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Motivation: Supersymmetric Flux Vacua
Type |IB string theory compactified on a family of CY 3-folds X3
» Orientifold projection gives 4d, N' = 1 SUGRA as low energy EFT
Internal three-form fluxes F, H € H3(X2,Z) provide a superpotential
[Gukov, Vafa, Witten, 2000]

W = Q(z) A(F —T1H)

W furnishes a scalar potential
V(z,7) = (VWP + [V, WP)
Supersymmetric vacuum constraints: V(z,7) = W(z,7) =0, i.e.
ow=0 , oW=0 , W=0
implying in particular

F.H € (H¥(XZ,C) o H2(XZ,C)) N H(XZ, Z)
[Taylor, Vafa, 2000]



Motivation: M-Theory Fluxes

M-theory compactified on a family of CY 4-folds X}
» Low energy description: 3d, N =1 SUGRA
Superpotential from internal four-form flux G € H*(X},Z):

W = Q(z)ANG
XZ
» Similarly: Supersymmetric flux vacua only if 9,W = W = 0 implying
G € HY(X},Z)n (H*°(X},C) & H*?(X},C) & H**(X?,C))
Question: Under which conditions does X2 admit such a sublattice?
= Modularity

[Kachru, Nally, Yang, 2020], [Candelas, de la Ossa, van Straten, 2021],
[Candelas, De la Ossa, Kuusela, McGovern, 2023]



Modularity: Elliptic Curve &

Consider an elliptic curve £/F, defined over finite fields:

EJF, =T set of fixed points of the frobenius action
fro: (X1, ..., x0) = (X, ..., xE)
Lefschetz fixed-point theorem:

2
Np(E) = [T =3 (~1)ktr(Frf) =1—a, + p
k=0
Frobenius endomorphisms on p-adic cohomology groups

Fri : H*(€,Q,) — H*(£,Qp)
Characteristic polynomial of Frll,:
RP(E,T)=det(l — T(Fry) ') =1—a,T +pT?
Modularity of Elliptic Curves:

f(r)= Y apa®  q=e

p prime

defines a weight-two modular form.



Modularity: The local Zeta-Function

De il e the |0Ca| zeta unCtiOn
CD(X ] ) = eXp E ND/ (X)i
’ =1

as generating function for the point counts Nyr(X) = | X /Fpr

Weil Conjectures: [Weil, 1949]
RI(X,T) - RE,_1(X, T)

RP(X, T) = det(1 — T(Fr,’j)_l) characteristic polynomials of the
Frobenius endomorphisms Fr,’; D HA(X,Qp) — HX(X,Qp)

CP(X7 T) =

For elliptic curves:

1—a,T+pT?

HED=anaen

fora,=p+1—N,(&)



Modularity: Serre's Modularity Conjecture

Serre’s Modularity Conjecture: [Serre, 1975]

One-to-one correspondence between two-dimensional representations
p:Gal(Q/Q) — GLy(F,r) and modular forms that are Hecke eigenforms.

Note: (fr,) C Gal(IF,/F},) is dense subgroup.
> Fr’;:Hk(X,Qp)%Hk(X,Qp): b¥-dimensional reps. of Gal(FF,/F,)
> Reps. of Gal(F,/F,) can be lifted to reps. of Gal(Q/Q)

For elliptic curves: Modularity of £ is a special case of Serre as b'(€) = 2.

If H¥(X,Q,) = A, ® T, such that Fr,(A,) C A,
» Frpla, :Ap — N, defines a dim(A)-dimensional (sub-)rep. of fr,
> If HX(X,Z) = A® £, then H*(X,Q,) = A, & £, for almost all p.



Modularity: Modular Calabi-Yau manifolds
We call a Calabi-Yau n-fold X modular if

HY(X, Qo) =N & X, Frp(Ap) SN, dim(Ap) =2
for almost all primes p.

Properties of modular Calabi-Yau manifolds:
» Frp|a, defines a two-dimensional representation of Gal(Q/Q).

» The characteristic polynomial RP(X, T) factorizes

for almost all primes p.
> If X is modular, RY(X, T) =1— appaTerB T2 for some «, B € No.

The a, determine the corresponding modular form via

()=S0 q— e
P



Modularity: Relation to Flux Vacua

Recall for type IIB string fluxes on a CY threefold Xj:
F,H € H}(X3,Z) N (H*!(X3,C) & H“?(X3,C))
for a supersymmetric flux vacuum. Hence
Aaux = (F, H)q C H*(X3,Q)

defines a two-dimensional sub-representation

Necessary condition for supersymmetric flux vacua:

X3 has to be a modular Calabi-Yau threefold!

[Kachru, Nally, Yang, 2020], [Candelas, De la Ossa, Kuusela, McGovern, 2023]
M-Theory fluxes on a CY fourfold Xj:

G € H*(Xs, Z) N (H*?(X4, C) & H*?(X4, C) & H**(X,, C))



Modular Fourfolds: Possibilities for Modularity

Two different choices of two-dimensional sub-reps. A C H*( Xy, Q):
“Attractor points":
Aae € H¥O(X,, C) ® H?2(X4, C) @ HO*(X4, C)

Mimic the behaviour of rank-two attractor points of Calabi-Yau threefolds

“Attractive K3-points":
Aakz € H31(Xy, C) @ HY3(Xy, C)

Geometric origin from (a tate-twist of) an attractive K3 surface

Sufficient condition for M-theory flux vacua:
X, attractor point = any G € A, defines a suitable M-theory flux

[Jockers, S.K., Kuusela, 2023]



Modular Fourfolds: Computing R?(X, T)
Recall that RP(X, T) = det(1 — T(Fr;)~t)
For a family of CY-threefolds X,:
VFrI?; = pFriV
V: Gauss-Manin connection on the vector bundle given by H3(Xz,@p)

Let F,(z) denote the matrix representing FrfJ and U,(z) = F,'(z), then

Up(z) = E(2P) T U,(0)E(2) Z 1= Teich,(z2)

for Ejj(z) = Djwj(z) the period matrix
» The D; are generators of the Picard-Fuchs ideal
» For »1 =1: D; =0, = (20,) for i =0,...,4.

[Candelas, de la Ossa, Elmi, van Straten, 2019]
[Candelas, de la Ossa, Kuusela, 2024]



Modular Fourfolds: Computing RP(X, T)

The Hodge diamond of a Calabi-Yau threefold

1
0 0
0 htl 0
1 h2’1 h2 1 1
0 A1 0
0 0
1

» horizontal and vertical Hodge structure are separated
» The horizontal Hodge structure is determined by D;(z)

RE(X, T)

KA (e Y L (T ey



Modular Fourfolds: Computing RP(X, T)

The Hodge diamond of a Calabi-Yau fourfold

1
0 0
0 hht 0
0 h2,1 h2’1 0
1 h3,1 h2,2 h3’1 1
0 h2,1 h2’1 0
0 hb! 0
0 0
1

> H22(X,C) = H>*(X,C) @ H22(X,C) @ H?(X,C)

» Assume Frf7 to be compatible with this decomposition

Ry (X, T)RE(X, T)

(X, T) = (1-=T)1—-pT)"RI(X, T)(1 = p*T)M"(1—p*T)



Modular Fourfolds: Computing RP(X, T)

The Hodge diamond of a Calabi-Yau fourfold

1
0 0
0 At 0
0 h2’1 h2’1 0
1 h3,1 h?:2 h31 1
0 h2’1 h2 1 0
0 A1 0
0 0
1

> H>2(X,C) = H2?(X,C) ® H2?(X,C) @ HY*(X,C)

» Assume Fri to be compatible with this decomposition

RE(X, T)RE(X, T)

(X, T) = (1—T)(1—pT)""RP(X, T)RE (X, ’T)(l —pT)" (1 —p*T)



Modular Fourfolds: Computing R7(X, T)

Under this assumption, the deformation method can be applied to
compute R (X, T):

RP(X;, T) = det(1 — TU,(z))

for
Up(2) = E71(2°) Up(0)E(2)

As in the threefold case
» E;i(z) = Diw;j(z) is the period matrix
> Z:= Teich,(z)

Note: RP probes only the 2(h*' 4 1) + h?'> dimensional subspace

(Q(2), Di(2) ) € HY(X, Q)



A Modular Example
Consider the family of Hulek-Verrill fourfolds
4 %6 *16 7
X = {1++---+_0, 1+x1—|—-~-—|—x6—0} c(C)cP
X1 X6
[Hulek, Verrill, 2005]

» To obtain an effective one-parameter model, restrict to the diagonal
zy = -+ = zg = z which we denote by X,

» Fundamental period:
K\ 2
SR S (%
ni+---+neg=k

is annihilated by a degree five Picard-Fuchs operator

» This subfamily realizes an effective model of horizontal Hodge type
(1,1,1,1,1)



A Modular Example

For z € Q, X, is modular if RP(Xz, T) factorizes quadratically for any
z € F,, representing z, i.e.

Z=z modp

Histogram of points z € F, s.t. R (Xz, T) factorizes quadratically
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Here: 7 < p <733



A Modular Example

Reconstruction of the modular point z € Q:

Collection of points z € F, with quadratic factorization

IO NI
ol | =

prime p zeF, prime p
p=11 ||1] 6 | 8] 10 p=19 || 1
p=13 | 1 p=23 |1
p=17 || 1] 15

(Rational) solution z € Q s.t. X, is modular:
z=1

» Tested for all primes 11 < p <733
» No additional modular point found



A Modular Example

Coefficients a, of quadratic factor
RR(X1, T) =1—appT + p°T?
give g-expansion of a unique Hecke eigenform in S3(Io(15), x—15)
[Bénisch, Fischbach, Klemm, Nega, Safari, 2020]
There is a two-dimensional sublattice

Aaks = [H*1(X1,C) @ H3 (X1, C)] N H* (X1, Z)

In particular 12 0
5 5
3 L5(1 L3(2
V(e = o |22 [ 5 | i@,
28 s _50 s _80
10 20

as expected from Deligne’s Conjecture

How about fluxes?
» Attractive K3-point! = Aak3 does not provide suitable fluxes
» However: G:= C-Re(Q(z=1))eX, CeR

Y = [H*(X1,C) @ H? (X1, C) @ HO*(X1,C)| N H*(Xy, Z)



A modular Example

Geometric Interpretation: There is a birational description

bir.
XZ ~ ng,Z Xp1 K3w72

where
Eoe={l+W+n+yp=0,1+£+2+2=0}CP
Kpo={1+ysty+ym+y=0,1+22+ L4110l cps
are the lower dimensional analogs of X,
For z =1,
> &1, is a singular fibre of Kodaira-type /3

» K3, , is attractive (and hence modular)

This observation singles out a pair of cycles which is responsible for
modularity on X,



Conclusions

Modularity is a useful tool to search for M-theory flux vacua
» “Attractor-point” = Sublattice A, realizes suitable fluxes

» Modularity is not a necessary criterion.

Restrictions and Assumptions
> Analysis restricted to horizontal part H}(X, C) of cohomology
» Need to assume that FrfJ is compatible with this decomposition

» Search restricted to algebraic moduli space z € Q

Based on the numerics:
» Construction of Frobenius action is self-consistent

» Modular structure in accordance with Deligne's conjecture and
geometric interpretation

A posteori justification for the assumptions



