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This paper is based on the elementary remark that the ex-
traction of gauge invariant results from a formally gauge invariant
theory is ensured if one employs methods of solution that involve
only gauge covariant quantities. We illustrate this statement in
connection with the problem of vacuum polarization by a pre-
scribed electromagnetic 6eld. The vacuum current of a charged
Dirac field, which can be expressed in terms of the Green's function
of that field, implies an addition to the action integral of the elec-
tromagnetic field. Now these quantities can be related to the
dynamical properties of a "particle" with space-time coordinates
that depend upon a proper-time parameter. The proper-time
equations of motion involve only electromagnetic 6eld strengths,
and provide a suitable gauge invariant basis for treating problems.
Rigorous solutions of the equations of motion can be obtained for
a constant Geld, and for a plane wave 6eld. A renormalization of
6eld strength and charge, applied to the modi6ed lagrange func-
tion for constant fields, yields a finite, gauge invariant result which
implies nonlinear properties for the electromagnetic 6eld in the
vacuum. The contribution of a zero spin charged 6eld is also
stated. After the same 6eld strength renormalization, the modified
physical quantities describing a plane wave in the vacuum reduce
to just those of the maxwell field; there are no nonlinear phenomena
for a single plane wave, of arbitrary strength and spectral com-
position. The results obtained for constant (that is, slowly varying
fields), are then applied to treat the two-photon disintegration of

a spin zero neutral meson arising from the polarization of the
proton vacuum. We obtain approximate, gauge invariant ex-
pressions for the effective interaction between the meson and the
electromagnetic field, in which the nuclear coupling may be scalar,
pseudoscalar, or pseudovector in nature. The direct veri6cation
of equivalence between the pseudoscalar and pseudovector inter-
actions only requires a proper statement of the limiting processes
involved. For arbitrarily varying 6elds, perturbation methods can
be applied to the equations of motion, as discussed in Appendix
A, or one can employ an expansion in powers of the potential
vector. The latter automatically yields gauge invariant results,
provided only that the proper-time integration is reserved to the
last. This indicates that the sjgnificant aspect of the proper-time
method is its isolation of divergences in integrals with respect
to the proper-time parameter, which is independent of the coor-
dinate system and of the gauge. The connection between the
proper-time method and the technique of "invariant regulariza-
tion" is discussed. Incidentally, the probability of actual pair
creation is obtained from the imaginary part of the electromagnetic
6eld action integral. Finally, as an application of the Green's
function for a constant Geld, we construct the mass operator of an
electron in a weak, homogeneous external field, and derive the
additional spin magnetic moment of a/2m magnetons by means of
a perturbation calculation in which proper-mass plays the cus-
tomary role of energy.

I. INTRODUCTION

1

� ~QUANTUM

electrodynamics is characterized by
several formal invariance properties, notably rel-

ativistic and gauge invariance. Yet specific calculations
by conventional methods may yield results that violate
these requirements, in consequence of the divergences
inherent in present field theories. Such difhculties con-
cerning relativistic invariance have been avoided by
employing formulations of the theory that are explicitly
invariant under coordinate transformations, and by
maintaining this generality through the course of cal-
culations. The preservation of gauge invariance has
apparently been considered to be a more formidable
task. It should be evident, however, that the two
problems are quite analogous, and that gauge invariance
difBculties naturally disappear when methods of solu-
tion are adopted that involve only gauge invariant
quantities.
We shall illustrate this assertion by applying such a

gauge invariant method to treat several aspects of the
problem of vacuum polarization by a prescribed elec-
tromagnetic field. The calculation of the current asso-
ciated with the vacuum of a charged particle held
involves the construction of the Green's function for
the particle 6eld in the prescribed electromagnetic
field. This vacuum current can be exhibited as the
variation of an action integral with respect to the
potential vector, which action efkctively adds to that
of the maxwell fieM in describing the behavior of elec-

6

tromagnetic 6elds in the vacuum. We shall relate these
problems to the solution of particle equations of motion
with a proper-time parameter. The equations of motion,
which involve only electromagnetic 6eld strengths,
provide the desired gauge invariant basis for our dis-
cussion.
Explicit solutions can be obtained in the two situa-

tions of constant 6elds, and 6elds propagated with the
speed of light in the form of a plane wave. ' For constant
(that is, slowly varying) fields, a renormalization of
6eld strength and charge yields a modi6ed lagrange
function diQ'ering from that of the maxwell 6eld by
terms that imply a nonlinear behavior for the electro-
magnetic field. The result agrees precisely with one
obtained some time ago by other methods and a some-
what diGerent viewpoint. The modi6ed physical quan-
tities characterizing the plane wave in the vacuum
revert to those of the maxwell field after the same field
strength renormalization. For weak arbitrarily varying
fields, perturbation methods can be applied to the
equations of motion. This will be discussed in Ap-
pendix A.
The consequences thus obtained are useful in con-

nection with a class of problems in which gauge invari-

' That the Dirac equation can be solved exactly, in the field of
a plane wave, was recognized by D. M. Volkow, Z. Physik 94, 25
(1935).
'W. Heisenberg and H. Euler, Z. Physik 9S, 714 (1936).

V. Weisskopf, Kgl. Danske Videnskab. Selskabs. Mat. -fys. Medd.
14, No. 6 (1936).
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Abstract

We demonstrate the effectivity of the covariant background field
method by means of an explicit calculation of the 3-loop β-function for

a pure Yang-Mills theory. To maintain manifest background invariance
throughout our calculation, we stay in coordinate space and treat the
background field non-perturbatively. In this way the presence of a back-

ground field does not increase the number of vertices and leads to a rela-
tively small number of vacuum graphs in the effective action. Restricting
to a covariantly constant background field in Fock-Schwinger gauge per-

mits explicit expansion of all quantum field propagators in powers of the
field strength only. Hence, Feynman graphs are at most logarithmically
divergent. At 2-loop order only a single Feynman graph without sub-

divergences needs to be calculated. At 3-loop order 24 graphs remain.
Insisting on manifest background gauge invariance at all stages of a cal-
culation is thus shown to be a major labor saving device. All calculations

were performed with Mathematica in view of its superior pattern matching
capabilities. Finally, we describe briefly the extension of such covariant
methods to the case of supergravity theories.
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Chiral Perturbation Theory to One Loop* 
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AND 
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The Green’s functions of QCD are expanded in powers of the external momenta and of the 
quark masses. The Ward identities of chiral symmetry determine the expansion up to and 
including terms of order p4 (at fixed ratio nrquart/p ) * in terms of a few constants, which may 
be identified with the coupling constants of a unique effective low energy Lagrangian. The low 
energy representation of several Green’s functions and form factors and of the na scattering 
amplitude are then calculated. The values of the low energy coupling constants are extracted 
from available experimental data. The corrections of order Mj, to the xz scattering lengths and 
effective ranges turn out to be substantial and the improved low energy theorems agree very 
well with the measured phase shifts. The observed differences between the data and the 
uncorrected soft pion theorems may even be used to measure the scalar radius of the pion, 
which plays a central role in the low energy expansion. 0 1984 Academic Press, Inc. 

Contents. 1. Introduction. 2. Symmetries of the Green’s functions-Anomalies. 3. LOW 
energy expansion. 4. Effective Lagrangian. 5. General form of effective Lagrangian to 
order p4. 6. Loops. 7. Nonlinear u-model to one loop. 8. Dimensional regularization. 
9. Renormalization. 10. One-loop integrals for 1., 2-, 3-, and 4-point functions. 11. The expec- 
tation values (01 tiu IO), (01 dd IO). 12. Axial vector and pseudoscalar two-point functions. 
M,, F,. 13. Vector and scalar two-point functions. 14. Spectral representations. 15. Vertex 
functions and form factors. 16. Four-point function. 17. & scattering amplitude. 18. Partial 
wave expansion and threshold parameters. 19. Phenomenology of the low energy coupling 
constants. 20. Measuring the scalar radius of the pion. 21. Summary and concluding remarks. 
Appendix A: Fermion determinant in the presence of external fields. Appendix B: Renor- 
malizable u-model. Appendix C: The p. 

1. INTRODUCTION 

If the quark masses are set equal to zero, the QCD Hamiltonian is symmetric 
under the chiral group SU(N,) x SU(N’). One assumes that the ground state of the 

* Work supported in part by Schweizerischer Nationalfonds. 
t On leave of absence from Universitlt Bern. Permanent address: Institut fiir Theoretische Physik, 

Sidlerstrasse 5, 3012 Bern, Switzerland. 
142 

0003.4916/84$7.50 
Copyright 0 1984 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

Heat-kernel was introduced nearly 70 years ago as a method to compute loops that respects gauge covariance throughout the 
calculation

 An intro to heat kernel
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Ks(t, m, U; x, y) = ∫
ddk

(2π)d
e−ik(x−y)(ei(k2−m2)t H(t, U; x, y)) The HK for the 

free operator 
( )D2 + m2

∑
n

(−t)n

n!
bn(x, y)

Gs(m, U) =
−i

D2 + m2 + U − iϵ

Gs(m, U) = ∫
∞

0
dt Ks(t, m, U) Ks(t, m, U) ≡ e−i(D2+m2+U)t

i∂t Ks(t, m, U) = (D2 + m2 + U) Ks(t, m, U), Ks(0,m, U) = 1

Scalar propagator:

In Heat-kernel representation,

The kernel satisfies the Schrödinger equation,

Ks(t, m, U; x, y) = < y |Ks(t, m, U) |x > Ks(t, m, U; x, y) = K0(t, m; x − y) H(t, U; x, y) To get the form of the kernel, define: and make the ansatz,

where,

Gauge propagator: Kv(t, m, U; x, y) = ∫
ddk

(2π)d
e−ik(x−y)( − ei(k2−m2)t H(t, U; x, y))

Fermion propagator: Kf(t, m, U; x, y) = ∫
ddk

(2π)d
e−ik(x−y)(ei(k2−m2)t (ik + m)H(t, U; x, y))

 Heat kernel representation of the propagators

(4πt)−d/2e−tM2− (x − y)2
4t

A.A.Bel’kov et al., hep-ph/9506237

I.G.Avramidi, Nuc.Phys.B, 355(1991)

Gersdorff et al., 2212:07451
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ℒeff,1-loop = cs tr log(−P2 + U + M2) = cs tr ∫
∞

0

dt
t

e−tΔ = cs tr ∫
∞

0

dt
t

Ks(t, x, x, Δ)

= cs ∫
∞

0

dt
t

(4πt)−d/2e−tM2

∑
k

(−t)k

k!
tr[bk] =

cs

(4π)d/2

∞

∑
k=0

Md−2k (−1)k

k!
Γ[k − d /2] tr[bk]}

Heat-Kernel 
coefficients 

Let’s consider the part of UV Lagrangian that’s bi-linear in :Φ
<latexit sha1_base64="e9B7ogo00dGUTWusmVs2M7Dj8XM="></latexit>

L� = �†(D2 + U +M2)� = �†(�)�,

One-loop effective action after integrating out :Φ

For  the Gamma function has simple poles. Assuming , we can write the divergent part of the effective-action:k ≤ d/2 d = 4 − ϵ

}
 2/ϵ − γE + 𝒪(ϵ)

 Since the kernel satisfies the Schrödinger equation, we get a recursive relation to find the coefficients.

 One loop effective action and heat-kernel coefficients

UB, Joydeep Chakrabortty, Shakeel Ur Rahaman, Kaanapuli Ramkumar; 2306.09103

https://arxiv.org/abs/2306.09103
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A few examples:

Start with the initial condition, b0(x, x) = I

Operators of the form  appear in the coefficient   where .𝒪(DrUs) bn(x, x) n = r/2 + s

𝒪(DrUs) ≡ [br/2+s][[Us]] =
n=r/2+s

∑
k=0

n! (n − 1)!
k!(2n − k)!

{k D2(n−k){Ubk−1[[Us−1]]} − T2(n−k) bk[[Us]]}Use recursive relation,

=
cs

(4π)d/2

∞

∑
k=0

Md−2k (−1)k

k!
Γ[k − d /2] tr[bk]ℒeff,1-loop

<latexit sha1_base64="GHyR5htewr/BawU0cg/SV3FE4ZA="></latexit>

Uij =
�2LUV

��i��j

 One loop effective action and heat-kernel coefficients
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Your favourite BSM 
Lagrangian

Find: U =
δ2ℒΦ

δΦ2

Use this formula to get 
Green’s basis like 

structures 

Remove redundancies to 
recast them into Warsaw-

like structures 

 One loop effective action up to dimension eight

<latexit sha1_base64="GHyR5htewr/BawU0cg/SV3FE4ZA=">AAACLXicbVBLS8NAGNz4rPUV9ehlsQieSlJ8XYSiHjx4qGDaQhPDZrtpt9082N0IJeQPefGviOChIl79G27aHGrrwMLszPexO+PFjAppGGNtaXlldW29tFHe3Nre2dX39psiSjgmFo5YxNseEoTRkFiSSkbaMSco8BhpecOb3G89Ey5oFD7KUUycAPVC6lOMpJJc/dZyUzrIrmyfI5zaXcIkeqpBO0CyjxFL7zM3tZpZVljQbvSpS+HsbZC5esWoGhPARWIWpAIKNFz93e5GOAlIKDFDQnRMI5ZOirikmJGsbCeCxAgPUY90FA1RQISTTtJm8FgpXehHXJ1Qwok6u5GiQIhR4KnJPIWY93LxP6+TSP/SSWkYJ5KEePqQnzAoI5hXB7uUEyzZSBGEOVV/hbiPVG9SFVxWJZjzkRdJs1Y1z6tnD6eV+nVRRwkcgiNwAkxwAergDjSABTB4AW9gDD61V+1D+9K+p6NLWrFzAP5A+/kFJzGpSg==</latexit>

Uij =
�2LUV

��i��j

UB, Joydeep Chakrabortty, Shakeel Ur Rahaman, Kaanapuli Ramkumar; 2306.09103

https://arxiv.org/abs/2306.09103
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 One loop effective action up to dimension eight

 To integrate out heavy fermions instead of scalars, one has to bosonize the Dirac operator to recast the one effective 
action in terms of a second order elliptic operator:

where  is defined as:𝒜

( Cognola et al., hep-th/9910038) shows that this function for massive operator in even dimension can also be expressed in 
terms of heat-kernel coefficients

 with

 This shows that the effective action for integrating out heavy scalars can be easily modified to get the fermionic one 

loop effective action by substituting . Uf =
i
4

[γμ, γν] Gμν Chakrabortty et al., 2308.03849



Upalaparna Banerjee SMEFT–Tools 2025 | Heat–kernel as a tool for one–loop matching and running 8

At one loop, the divergent contribution comes from:

 Let’s consider a real SQFT described by the following Lagrangian:

 The one loop divergent contribution is: 

}

 2/ϵ − γE + 𝒪(ϵ)

α =
1

16π2

 Deriving one loop counter terms

U =
δ2ℒ
δϕ2

UB, Joydeep Chakrabortty, Kaanapuli Ramkumar; 2404.02734
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Let’s start with a different form for the Green’s function:

 With

 In both cases, in , the first three terms in the series contribute to divergence:d = 4 − ϵ

 The general structure of the loop integral is given by:

 Two different kinds of singularities can appear from Green’s function: at coincidence limit   and at non-coincidence limit z → 0 z ≠ 0

 Computing loops with heat kernel

zμ = xμ − yμ

α =
1

16π2

UB, Joydeep Chakrabortty, Kaanapuli Ramkumar; 2404.02734
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 At the coincidence limit the singularities can be extracted from:

 For example, 

 In non-coincidence limit different combination of component Green’s functions can be divergent

 Divergences at two loop

α =
1

16π2

UB, Joydeep Chakrabortty, Kaanapuli Ramkumar; 2404.02734
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 There are three diagrams that one needs to compute at two loop:

 Divergences at two loop
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 Heat kernel provides a way to compute loops in a gauge covariant way.

 It can be used to get a compact and universal form for the one loop effective action.

 The fermionic one loop effective action can be derived from the same formula by modifying the interaction terms

 The single poles can be extracted from the one loop effective action from the poles of the gamma function at  
.k = 0,1,2

 The poles at the two loop can rise from both coincidence limit and non-coincidence limit of the Green’s function. 
There is no need perform any kind of spatial or momentum integral here.

 Summary

 Thanks!


