Invariants of Calabi-Yau Hybrid Models

[Romo-Scheidegger-JK 2003.00182][Erkinger-JK 2008.03089][Erkinger-JK 2210.01226]

Johanna Knapp

School of Mathematics and Statistics, University of Melbourne

The Arithmetic of Calabi-Yau Manifolds MITP, 17/03/25

Australian Research Council

Genus-0 Correlators

Computation via GLSMs

Example 000000 Outlook

Motivation

- Smooth Calabi-Yau geometries only appear at some limiting points in the moduli space. What happens elsewhere?
- What replaces (topological) non-linear sigma models, curve counting, geometric D-branes, etc?
- What is the right language for formulating the equivalent problems in other regions of the moduli space?
- What are computational methods that work throughout the moduli space?
- This talk: Formulate and compute the analogues of genus-0 Gromov-Witten invariants for hybrid models.

Outline

Hybrid models

Genus-0 Correlators

Computation via GLSMs

Examples Hybrid phase of $\mathbb{P}^{7}[2, 2, 2, 2]$ A two-parameter model

Outlook

Genus-0 Correlator

Computation via GLSMs

Examples 0000000 Outlook

$$N = (2,2)$$
 hybrid models I

 Consider a the total space of a rank n bundle over a compact space B:

$$Y = \operatorname{tot}(X \xrightarrow{\pi} B)$$

• And a holomorphic superpotential W such that

$$dW^{-1}(0) = B, \qquad \dim B = d.$$

- A hybrid model is an N = (2, 2) NLSM on Y with potential W, plus extra conditions so that the the IR CFT is well-defined ("good hybrids"). [Bertolini-Melnikov-Plesser 13]
 - Special cases:
 - B Calabi-Yau, W = 0: Calabi-Yau NLSM
 - B = pt, $W \neq 0$: Landau-Ginzburg model
- The (scalar) fields can be decomposed in terms of base and fibre coordinates:

$$\phi^{\alpha} = (\mathbf{y}^{I}, \varphi^{i}), \qquad I = 1, \dots, d, \quad i = 1, \dots, n$$

Genus-0 Correlator

Computation via GLSMs

Examples

Outlook

N = (2, 2) hybrid models II

• To have well-defined R-charges one needs a holomorphic Killing vector field V on Y such that

$$\mathcal{L}_V W = W, \qquad \mathcal{L}_V \pi^*(\omega) = 0, \quad \omega \in \Omega^{ullet}(B)$$

•
$$V = \sum_{i} q_{i} \varphi^{i} \frac{\partial}{\partial \varphi^{i}} (q_{i} \dots \text{R-charges})$$

- This defines a good hybrid.
- It makes sure that the associated 2D CFT is well-defined.
- To realise Calabi-Yaus, we consider orbifolds.

[Vafa 89][Intriligator-Vafa 90][Kachru-Witten 93][Bertolini-Melnikov-Plesser 13]

- There is a \mathbb{Z}_N -orbifold (compatible with R-symmetry).
- The fibre scalars φ^i have charges $q_i = \frac{n_i}{d_i}$ with $N = \operatorname{lcm}(d_1, \ldots, d_n)$.
- The base scalars y' have charges $q_I = 0$.

Genus-0 Correlators

Computation via GLSMs

Examples 000000 Outlook

State spaces I

- The state space is determined by the cohomology of operator(s) Q related to the SUSY generators.
 - Structure: $\overline{Q} = \overline{Q}_0 + \overline{Q}_w$ (base and fibre components)
 - Computation via spectral sequences.
 [Bertolini-Melnikov-Plesser 13]
 - For our purposes, we only need a subset of these states.
- The massless states of the (R,R) sector correspond to certain chiral ring elements of the CFT.
 - The CFT has (left) central charge $c = 3d + 3\sum_{i=1}^{n}(1-2q_i)$.
 - We combine the orbifold \mathbb{Z}_N with the \mathbb{Z}_2 determining the GSO projection $\rightarrow \mathbb{Z}_{2N}$.
 - The states in the (R,R) sector arise for even $k \in \mathbb{Z}_{2N}$.
 - A subset of those corresponds to narrow states.
 - We characterise states by their left/right R-charges (q, q̄) ↔ grading on state space

Genus-0 Correlators

Computation via GLSMs

Examples

Outlook 0

State spaces II

 The R-charges of the vacuum |k> in the k-th twisted sector are [Bertolini-Melnikov-Plesser 13]

$$egin{aligned} q_{|k
angle} &= \sum_lpha \left[(q_lpha-1)(ilde
u_lpha-rac{1}{2}) - q_lpha(
u_lpha-rac{1}{2})
ight], \ \overline{q}_{|k
angle} &= \sum_lpha \left[q_lpha(ilde
u_lpha+rac{1}{2}) + (q_lpha-1)(-
u_lpha+rac{1}{2})
ight]. \end{aligned}$$

•
$$u_{lpha} = rac{kq_{lpha}}{2} \mod 1$$
, $ilde{
u}_{lpha} = rac{k(q_{lpha}-1)}{2} \mod -1$

• For $K_Y = \mathcal{O}_Y$, $X = \bigoplus_i L_i$ and k even, $|k\rangle$ is a section of

$$L_{|k\rangle} = \otimes_i L_i^{- au_i}, \qquad au_lpha =
u_lpha - ilde{
u}_lpha.$$

 Other states in the k-th twisted sector are obtained by acting with operators on |k>.

Genus-0 Correlator

Computation via GLSMs

Examples

Outlook

State spaces III

- To define a state in the (R,R) sector:
 - Split $\phi^{\alpha} = (y^{\alpha'}, \varphi^{A})$ with $\tau_{\alpha'} < 1$ ("light") and $\tau_{A} \ge 1$ ("heavy").
 - By construction, $\tau_I < 1$, so that $y^{\alpha'} = (y', \varphi^{i'})$.
 - Decompose $X = X_k \oplus \oplus_A L_A$.
 - Define $Y_k = tot(X_k \stackrel{\pi_k}{\to} B)$.
- An (R,R) state $|\Psi_u^s\rangle$ has the form

$$|\Psi_{u}^{s}\rangle = \Psi(y',\overline{x})_{\overline{I}_{1}...\overline{I}_{u}}^{\alpha_{1}'...\alpha_{s}'}\overline{\chi}_{\alpha_{1}'}\cdot\ldots\cdot\overline{\chi}_{\alpha_{s}'}\overline{\eta}^{\overline{I}_{1}}\cdot\ldots\cdot\overline{\eta}^{\overline{I}_{u}}|k\rangle.$$

with

$$q=q_{|k
angle}+q_{\Psi}+s, \hspace{1cm} \overline{q}=\overline{q}_{|k
angle}+q_{\Psi}+u$$

Genus-0 Correlators

Computation via GLSMs

Examples

Outlook

State spaces IV

• Geometry of the (R,R) state:

$$|\Psi_{u}^{s}
angle = \Psi(y',\overline{x})_{\overline{I}_{1}...\overline{I}_{u}}^{lpha_{1}'...lpha_{s}'}\overline{\chi}_{lpha_{1}'}\cdot\ldots\cdot\overline{\chi}_{lpha_{s}'}\overline{\eta}^{\overline{I}_{1}}\cdot\ldots\cdot\overline{\eta}^{\overline{I}_{u}}|k
angle.$$

•
$$\overline{\chi}_{\alpha'}$$
 transforms as a section of $T^*_{Y_k}$.
• $\overline{\eta}^{\overline{l}}$ transforms as a section of $\pi^*_k(\overline{T}_B)$.
• $|k\rangle$ is a section of $L_{|k\rangle} = \pi^*_k(\otimes_A L^*_A)$
• Ψ^s_u is a $(0, u)$ -form valued in $\mathcal{E}^s = \wedge^s T_{Y_k} \otimes L^*_{|k\rangle}$

- Next, we would have to compute the cohomology of \overline{Q} .
 - Spectral sequence with differentials

$$\overline{\mathcal{Q}}_{\mathsf{0}} = -\overline{\eta}^{\overline{I}}\partial_{\overline{y}^{\overline{I}}}, \quad \overline{\mathcal{Q}}_{W} = \mathcal{W}_{lpha'}(y')\chi^{lpha'}$$

• In our case, this problem simplifies.

Genus-0 Correlators

Computation via GLSMs

Examples

Outlook

Narrow states

- Claim: Narrow states are states with even k where all the fibre fields φ^i have $\tau_i \ge 1$. [Erkinger-JK 22]
- Consequences:
 - $\{\varphi^i\} = \{\varphi^A\} \to L_{|k\rangle} = \pi_k^*(\otimes_i L_i^*) \to |k\rangle$ is \mathbb{Z}_N -invariant.
 - X_k is trivial $\rightarrow \{\chi_{\alpha'}\} = \{\chi_I\}$ are sections of T_B^* (and $\{\overline{\eta}^I\}$ sections of \overline{T}_B)
 - $|\Psi_{u}^{s}\rangle$ are (0, *u*)-forms taking values in $\wedge^{s}T_{B}\otimes L_{|k\rangle}^{*}$.
 - Since |k⟩ transforms as a section of a bundle over B, invariant states require a certain number of χ_I, η^T-insertions.
 - In all our examples, $W_{\alpha'}(y') = 0 \rightarrow \overline{Q}_W = 0 \rightarrow \overline{Q}$ is equivalent to \overline{Q}_0 .

(a, c)-states, cohomology, and pairing

- Connection between (R,R) states and (a, c) states via spectral flow.
 [Lerche-Vafa-Warner 89]
 - The spectral flow operator $U_{-\frac{1}{2},\frac{1}{2}}$ maps the (R,R) states to (a, c) states.
 - $(q,\overline{q})_{(a,c)} = (q-\frac{3}{2},\overline{q}+\frac{3}{2})_{(R,R)}.$
- The narrow cohomology is

$$\mathcal{H}_{\mathrm{nar}}^{(a,c)} = \bigoplus_{\delta} H_{\delta}^*(B) = \bigoplus_{\delta,a} \mathcal{H}_{\delta,a}^{(a,c)}.$$

- Coincides with mathematics results.
 [Clader 13][Chiodo-Nagel 15]
- Propose a topological pairing:

$$\langle \phi_{i,a}, \phi_{j,b}
angle = rac{1}{N} \delta_{i,N-j} \int_B a \wedge b.$$

Consistent with geometry and LG orbifolds.

vbrid models

Genus-0 Correlators

Computation via GLSMs

Examples

Outlook

Correlation functions

- Consider an A-twisted 2D topological SQFT/SCFT (eg. an A-twisted (2,2) hybrid) coupled to 2D topological gravity (ie. topological string theory)
 - The state space of the SCFT is given by the elements of the (*a*, *c*) chiral ring. (not necessarily narrow!)
 - Here: $\phi_i \in \mathcal{H}_{nar}^{(a,c)}$.
 - Associated to each state ϕ there is an infinite tower of gravitational operators $\tau_m(\phi_j)$.
- One can define genus g correlators with m insertions:

[Dijkgraaf, Verlinde², Witten, FJRW,...]

$$\langle \tau_{n_1}(\phi_{j_1}) \dots \tau_{n_m}(\phi_{j_m}) \rangle_{g,m,*} = \int_{\mathcal{M}_{g,m}} c_1(\mathcal{L}_1) \wedge \dots \wedge c_1(\mathcal{L}_m)$$

- \mathcal{L}_i are some line bundles over the punctures on the worldsheet
- "*" and how to define the moduli space integral are model-dependent

Genus-0 Correlators

Computation via GLSMs

Examples 0000000 Outlook

Setup for this talk

- Focus on genus g = 0.
- Focus on (2,2) SCFTs with central charge $(c, \overline{c}) = (9,9)$.
 - This is the Calabi-Yau threefold case.
 - The (a, c)-ring elements have L/R R-charges $(q, \overline{q}) = (-i, i)$ $i \in \{0, 1, 2, 3\}$ with a unique element **1** with $(q, \overline{q}) = (0, 0)$.
- Consider good hybrid models.
 - Hybrid FJRW invariants $\langle \tau_{n_1}(\phi_{j_1}) \dots \tau_{n_m}(\phi_{j_m}) \rangle_{g,m,\beta}$ [Clader 13]
- The correlators satisfy topological recursion relations and selection rules.
 - Only give those relevant for genus 0.
- Goal: Compute the generating function of the genus-0 correlators

Genus-0 Correlators

Computation via GLSMs

Examples 0000000 Outlook o

Recursion relations and selection rules I

• $U(1)_A$ R-symmetry selection rule:

$$\sum_{a=1}^m (n_a + \overline{q}_{j_a}) = (\hat{c} - 3)(1 - g) + m.$$

• String equation (puncture equation)

$$\langle \tau_{n_1}(\phi_{j_1})\ldots\tau_{n_m}(\phi_{j_m})\mathbf{1}\rangle_{g,m+1}=\sum_{i=1}^m\langle \tau_{n_i-1}(\phi_{j_i})\tau_{n_1}(\phi_{j_1})\ldots\widehat{\tau_{n_i}(\phi_{j_i})}\ldots\tau_{n_m}(\phi_{j_m})\rangle_{g,m}$$

Dilaton equation

 $\langle \tau_{n_1}(\phi_{j_1})\ldots\tau_{n_m}(\phi_{j_m})\tau_1(\mathbf{1})\rangle_{g,m+1}=(2g-2+m)\langle \tau_{n_1}(\phi_{j_1})\ldots\tau_{n_m}(\phi_{j_m})\rangle_{g,m}$

• These rules do not depend on the specifics of the model.

Genus-0 Correlators

Computation via GLSMs

Outlook

Recursion relations and selection rules II

• Divisor axiom [Kontsevich-Manin 94][Hori 94] For "geometric operators" $\tilde{\phi} \in H^2(B)$ and $\beta \in H_2(B)$:

$$\langle \tau_{n_1}(\phi_{j_1})\ldots\tau_{n_m}(\phi_{j_m})\tilde{\phi}\rangle_{g,m+1,\beta} = \left(\int_{\beta}\tilde{\phi}\right)\langle \tau_{n_1}(\phi_{j_1})\ldots\tau_{n_m}(\phi_{j_m})\rangle_{g,m,\beta} + \ldots$$

- Our case: only $\mathbf{1}, \tau_1(\mathbf{1}), \tau_0(\phi_j) = \phi_j \leftrightarrow \text{no '...'}$
- Note! Not all ϕ_i are necessarily in $H^2(B)$.
- Quantum symmetry for \mathbb{Z}_N -orbifolds

[Vafa 89]

- There is a \mathbb{Z}_N quantum symmetry acting on the state space.
- Selection rule: [FJRW, Clader 13, Erkinger-JK 22]

$$2g-2+m-q_B(eta)-\sum_{i=1}^m q_{\delta_{j_i}}=0 \mod N$$

- $q_B(\beta)$ is non-zero if the orbifold acts trivially on B (gerbes!)
- $q_{\delta_{j_i}}$ accounts for the charge of the state in the fibre direction

Genus-0 Correlators

Computation via GLSMs

Examples 000000 Outlook

J-function

• The J-function is the generating function of genus 0 correlators.

[Givental 97][Fan-Jarvis-Ruan 07][Clader 13][Romo-Scheidegger-JK 20][Erkinger-JK 22]

$$J = e_0 + \sum_{i=1}^{h} t_i e_i$$

+ $\sum_{\beta} \sum_{\bar{q}_c < \hat{c} - 1} \sum_{n=1}^{\infty} \sum_{k_1, \dots, k_h \ge 0} \prod_{i=1}^{h} \frac{(t_i)^{k_i}}{k_i!} \langle \tau_n(\phi_c) \prod_{j=1}^{h} \phi_j^{k_j} \rangle_{0,|k|+1,\beta} \eta^{cb} e_b.$

- Expansion in terms of basis elements e_k of $H^{(a,c)} = \bigoplus_{(q,\overline{q})} H^{(a,c)}_{(q,\overline{q})}$ of dimension 2h + 2. $(e_0 \leftrightarrow \mathbf{1})$
- $t_i \dots$ flat coordinates \leftrightarrow marginal deformations of the CFT \leftrightarrow $(\phi_i \leftrightarrow e_i)$ with $(q, \overline{q}) = (-1, 1)$ [Cecotti-Vafa 91]

•
$$\eta_{ab} = \langle \phi_a \phi_b \rangle_{0,2,0} \dots$$
 topological metric

Genus-0 Correlators

Computation via GLSMs

Examples 0000000 Outlook

J-function and I-function

• The *I*-function can also be expanded in terms of the *e_k*:

$$I(u) = I_0(u)e_0 + \sum_{i=1}^{h} I_i(u)e_i + I_c(u)e^c$$

• The *J*-function is related to the *I*-function via

$$J(t) = \frac{I(u(t))}{I_0(u(t))}$$

• The flat coordinates are given by

$$t_i(u) = \frac{I_i(u)}{I_0(u)}$$

- This coincides with the mirror map.
- We need to identify the states with $(q, \overline{q}) = (-1, 1)$.

Outlook

J-function via the GLSM

- Hybrids arise as phases of GLSMs.
- The *I*-function can be extracted from GLSM partition functions. [Romo-Scheidegger-JK 20][Erkinger-JK 20][Erkinger-JK 22]
- Roadmap to extract invariants
 - Find a GLSM with a hybrid phase and compute the *I*-function.
 - Analyse the state space of the hybrid phase.
 - Use the information to associate each component of the *I*-function with a corresponding state in the CFT.
 - Identify the (a, c) states with with (q, q) = (-1, 1) that define the flat coordinates.
 - Compute the *J*-function via the *I*-function.
 - Use the selection rules and the string, dilaton and divisor equation to reduce the correlators to a minimal set.
 - Read off the invariants using the general structure of the *J*-function.

Genus-0 Correlators

 $\underset{0 \bullet 0000}{\text{Computation via GLSMs}}$

Examples

Outlook

GLSM data – I

- G ... a compact Lie group (will "break" to orbifold group)
- V ... space of chiral fields $\phi_i \in V$ (will become the y^{α})
- $\rho_V : G \rightarrow GL(V) \dots$ faithful complex representation
 - CY condition: $G \rightarrow SL(V)$
- $R: U(1)_V \to GL(V) \dots$ vector R-symmetry
 - *R_i* . . . R-charges
- $T \subset G$... maximal torus
 - Lie algebras: $\mathfrak{g} = Lie(G), \mathfrak{t} = Lie(T)$
 - Q^a_i ∈ t^{*}_C ... gauge charges of chiral fields

Genus-0 Correlators

 $\underset{\texttt{OO} \bullet \texttt{OOO}}{\texttt{Computation via GLSMs}}$

Outlook

GLSM Data – II

- $t^a \in \mathfrak{g}^*_{\mathbb{C}} \dots$ FI-theta parameters
 - $t^a = \zeta^a i\theta^a$ ζ^a : real, θ^a : 2π -periodic
 - $\texttt{t}^a \leftrightarrow \mathsf{K\ddot{a}hler}$ moduli of the CY \leftrightarrow marginal deformations of the CFT
- $\sigma_a \in \mathfrak{g}_{\mathbb{C}} \ldots$ scalar components of the vector multiplet
- *W* ∈ Sym*V*^{*} ... superpotential (will become *W* of the hybrid)
 - *G*-invariant
 - (vector) R-charge 2
 - non-zero for compact CYs
- Classical potential

$$U = \frac{1}{8e^2} |[\sigma, \bar{\sigma}]|^2 + \frac{1}{2} \left(|Q(\sigma)\phi|^2 + |Q(\bar{\sigma})\phi|^2 \right) + \frac{e^2}{2}D^2 + |F|^2$$

Genus-0 Correlators

 $\begin{array}{c} \text{Computation via GLSMs} \\ \text{OOO} \bullet \text{OO} \end{array}$

Examples 000000 Outlook

Phases of the GLSM

- Higgs branch: $\sigma = 0$
- D-terms

$$\mu(\phi) = \zeta$$

•
$$\mu: \mathcal{V} \to \mathfrak{g}^* \ldots$$
 moment map

• F-terms

$$dW = 0$$

- Phases: parameter space gets divided into chambers
- Classical vacua

$$X_{\zeta} = \{ dW^{-1}(0) \} \cap \mu^{-1}(\zeta) / G \}$$

Genus-0 Correlators

 $\begin{array}{c} \text{Computation via GLSMs} \\ \text{OOOO} \bullet \text{O} \end{array}$

Examples

Outlook

Sphere partition function

• Sphere partition function

[Benini-Cremonesi 12][Doroud-Gomis-LeFloch-Lee 12]

$$Z_{S^2} = C \sum_{m \in \mathbb{Z}^{\mathrm{rk}G}} \int_{\gamma} d^{\mathrm{rk}G} \sigma \prod_{\alpha > 0} \left(\frac{\alpha(m)^2}{4} + \alpha(\sigma)^2 \right)$$

$$\cdot \prod_{j=1}^{\dim V} \frac{\Gamma\left(iQ_j(\sigma) - \frac{Q_j(m)}{2} + \frac{R_j}{2}\right)}{\Gamma\left(1 - iQ_j(\sigma) - \frac{Q_j(m)}{2} - \frac{R_j}{2}\right)} e^{-4\pi i \zeta(\sigma) - i\theta(m)}$$

- *α* > 0 positive roots
- γ ... integration contour (s.t. integral is convergent)
- Z_{S^2} computes the exact Kähler potential on $\mathcal{M}_{\mathcal{K}}$.

[Jockers-Kumar-Lapan-Morrison-Romo 12][Gomis-Lee 12]

Genus-0 Correlator

Examples

Outlook

Z_{S^2} for hybrid phases

• For a hybrid model, the sphere partition function can be written as [Erkinger-JK 20]

$$Z^{hyb}_{\mathcal{S}^2}(\mathtt{t}) = \sum_{\delta \in \mathcal{G}^{hyb}} \int_B rac{\Gamma_{\delta}(H)}{\Gamma^*_{\delta}(H)} |I_{\delta}(\mathtt{t},H)|^2$$

- $\delta \in G^{hyb}$...narrow sectors
- Basis $H \in H^2(B)$
- t...Fl-theta parameter of the GLSM
- Γ_δ(H)... Gamma class
- From this, we can extract (conjectural) expressions of the *I*-function (and the Gamma class...) and follow the roadmap above.

Genus-0 Correlators

Computation via GLSMs

Outlook

Example: Hybrid phase of $\mathbb{P}^7[2, 2, 2, 2]$

• *U*(1) GLSM

	p_1,\ldots,p_4	x_1,\ldots,x_8	FI
U(1)	-2	1	ζ
$U(1)_V$	0	1	

- Geometric phase at $\zeta \gg 0$.
- Hybrid phase at $\zeta \ll 0$ [Caldara

[Caldararu-Distler-Hellerman-Pantev-Sharpe 07]

- base: *B* is \mathbb{P}^3_{2222} with coordinates (p_1, \ldots, p_4) (gerbe!)
- fibre: $G^{hyb} = \mathbb{Z}_2$ Landau-Ginzburg orbifold with potential $W = \sum_i \langle p_i \rangle G_2^i(x_1, \dots, x_8)$
- The physical model is defined on Y = tot(O(-1)^{⊕8} → P³) with Z₂ acting non-trivially on the fibre and trivially on the base.

Genus-0 Correlators

Computation via GLSMs 000000 Examples 0000000 Outlook

Narrow state space I

• All eight x_i have $q_i = \frac{1}{2}$. In the twisted sectors the vacua $|k\rangle$ $k \in \mathbb{Z}_4$:

k	0	1	2	3
q	$-\frac{3}{2}$	0	$-\frac{3}{2}$	0
\overline{q}	$-\frac{3}{2}$ $-\frac{3}{2}$	$-\frac{3}{2}$	$-\frac{3}{2}$ $-\frac{3}{2}$	$-\frac{3}{2}$
ν_i	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$
$\overline{ u}_i$ $\overline{ u}_i$	0	$-\frac{\frac{1}{4}}{\frac{1}{4}}$	$-\frac{1}{2}$ $-\frac{1}{2}$	$ \begin{array}{r} -\frac{3}{2} \\ \frac{3}{4} \\ -\frac{3}{4} \\ \frac{3}{2} \end{array} $
$ au_i$	0	$\frac{1}{2}$	1	$\frac{3}{2}$

- $k = 2\delta = 2$ is narrow.
- The (R,R) ground states are:

$$k = 2: \qquad |\Psi_3^0\rangle_{-\frac{3}{2},\frac{3}{2}} \quad |\Psi_2^1\rangle_{-\frac{1}{2},\frac{1}{2}} \quad |\Psi_1^2\rangle_{\frac{1}{2},-\frac{1}{2}} \quad |\Psi_0^3\rangle_{\frac{3}{2},-\frac{3}{2}}.$$

Genus-0 Correlators

Computation via GLSMs

Examples

Outlook 0

Narrow state space II

• Narrow states $\phi_{\delta,a}$

• Topological pairing

$$\langle \phi_{i,a}, \phi_{j,b} \rangle = \frac{1}{2} \delta_{i,2-j} \int_{\mathbb{P}^3} a \wedge b.$$

• *I*-function

[Clader 13][Erkinger-JK 20]

$$I_{\delta=1}^{\zeta\ll0}(t,H) = \frac{\Gamma\left(1+\frac{H}{2\pi i}\right)^4}{\Gamma\left(\frac{H}{2\cdot 2\pi i}+\frac{1}{2}\right)^8} \sum_{a=0}^{\infty} e^{t\left(\frac{H}{2\cdot 2\pi i}+a\right)} \frac{\Gamma\left(a+\frac{H}{2\cdot 2\pi i}+\frac{1}{2}\right)^8}{\Gamma\left(1+2a+\frac{H}{2\pi i}\right)^4}.$$
$$I = I_1^1 e_{1,1} + I_1^H e_{1,H} + I_2^{H^2} e_{1,H^2} + I_3^{H^3} e_{1,H^3}, \qquad u = e^{\frac{t}{2}}$$

Genus-0 Correlators

Computation via GLSMs

Outlook

Correlators and selection rules

• Correlators allowed by $U(1)_A$ -selection rule:

 $\langle (\phi_{1,H})^3 \rangle_{0,3,0}, \quad \langle \tau_1(\phi_{1,1})(\phi_{1,H})^k \rangle_{0,k+1,\beta}, \quad \langle (\phi_{1,H})^{k+1} \rangle_{0,k+1,\beta}.$

• Dilaton equation:

$$\langle \tau_1(\phi_{1,1})(\phi_{1,H})^k \rangle_{0,k+1,\beta} = (-2+k) \langle (\phi_{1,H})^k \rangle_{0,k,\beta}.$$

• Divisor equation:

$$\langle (\phi_{1,H})^k \rangle_{0,k,\beta} = \left(\int_{\beta} \phi_{1,H} \right)^k \langle \cdot \rangle_{0,0,\beta} = \beta^k \langle \cdot \rangle_{0,0,\beta}$$

• Quantum symmetry (g = 0, m insertions):

$$-2 - \beta = 0 \mod 2$$

Genus-0 Correlators

Computation via GLSMs

Outlook

J-function

• The *J*-function reduces to

$$J = e_{1,1} + te_{1,H} + 2e_{1,H^2} \frac{t^2}{2} \langle (\phi_{1,H})^3 \rangle_{0,3,0} + 2e_{1,H^3} \frac{t^3}{6} \langle (\phi_{1,H})^3 \rangle_{0,3,0} + 2e_{1,H^2} \sum_{n \ge 2} e^{(2n-2)t} (2n-2) \langle \cdot \rangle_{0,0,2n-2} + 2e_{1,H^3} \sum_{n \ge 2} e^{(2n-2)t} [(2n-2)t-2] \langle \cdot \rangle_{0,0,2n-2}$$

• Change of coordinates:

$$t = \frac{l_1^H(u)}{l_1^1(u)} = \log u + \frac{u^2}{2048} + \frac{157u^4}{268435456} + \mathcal{O}(u^6)$$

Genus-0 Correlators

Computation via GLSMs

Outlook

Invariants

- Read off invariants from e_{1,H^2} -coefficient which is $\frac{l_2^{H^2}}{l_1^1}$.
- The three-point correlator is:

$$\langle (\phi_{1,H})^3 \rangle_{0,3,0} = \frac{1}{2}$$

• The hybrid FJRW invariants are:

2 <i>n</i> – 2	2	4	6	8
$\langle \cdot \rangle_{2n-2}$	$\frac{1}{32768}$	$\frac{153}{17179869184}$	<u>343</u> 59373627899904	<u>3213145</u> 590295810358705651712

Genus-0 Correlators

Computation via GLSMs 000000 Examples

Outlook

Relation to other invariants

- The hybrid phase can also be understood geometrically as a branched double cover over ℙ³. [many papers]
- Instanton numbers

i 1 2 3 4 *N_i* 64 1216 52032 3212992

• Relation to $\langle \cdot \rangle_{2n-2} = n_{2n-2}$:

$$2^{16k}2^5k^3n_{2k} = f_k(N)$$

where

$$\sum_{a=0}^{\infty} \frac{a^3 N_a q^a}{1-q^a} = \sum_{k=0}^{\infty} f_k(N) q^k$$

[Sharpe 12]

Genus-0 Correlators

Computation via GLSMs

Examples

Outlook

Two-parameter example – I

• *U*(1)² GLSM

	р	<i>x</i> 6	<i>x</i> 4	<i>X</i> 5	x_1	<i>x</i> ₂	<i>x</i> 3	FI
$U(1)_{1}$	-6	1	2	3	0	0	0	ζ_1
$U(1)_1 U(1)_2$	0	-3	0	0	1	1	1	ζ_2

- Hybrid phase at $\zeta_1 \ll 0, \zeta_2 \gg 0$
 - base: *B* is \mathbb{P}^2 with coordinates (x_1, x_2, x_3)
 - fibre: $G^{hyb} = \mathbb{Z}_6$ Landau-Ginzburg orbifold with potential $W = \langle p \rangle G_{(6,0)}(\langle x_1, x_2 \rangle, \dots, x_6)$
 - The physical model is defined on $Y = tot(\mathcal{O}^{\oplus 2} \oplus \mathcal{O}(-3) \to \mathbb{P}^2)$ with \mathbb{Z}_6 acting on the fibre.
- Narrow states $\phi_{\delta,a}$

Genus-0 Correlators

Computation via GLSMs 000000 Examples

Outlook

Two-parameter example – II

Correlators

$$\langle (\phi_{1,H})^2 (\phi_{5,1})
angle_{0,3,0} = rac{1}{6}$$

• $\beta \neq 0$:

• $\beta = 0$:

$$\langle (\phi_{1,H})^{k_1} (\phi_{5,1})^{k_2} \rangle_{0,k_1+k_2,\beta} = \beta^{k_1} \langle (\phi_{5,1})^{k_2} \rangle_{0,k_2,\beta}$$

- Note: The divisor equation does not apply to φ_{2,1}.
 We get a hybrid of geometric (instanton) and FJRW invariants.
- Numbers

$$\begin{array}{c|ccccc} (k_2,\beta) & (1,1) & (1,2) & (1,3) & (4,0) & (4,1) \\ \\ \# & \frac{113}{108} & \frac{196319}{62208} & \frac{360744024241}{19591041024} & \frac{1}{2} & \frac{379}{72} \end{array}$$

Genus-0 Correlators

Computation via GLSMs

Examples 000000 Outlook

Open Questions

- Relation to torsion-refined invariants. [Katz-Klemm-Schimannek-Sharpe 22]
- Are there integer invariants?
- Invariants for hybrids that are not "good".
 - Mathematicians say that there is no *J*-function.
- Arithmetic of hybrids that arise in the moduli space of elliptic fibrations.
- D-branes and the associated categories. [Pryor-JK 24]