊂ (C⋆)6 ⊂ P7

[Hulek, Verrill, 2005]

▶ To obtain an effective one-parameter model, restrict to the diagonal
z1 = · · · = z6 = z which we denote by Xz

▶ Fundamental period:

ϖ0(z) =
∑

n1+···+n6=k

(
k

n

)2

zk

is annihilated by a degree five Picard-Fuchs operator

▶ This subfamily realizes an effective model of horizontal Hodge type
(1, 1, 1, 1, 1)



A Modular Example

For z ∈ Q̄, Xz is modular if Rp
h (Xz̄ ,T ) factorizes quadratically for any

z̄ ∈ Fp representing z , i.e.

z̄ ≡ z mod p

Histogram of points z̄ ∈ Fp s.t. Rp
h (Xz̄ ,T ) factorizes quadratically
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Here: 7 ≤ p ≤ 733



A Modular Example

Reconstruction of the modular point z ∈ Q̄:

Collection of points z̄ ∈ Fp with quadratic factorization

prime p z̄ ∈ Fp

p = 11 1 6 8 10
p = 13 1
p = 17 1 15

prime p z̄ ∈ Fp

p = 19 1 2 7 17
p = 23 1 4 5 12
. . .

(Rational) solution z ∈ Q s.t. Xz is modular:

z = 1

▶ Tested for all primes 11 ≤ p ≤ 733

▶ No additional modular point found



A Modular Example
Coefficients ap of quadratic factor

Rp
Λ(X1,T ) = 1− appT + p2T 2

give q-expansion of a unique Hecke eigenform in S3(Γ0(15), χ−15)

[Bönisch, Fischbach, Klemm, Nega, Safari, 2020]

There is a two-dimensional sublattice

ΛAK3 =
[
H3,1(X1,C)⊕ H1,3(X1,C)

]
∩ H4(X1,Z)

In particular

∇zΠ(z)|z=1 = − 3

28

2
L3(1)

π2


12
5

20
−50
10

+ i
L3(2)

π3


0
5

24
−80
20




as expected from Deligne’s Conjecture

How about fluxes?
▶ Attractive K3-point! ⇒ ΛAK3 does not provide suitable fluxes
▶ However: G := C ·Re(Ω(z = 1)) ∈ Σ , C ∈ R

Σ =
[
H4,0(X1,C)⊕ H2,2

h (X1,C)⊕ H0,4(X1,C)
]
∩ H4(X1,Z)



A modular Example

Geometric Interpretation: There is a birational description

Xz
bir.∼ Eφ,z ×P1 K3φ,z

where

Eφ,z =
{
1 + y0 + y1 + y2 = 0 , 1 + φ

y0
+ z

y1
+ z

y2
= 0

}
⊂ P4

K3φ,z =
{
1 + y3 + y4 + y5 + y6 = 0 , 1 + φ/z

y3
+ 1

y4
+ 1

y5
+ 1

y6
= 0

}
⊂ P5

are the lower dimensional analogs of Xz

For z = 1,

▶ E1,z is a singular fibre of Kodaira-type I3
▶ K31,z is attractive (and hence modular)

This observation singles out a pair of cycles which is responsible for
modularity on Xz



Conclusions

Modularity is a useful tool to search for M-theory flux vacua

▶ “Attractor-point“ ⇒ Sublattice Λatt realizes suitable fluxes

▶ Modularity is not a necessary criterion.

Restrictions and Assumptions

▶ Analysis restricted to horizontal part H4
h (X ,C) of cohomology

▶ Need to assume that Fr4p is compatible with this decomposition

▶ Search restricted to algebraic moduli space z ∈ Q̄

Based on the numerics:

▶ Construction of Frobenius action is self-consistent

▶ Modular structure in accordance with Deligne’s conjecture and
geometric interpretation

A posteori justification for the assumptions


