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• Introduction to SMEFT 

• SMEFT requires understanding the interference 

• Interference resurrection 

• gluon operator 

• Keeping uncertainties under control (NLO QCD) 

• Dimension 8 contribution 

• Final comments
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Indirect detection of NP

• Assumption : NP scale >> energies probed in experiments 

Exp. range NP scale
E

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape
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p2 ≪ m2

One assumption : p2 ≪ m2

New/modified interactions 
between SM particles

New particles
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Taylor expand : 1, 2 ,..parameters

~ stay at rest

230km/h

2km/h



C. Degrande

Taylor expand : 1, 2 ,..parameters

~ stay at rest

230km/h

2km/h



C. Degrande

Taylor expand : 1, 2 ,..parameters

~ stay at rest

230km/h

2km/h



C. Degrande

How big of a gap?

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape

C. Degrande (UIUC) 20 September 2012 4 / 16

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape

C. Degrande (UIUC) 20 September 2012 4 / 16

u d > d u e+ ve e- ve~ QCD=0 NP=2 NP^2=4 page 14/425

Diagrams made by MadGraph5_aMC@NLO

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

h

 diagram 151 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

z

 diagram 152 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u
4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-

 diagram 153 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
a

 diagram 154 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
h

 diagram 155 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
z

 diagram 156 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

a

 diagram 157 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

h

 diagram 158 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

z

 diagram 159 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u
4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-

 diagram 160 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
a

 diagram 161 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
h

 diagram 162 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
z

 diagram 163 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

a

 diagram 164 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

h

 diagram 165 NP=2, QCD=0, QED=6

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape

C. Degrande (UIUC) 20 September 2012 4 / 16

ee

e2

p2
+ . . .

g2

m2
+ 𝒪 ( p2

m4 )
e2

p2
1 + . . . g2 p2

m2
+ 𝒪 ( p4

m4 )

p2/m2

dim

g2 p2

m2
g2 p4

m4

g2 ≲ 1Weakly

p2/m2 ∼ 0.1

<



C. Degrande

How big of a gap?

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape

C. Degrande (UIUC) 20 September 2012 4 / 16

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape

C. Degrande (UIUC) 20 September 2012 4 / 16

u d > d u e+ ve e- ve~ QCD=0 NP=2 NP^2=4 page 14/425

Diagrams made by MadGraph5_aMC@NLO

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

h

 diagram 151 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

z

 diagram 152 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u
4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-

 diagram 153 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
a

 diagram 154 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
h

 diagram 155 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
z

 diagram 156 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

a

 diagram 157 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

h

 diagram 158 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

z

 diagram 159 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u
4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-

 diagram 160 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
a

 diagram 161 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
h

 diagram 162 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
z

 diagram 163 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

a

 diagram 164 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

h

 diagram 165 NP=2, QCD=0, QED=6

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape

C. Degrande (UIUC) 20 September 2012 4 / 16

ee

e2

p2
+ . . .

g2

m2
+ 𝒪 ( p2

m4 )
e2

p2
1 + . . . g2 p2

m2
+ 𝒪 ( p4

m4 )

p2/m2

dim

g2 p2

m2
g2 p4

m4

g2 ≲ 1Weakly

p2/m2 ∼ 0.1

<

g

g g

g

g2

g4 p2

m2
g4 p4

m4<



C. Degrande

How big of a gap?

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape

C. Degrande (UIUC) 20 September 2012 4 / 16

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape

C. Degrande (UIUC) 20 September 2012 4 / 16

u d > d u e+ ve e- ve~ QCD=0 NP=2 NP^2=4 page 14/425

Diagrams made by MadGraph5_aMC@NLO

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

h

 diagram 151 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

z

 diagram 152 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u
4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-

 diagram 153 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
a

 diagram 154 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
h

 diagram 155 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
z

 diagram 156 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

a

 diagram 157 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

h

 diagram 158 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

z

 diagram 159 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u
4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-

 diagram 160 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
a

 diagram 161 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
h

 diagram 162 NP=2, QCD=0, QED=6

u

1

d
3

w+

d
2

u 4

w+

e+

5

ve 6
w+

e- 7

ve~
8

w-
z

 diagram 163 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

a

 diagram 164 NP=2, QCD=0, QED=6

u
1

d
3

w+

d
2

u 4

w+

e+

5

ve 6w+

e- 7

ve~
8

w-

h

 diagram 165 NP=2, QCD=0, QED=6

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape

C. Degrande (UIUC) 20 September 2012 4 / 16

ee

e2

p2
+ . . .

g2

m2
+ 𝒪 ( p2

m4 )
e2

p2
1 + . . . g2 p2

m2
+ 𝒪 ( p4

m4 )

p2/m2

dim

g2 p2

m2
g2 p4

m4

g2 ≲ 1Weakly

p2/m2 ∼ 0.1

<

g

g g

g

g2

g4 p2

m2
g4 p4

m4<

Strongly g2 ∼ 10

≈



C. Degrande

EFT 

ar
X

iv
:1

3
0

8
.6

3
2

3
v

1
  

[h
ep

-p
h

] 
 2

8
 A

u
g

 2
0

1
3

A basis of dimension-eight operators for anomalous neutral

triple gauge boson interactions

Celine Degrande
Department of Physics, University of Illinois at Urbana-Champaign

1110 W. Green Street, Urbana, IL 61801, USA

Abstract

Four independent dimension-eight operators give rise to anomalous neutral triple
gauge boson interactions, one CP-even and three CP-odd. Only the CP-even operator
interferes with the Standard Model for the production of a pair of on-shell neutral
bosons. However, the effects are found to be tiny due mainly to the mismatch of the Z
boson polarization between the productions from the SM and the new operator.

1 Introduction

The recent discovery of the Higgs boson has increased the confidence in the validity of
the Standard Model (SM). On the other hand, the remaining issues of the SM like the
absence of a dark matter candidate claim for new physics. This dilemma can only be solved
experimentally by either directly searching for new particles or by looking for deviations
from the SM predictions. In this article, we use the well motivated effective field theory
(EFT) approach to pin down the expected first deviations from heavy new physics on the
neutral triple gauge couplings (nTGC).
Anomalous neutral gauge couplings have been actively searched for at LEP [1, 2, 3], at the
Tevatron [4, 5] and at the LHC [6, 7]. The constraints are given following the parametrization
of the anomalous vertices for the neutral gauge bosons [8, 9, 10, 11]

ieΓαβµ
ZZV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

[
fV
4 (qα3 g

µβ + qβ3g
µα)− fV

5 ϵµαβρ(q1 − q2)ρ
]
, (1)

ieΓαβµ
ZγV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

{

hV1 (q
µ
2g

αβ − qα2 g
µβ) +

hV2
M2

Z

qα3 [(q3q2)g
µβ − qµ2qβ3 ]

− hV3 ϵ
µαβρq2ρ −

hV4
M2

Z

qα3 ϵ
µβρσq3ρq2σ

}

(2)

where V is a photon or a Z boson and is off-shell while the two other bosons are on-shell.
The parametrization of those vertices has been extended for off-shell bosons in ref. [10]. So
far, the size of the fV

i and hVi coefficients is unknown. They have be computed or estimated
for some extensions of the SM [10, 12]. Alternatively, their size as well as their dependence
in a smaller number of parameters can be obtained for any heavy new physics model using
EFT [13]. As a matter of fact, any extension the SM can be parametrized at low energy by
the effective Lagrangian

L = LSM +
∑

d>4

∑

i

Ci

Λd−4
Od

i (3)

1

SM fields & sym.



C. Degrande

EFT 

• Assumption : Eexp <<Λ	

• Model independent (i.e. parametrize a large class of 
models) : any HEAVY NP 

• SM is the leading term : EFT for precision physics 

• higher the exp. precision => smaller EFT error 
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1 Introduction

The recent discovery of the Higgs boson has increased the confidence in the validity of
the Standard Model (SM). On the other hand, the remaining issues of the SM like the
absence of a dark matter candidate claim for new physics. This dilemma can only be solved
experimentally by either directly searching for new particles or by looking for deviations
from the SM predictions. In this article, we use the well motivated effective field theory
(EFT) approach to pin down the expected first deviations from heavy new physics on the
neutral triple gauge couplings (nTGC).
Anomalous neutral gauge couplings have been actively searched for at LEP [1, 2, 3], at the
Tevatron [4, 5] and at the LHC [6, 7]. The constraints are given following the parametrization
of the anomalous vertices for the neutral gauge bosons [8, 9, 10, 11]
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where V is a photon or a Z boson and is off-shell while the two other bosons are on-shell.
The parametrization of those vertices has been extended for off-shell bosons in ref. [10]. So
far, the size of the fV

i and hVi coefficients is unknown. They have be computed or estimated
for some extensions of the SM [10, 12]. Alternatively, their size as well as their dependence
in a smaller number of parameters can be obtained for any heavy new physics model using
EFT [13]. As a matter of fact, any extension the SM can be parametrized at low energy by
the effective Lagrangian

L = LSM +
∑

d>4

∑

i

Ci

Λd−4
Od

i (3)

1

L = LSM +
�

i

Ci

�2
O6

i

a finite number of 
coefficients 

=>Predictive!

Parametrize any NP but an ∞ number of coefficients

SM fields & sym.
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(EFT) approach to pin down the expected first deviations from heavy new physics on the
neutral triple gauge couplings (nTGC).
Anomalous neutral gauge couplings have been actively searched for at LEP [1, 2, 3], at the
Tevatron [4, 5] and at the LHC [6, 7]. The constraints are given following the parametrization
of the anomalous vertices for the neutral gauge bosons [8, 9, 10, 11]

ieΓαβµ
ZZV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

[
fV
4 (qα3 g

µβ + qβ3g
µα)− fV

5 ϵµαβρ(q1 − q2)ρ
]
, (1)

ieΓαβµ
ZγV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

{

hV1 (q
µ
2g

αβ − qα2 g
µβ) +

hV2
M2

Z

qα3 [(q3q2)g
µβ − qµ2qβ3 ]

− hV3 ϵ
µαβρq2ρ −

hV4
M2

Z

qα3 ϵ
µβρσq3ρq2σ

}

(2)

where V is a photon or a Z boson and is off-shell while the two other bosons are on-shell.
The parametrization of those vertices has been extended for off-shell bosons in ref. [10]. So
far, the size of the fV

i and hVi coefficients is unknown. They have be computed or estimated
for some extensions of the SM [10, 12]. Alternatively, their size as well as their dependence
in a smaller number of parameters can be obtained for any heavy new physics model using
EFT [13]. As a matter of fact, any extension the SM can be parametrized at low energy by
the effective Lagrangian
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Figure 9: Comparison of the template fits to the observed meµ distributions in the 0-jet (left)
and 1-jet (right) categories. The non-SM contributions for cWWW/L2 = 3.2 TeV�2, cW/L2 =

4.9 TeV�2, and cB/L2 = 15.0 TeV�2 are shown, not stacked on top of the other contributions.
In the plot on the right, the decrease in the non-SM contribution at low meµ is not statistically
significant and results from limited precision in the subtraction of two large yields (SM and
SM+non-SM). The last bin contains all events with reconstructed meµ > 1 TeV. The error bars
on the data points represent the statistical uncertainties for the data, and the hatched areas
represent the total uncertainty for the predicted yield in each bin.

Table 9: Expected and observed 68 and 95% confidence intervals on the measurement of the
Wilson coefficients associated with the three CP-conserving, dimension-6 operators.

Coefficients 68% confidence interval 95% confidence interval
( TeV�2) expected observed expected observed

cWWW/L2 [�1.8, 1.8] [�0.93, 0.99] [�2.7, 2.7] [�1.8, 1.8]
cW/L2 [�3.7, 2.7] [�2.0, 1.3] [�5.3, 4.2] [�3.6, 2.8]
cB/L2 [�9.4, 8.4] [�5.1, 4.3] [�14, 13] [�9.4, 8.5]

to cWWW and cW is similar to the CMS WZ analysis [59] and is much better for cB. Finally,
the sensitivity is slightly weaker than for the CMS analysis of W+W� and WZ production in
lepton and jets events [60]. Figure 10 (right) shows the expected and observed 68 and 95%
confidence level contours for pairs of Wilson coefficients.

13 Summary
Measurements of W+W� boson pair production in proton-proton collisions at

p
s = 13 TeV

was performed. The analysis is based on data collected with the CMS detector at the LHC cor-
responding to an integrated luminosity of 35.9 fb�1. Candidate events were selected that have
two leptons (electrons or muons) with opposite charges. Two analysis methods were described.
The first method imposes a sequence of requirements on kinematic quantities to suppress back-
grounds, while the second uses a pair of random forest classifiers. The total production cross
section is stot

SC = 117.6 ± 1.4 (stat) ± 5.5 (syst) ± 1.9 (theo) ± 3.2 (lumi) pb = 117.6 ± 6.8 pb, where
the individual uncertainties are statistical, experimental systematic, theoretical, and of inte-
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4 )| |h(ABSM

4 )|

V V V V 0 4,2

V V �� 0 2

V V   0 2
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TABLE I: Four-point amplitudes A4 that do not vanish in
the massless limit and the total helicity h(A4) of their SM
and BSM contributions. V = V ±,  =  ± and � denote,
respectively, transversely-polarized vectors, fermions (or
antifermions) and scalars in the SM. For processes with
at least one transversely-polarized vector (listed above the
double line in the table), SM and BSM contributions do
not interfere in the massless limit because have di↵erent
total helicity.

terference term in the amplitude squared. Obviously,
interference is possible only if SM and BSM give non-
vanishing contribution to the same helicity ampli-
tude. In this section we study the helicity structure
of scattering amplitudes at tree-level, in the SM and
at leading order in the e↵ective field theory expan-
sion, i.e. at the level of D=6 operators. We will
denote the corresponding new-physics contribution
as BSM6 in the following. We focus first on the phe-
nomenologically relevant case of 2 ! 2 scatterings
and work in the massless limit; the massive case and
higher-points amplitudes are discussed below. We
use the spinor-helicity formalism (see Refs. [9, 10]
for a review), where the fundamental objects which
define the scattering amplitudes are Weyl spinors
 ↵ and  ̄↵̇, transforming as (1/2, 0) (undotted in-
dices) and (0, 1/2) (dotted indices) representations
of SU(2) ⇥ SU(2) ' SO(3, 1), and Lorentz vectors
Aµ�

µ

↵↵̇
, transforming as (1/2, 1/2). 2 In this lan-

guage, the field strength is written as

Fµ⌫�
µ

↵↵̇
�⌫

��̇
⌘ F↵� ✏̄↵̇�̇ + F̄

↵̇�̇
✏↵� (2)

in terms of its self-dual and anti-self dual parts F
and F̄ (transforming respectively as (1, 0) and (0, 1)
representations).

2
We will not distinguish between fermions and anti-fermions

except where explicitly mentioned, as this distinction is not

crucial to our analysis. We will denote a Weyl fermion or

anti-fermion of helicity + (�) with  +
( �

). When indi-

cating a scattering amplitude, the symbol  will stand for

either  +
or  �

.

Am Am0

± ⌥

FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫

⇢
W ⇢µ) instead
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Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
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W ⇢µ) instead
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sion, i.e. at the level of D=6 operators. We will
denote the corresponding new-physics contribution
as BSM6 in the following. We focus first on the phe-
nomenologically relevant case of 2 ! 2 scatterings
and work in the massless limit; the massive case and
higher-points amplitudes are discussed below. We
use the spinor-helicity formalism (see Refs. [9, 10]
for a review), where the fundamental objects which
define the scattering amplitudes are Weyl spinors
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FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫

⇢
W ⇢µ) instead
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Interference revival: Formalism

2012.06595C.D., M. Maltoni
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pT > 50 GeV pT > 200 GeV pT > 1000 GeV
proc. ‡ [pb] w>0 ‡ [pb] w>0 ‡ [pb] w>0

tt̄ 1.384 85% 1.384 85% 1.384 85%
tt̄j 5.20·10≠1 62% 1.13·10≠1 60% 1.37·10≠3 62%
jjj 2.98·101 52% 5.90·10≠1 52% 4.91·10≠4 61%
jjjj -2.89·101 45% -2.50·10≠1 44% -4.12·10≠6 39%

TABLE I. O(�≠2) cross-sections and percentages of positive-
weighted events for processes with a non-null interference be-
tween the SM and the OG operator and a large cross-section.
These results are calculated for jets separated by �R >0.4
and with di�erent minimum values for their transverse mo-
mentum pT

corrections, parton shower and detector e�ects for future
studies.
The cancellation over the phase space is e�cient if the in-
tegrals of the interference in the phase space part where
its matrix element is positive and negative are almost
equal in absolute value. Those two integrals are obtained
from the sum of the weights of events generated accord-
ing to the interference, keeping respectively only positive
or negative weighted events. In table I, we use the per-
centage of positive unweighted events to quantify the e�-
ciency of this cancelation for top and jet processes. Since
the strongest cancellation occurs for three-jets and this
process has the large cross-section necessary for accurate
di�erential measurement, in the remaining of this letter,
we will restrict ourself to this process and leave the other
for future analyses. The integral of the absolute valued
interference di�erential cross-section,

‡
|int|

©

⁄
d�

----
d‡int

d�

---- (5)

is computed from the sum of the absolute values of the
weights and is an upper bound of the total measurable
e�ect of the interference over the whole phase space �.
This quantity is given in table II together with the SM,
the interference and the O

!
1/�4"

total cross-sections.
The comparison of those four quantities shows the strong
suppression of the interference total cross-section, and
how it is lifted by ‡

|int|. Unfortunately, ‡
|int| is not a

measurable quantity as it requires to measure not only
the momenta of the jets, but also their flavours and helic-
ities, as well as those of the incoming partons. Therefore,
we define the measurable absolute value cross-section,

‡
|meas|

©

⁄
d�meas

------

ÿ

{um}

d‡

d�

------
(6)

where {um} is the set of unmeasurable quantities of the
events. For other processes, the sum can be replaced,
at least partially, by integrals over continuous unmea-
surable quantities, such as the longitudinal momenta of
a neutrino. This is the di�erence between the positive

and negative contributions of the interference to the to-
tal cross-section using all the information experimentally
available (and assuming perfect measurements of the jets
momenta). As a result, this is an upper bound for any
asymmetry build on one or a few kinematic variables aim-
ing at restoring the interference, and therefore can be
used to assess the e�ciency of such asymmetry. ‡

|meas|

is estimated by

‡
|meas| = lim

NæŒ

Nÿ

i=1
wi ú sign

A
ÿ

um

ME(p̨i, um)
B

(7)

where ME is the part of the squared amplitude due to
the interference and wi and p̨i label the weight and the
momenta of the jets of the event i. Therefore, this can be
seen as a matrix element method [14–19] at the partonic
level to revive the interference. The values of ‡

|meas|

for the three-jet final state and di�erent cuts are given
in table II. The cancellation among positive and negative
weighted events decreases with the pT cut while the ratio
‡

|meas|
/‡

|int| remains roughly constant.

Di�erential distributions We tested the ability to
separate positive and negative weight for various di�er-
ential and double di�erential cross-sections. Tested dis-
tributions include the transverse momenta pT and the
pseudorapidities ÷ of the jets, their angular distances
�R, their invariant masses, the normalised triple product
among the three-momenta of the jets, and some event-
shape variables, including the transverse thrust, the jet
broadening [20] and the transverse sphericity [21]. Sev-
eral variables such as the pT of the first jet, pT [j1], the
transverse trust and the angular distance between the
two lowest pT jets , �R[j2j3] achieve an e�ciency of
about 40% compared to ‡

|meas|. For comparison, the
e�ciency of the total cross-section is about 2%. The
best e�ciency, however, is obtained for the transverse
sphericity and is about 80%. Moreover, this e�ciency
barely varies with the global lower cut on each of the
three jets pT . The transverse sphericity SphT is defined
by using the eigenvalues ⁄1 Ø ⁄2 of the transverse mo-
mentum tensor:

Mxy =
Njetsÿ

i=1

A
p

2
x,i px,ipy,i

py,ipx,i p
2
y,i

B
, SphT = 2⁄2

⁄2 + ⁄1
.

(8)
Therefore, sign flip occurs between the events that are
more two-jets like (SphT ≥ 0) and those that are three
well separated and balanced jets (SphT ≥ 1). This ex-
plains why the phase space cancellation is lower with the
high pT cut, as strong hierarchy between the jets be-
comes then unlikely. The separations of the negative and
positive contributions for some of those variables are il-
lustrated in figure 1, where the full distributions as well
as those of the positive and negative weighted events are
drawn separately. Contrarily to ine�cient variables, the
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transverse trust and the angular distance between the
two lowest pT jets , �R[j2j3] achieve an e�ciency of
about 40% compared to ‡

|meas|. For comparison, the
e�ciency of the total cross-section is about 2%. The
best e�ciency, however, is obtained for the transverse
sphericity and is about 80%. Moreover, this e�ciency
barely varies with the global lower cut on each of the
three jets pT . The transverse sphericity SphT is defined
by using the eigenvalues ⁄1 Ø ⁄2 of the transverse mo-
mentum tensor:

Mxy =
Njetsÿ

i=1

A
p

2
x,i px,ipy,i

py,ipx,i p
2
y,i

B
, SphT = 2⁄2

⁄2 + ⁄1
.

(8)
Therefore, sign flip occurs between the events that are
more two-jets like (SphT ≥ 0) and those that are three
well separated and balanced jets (SphT ≥ 1). This ex-
plains why the phase space cancellation is lower with the
high pT cut, as strong hierarchy between the jets be-
comes then unlikely. The separations of the negative and
positive contributions for some of those variables are il-
lustrated in figure 1, where the full distributions as well
as those of the positive and negative weighted events are
drawn separately. Contrarily to ine�cient variables, the

> > σint =Phase space 
Suppression

Experimentally 
accessible?

Fully:  
dσint

dθ
(ee → Zγ) ∝ cos θ

Not at all: σint(μL) = − σint(μR)

neutrino momenta, 
helicities, jet 
flavours, initial 
parton direction,… 
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Interferences are not positive-definite and therefore they can change sign over the phase space. If
the contributions of the regions where the interference is positive and negative nearly cancel each
other, interference e�ects are hard to measure. In this paper, we propose a method to quantify the
ability of an observable to separate an interference positive and negative contributions and therefore
to revive the interference e�ects in measurements. We apply this method to the anomalous gluon
operator in the SMEFT for which the interference suppression is well-known. We show that we
can get, for the first time, contraints on its coe�cient using the interference only similar to those
obtained by including the square of the new physics amplitude.

Introduction The Standard Model E�ective Field
Theory (SMEFT) explores the deviations in SM cou-
plings due to interactions among Standard Model (SM)
particles and new states, too heavy to be produced at
the LHC or any other considered experiment. Nonethe-
less, those new states a�ect the interactions between
the SM particles and accurate measurements of their
strengths should, thus, reveal or constrain the presence
of new physics. In this framework, heavy new degrees
of freedoom are integrated out and the new physics is
parametrised by higher-dimensional operators [1][2],

LSMEF T = LSM +
ÿ

i

Ci

�2 Oi + O(�≠4), (1)

where � is the new physics scale. As a results, observ-
ables such as di�erential cross-sections display the same
expansion,

d‡

dX
= d‡

SM

dX
+

ÿ

i

Ci

�2
d‡

dX
+ O(�≠4) (2)

where X is a generic name for a measurable variable.
While constraints should ideally come from the second
term, i.e. the term linear in the coe�cients, they of-
ten come in practice from the term quadratic in Ci or
from terms of even higher power of Ci. This phenomenon
mainly originates from the fact that the linear term is an
interference between the SM amplitudes and the ampli-
tudes linear in Ci, and this interference has been shown
to be suppressed [3] for 2 æ 2 processes. As it will be
illustrated below, this suppression occurs also in higher
multiplicity processes. An interference suppression can
have two origins: either the interference matrix element
is small all over the phase space, or it changes sign over
the phase space. This letter aims, in the second case,
to revive the interference using di�erential measurements
and to assess the e�ciency of the reviving procedure. Al-
though we will focus on a single operator in the rest of the
letter, the method is generic and can be applied for any
interference suppressed by a sign flip in the phase space,

including interference unrelated to the SMEFT. Another
obvious application in the SMEFT is the CP-violating
operators [4]. Their interference do not contribute to the
total cross-section of C-even processes by symmetry, but
they can probed using CP-violating observables.

Framework In this work we concentrate on the
dimension-6 operator

OG = gsfabc G
a,µ
‹ G

b,‹
fl G

c,fl
µ , (3)

with Gµ‹ the gluon field strength. While this operator is
expected to contribute to multijets and top-pair produc-
tion, its interference vanishes for dijet and is strongly sup-
pressed for the other processes. As a matter of fact, pre-
vious studies [5–7] suggest that a good sensitivity to its
interference is unachievable. However, constraints on this
operator are essential as they a�ect the sensitivity over
other operators involved, for example, in top quark pro-
duction [8]. High-multiplicity jet measurements strongly
constrain this operator but mainly from the O(�≠4) or
even higher order terms [6, 7]. The stricter bound on this
operator comes from the O(�≠4) in dijet measurements
[9] and reads

CG

�2 < (0.031 TeV)≠2 (4)

at 95% confidence level (CL).
We use the SMEFT@NLO [10] Universal FeynRules Out-
put (UFO) [11], written from a FeynRules model [12]
containing the dimension-six operators, to generate the
LO partonic events needed for our study. All the opera-
tors coe�cients are set to zero but the OG one, which is
taken equal to 1 with � = 5 TeV. Madgraph@NLO [13]
is then used to generate events for the SM, the square of
the 1/�2 amplitudes and their interference. Throughout
this paper, we truncate the amplitude at O

!
1/�2"

and
therefore O

!
1/�4"

terms always come from the square
of the 1/�2 amplitudes. Namely, multiple insertions of
the dimension-six operators are not allowed. We use the
NNPDF2.3 parton distribution function (PDF) set [14]
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tion, its interference vanishes for dijet and is strongly sup-
pressed for the other processes. As a matter of fact, pre-
vious studies [5–7] suggest that a good sensitivity to its
interference is unachievable. However, constraints on this
operator are essential as they a�ect the sensitivity over
other operators involved, for example, in top quark pro-
duction [8]. High-multiplicity jet measurements strongly
constrain this operator but mainly from the O(�≠4) or
even higher order terms [6, 7]. The stricter bound on this
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[9] and reads
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Interference vanishes in dijet

from dijet at  𝒪 (1/Λ4)
R. Goldouzian, M. D. Hildreth, Phys. Lett. B 811, 
135889 (2020), arXiv:2001.02736 
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Figure 2: E↵ect of multiple occurrences of the dimension-six
Yang-Mills operator in the multijet matrix elements.

eration of arbitrary Lorentz structures using Sherpa is
described in Ref. [21].

Just like the QCD background we compute the con-
tributions of the dimension-six operator of Eq. (1) using
CKKW multijet merging techniques with leading-order
matrix elements for up to five jets [17]. Formally, we can
organize the e↵ect of the higher dimension contributions
in terms of the scale suppression in the multijet cross
section. In this scheme, the leading interference terms
with SM diagrams are proportional to 1/⇤2, while the
dimension-six contributions squared contribute to 1/⇤4

or higher, depending on the numerically relevant number
of operator insertions.

In Fig. 2 we show the new physics e↵ects in the ST

distribution for large jet multiplicities. The e↵ects due
to interference terms proportional to 1/⇤2 are negligible
throughout the displayed range of ST . Significant e↵ects,
however, arise from terms of order 1/⇤4. This dominance
of terms of order 1/⇤4 over terms of order 1/⇤2 can also
be observed in top-pair production [4]. For ST > ⇤,
the contributions due of terms of order 1/⇤6 and beyond
eventually become significant. This is to be expected,
since ST /⇤ > 1 in this region, thus spoiling the para-
metric suppression in 1/⇤ and leading to a breakdown
of the e↵ective field theory (EFT) approach. This might
lead to problems in matching our e↵ective Lagrangian
results to a given full model. A standard solution to this
problem is to truncate the ST spectrum at ST = ⇤, thus
avoiding the kinematic region in which the EFT breaks
down. Such a cut is known to almost entirely remove the
sensitivity to higher-dimensional operators for example
in Higgs physics [3]. The sensitivity of the analysis pre-
sented here, however, is only very mildly a↵ected by this
cut, as will be shown in what follows.

Four-quark operator — While multijet production at
the LHC is dominated by gluon amplitudes, processes

Figure 3: E↵ect of e↵ective four-quark operators in our sig-
nal region, with ⇤/

p
cq4 set to the lower limits obtained by

ATLAS [15].

with quarks in the initial and final states still lead
to visible e↵ects. These processes are sensitive to the
dimension-six contact interaction

cq4Oq4 = ±
cq4
⇤2

X

q,q0

(q̄L�
µqL) (q̄0L�

µq0L) . (3)

While in principle the two operators in Eq.(1) and Eq.(3)
should be treated concurrently, we know from the ampli-
tude structure that the number of jets Njets separates
their respective signal regions. For the four-quark oper-
ator the highest sensitivity can be obtained from two-jet
correlations and we therefore use the state-of-the-art re-
sult from the comprehensive, multi-variate ATLAS anal-
ysis [15]. Being formulated as an extension to resonance
searches it does not include the higher-dimensional gluon
operator, and one should therefore use the two-jet topol-
ogy only. There, the ATLAS analysis gives

⇤
p
cq4

> 4.79 ... 6.8 TeV , (4)

in the conventions of Eq.(3) and depending on the as-
sumed sign of the Wilson coe�cient.

We estimate the impact of the four-quark operator on
our Yang-Mills analysis by computing its e↵ect on mul-
tijet production. In Fig. 3 we show the impact of the
four-quark operator within its allowed range of Eq.(4) on
the multijet signature. This result can be directly com-
pared to the expected signal from OG, shown in Fig. 2.

Comparing the two e↵ects on the high-energy tail of
the ST distribution with an assumed new physics scale
⇤/

p
cG . 5 TeV we confirm that the four-quark e↵ects

are strongly suppressed. We find that the two e↵ects only
become comparable when we increase the new physics
scale in the Yang-Mills operator to ⇤/

p
cG & 7 TeV.

Krauss et al, 1611.00767
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pT > 50 GeV pT > 200 GeV pT > 1000 GeV
proc. ‡ [pb] w>0 ‡ [pb] w>0 ‡ [pb] w>0

tt̄ 1.384 85% 1.384 85% 1.384 85%
tt̄j 5.20·10≠1 62% 1.13·10≠1 60% 1.37·10≠3 62%
jjj 2.98·101 52% 5.90·10≠1 52% 4.91·10≠4 61%
jjjj -2.89·101 45% -2.50·10≠1 44% -4.12·10≠6 39%

TABLE I. O(�≠2) cross-sections and percentages of positive-
weighted events for processes with a non-null interference be-
tween the SM and the OG operator and a large cross-section.
These results are calculated for jets separated by �R >0.4
and with di�erent minimum values for their transverse mo-
mentum pT

and the results are given for LHC at 13 TeV at the par-
tonic level. We leave the study of the e�ect of NLO
corrections, parton shower and detector e�ects for future
studies.
The cancellation over the phase space is e�cient if the in-
tegrals of the interference in the phase space part where
its matrix element is positive and negative are almost
equal in absolute value. Those two integrals are obtained
from the sum of the weights of events generated accord-
ing to the interference, keeping respectively only positive
or negative weighted events. In table I, we use the per-
centage of positive unweighted events to quantify the e�-
ciency of this cancelation for top and jet processes. Since
the strongest cancellation occurs for three-jets and this
process has the large cross-section necessary for accurate
di�erential measurement, in the remaining of this letter,
we will restrict ourself to this process and leave the other
for future analyses. The integral of the absolute valued
interference di�erential cross-section,

‡
|int|

©

⁄
d�

----
d‡int

d�

---- (5)

is computed from the sum of the absolute values of the
weights and is an upper bound of the total measurable
e�ect of the interference over the whole phase space �.
This quantity is given in table II together with the SM,
the interference and the O

!
1/�4"

total cross-sections.
The comparison of those four quantities shows the strong
suppression of the interference total cross-section, and
how it is lifted by ‡

|int|. Unfortunately, ‡
|int| is not a

measurable quantity as it requires to measure not only
the momenta of the jets, but also their flavours and helic-
ities, as well as those of the incoming partons. Therefore,
we define the measurable absolute value cross-section,

‡
|meas|

©

⁄
d�meas

------

ÿ

{um}

d‡

d�

------
(6)

where {um} is the set of unmeasurable quantities of the
events. For other processes, the sum can be replaced,
at least partially, by integrals over continuous unmea-
surable quantities, such as the longitudinal momenta of

a neutrino. This is the di�erence between the positive
and negative contributions of the interference to the to-
tal cross-section using all the information experimentally
available (and assuming perfect measurements of the jets
momenta). As a result, this is an upper bound for any
asymmetry build on one or a few kinematic variables aim-
ing at restoring the interference, and therefore can be
used to assess the e�ciency of such asymmetry. ‡

|meas|

is estimated by

‡
|meas| = lim

NæŒ

Nÿ

i=1
wi ú sign

A
ÿ

um

ME(p̨i, um)
B

(7)

where ME is the part of the squared amplitude due to
the interference and wi and p̨i label the weight and the
momenta of the jets of the event i. Therefore, this can be
seen as a matrix element method [15–20] at the partonic
level to revive the interference. The values of ‡

|meas|

for the three-jet final state and di�erent cuts are given
in table II. The cancellation among positive and negative
weighted events decreases with the pT cut while the ratio
‡

|meas|
/‡

|int| remains roughly constant.

Di�erential distributions We tested the ability to
separate positive and negative weight for various di�er-
ential and double di�erential cross-sections. Tested dis-
tributions include the transverse momenta pT and the
pseudorapidities ÷ of the jets, their angular distances
�R, their invariant masses, the normalised triple product
among the three-momenta of the jets, and some event-
shape variables, including the transverse thrust, the jet
broadening [21] and the transverse sphericity [22]. Sev-
eral variables such as the pT of the first jet, pT [j1], the
transverse trust and the angular distance between the
two lowest pT jets , �R[j2j3] achieve an e�ciency of
about 40% compared to ‡

|meas|. For comparison, the
e�ciency of the total cross-section is about 2%. The
best e�ciency, however, is obtained for the transverse
sphericity and is about 80%. Moreover, this e�ciency
barely varies with the global lower cut on each of the
three jets pT . The transverse sphericity SphT is defined
by using the eigenvalues ⁄1 Ø ⁄2 of the transverse mo-
mentum tensor:

Mxy =
Njetsÿ

i=1

A
p

2
x,i px,ipy,i

py,ipx,i p
2
y,i

B
, SphT = 2⁄2

⁄2 + ⁄1
.

(8)
Therefore, sign flip occurs between the events that are
more two-jets like (SphT ≥ 0) and those that are three
well separated and balanced jets (SphT ≥ 1). This ex-
plains why the phase space cancellation is lower with the
high pT cut, as strong hierarchy between the jets be-
comes then unlikely. The separations of the negative and
positive contributions for some of those variables are il-
lustrated in figure 1, where the full distributions as well
as those of the positive and negative weighted events are

add mass or more legs

Part of the phase space with 
positive interference

Large SM x-sect 
& int. cancellation

cG

Λ2
= 1TeV−2



C. Degrande

Triple gluon operator

3

SM O(1/�2) O(1/�4)
pT,min [GeV] ‡ [pb] ‡ [pb] wgt>0 ‡

|meas| [pb] ‡
|int| [pb] ‡ [pb]

50 9.70·105 4.08 50.4% 7.83·102 1.05·103 3.93·101

200 8.96·102 2.92·10≠1 51.4% 3.5·101 5.02·101 2.73
500 3.10 1.69·10≠2 54.0% 6.04·10≠1 8.96·10≠1 1.48·10≠1

1000 9.08·10≠3 4.56·10≠4 60.1% 1.46·10≠3 2.29·10≠3 3.05·10≠3

TABLE II. Cross-sections for three-jet production, for di�erent values of the pT -cut, �R > 0.4, � = 5 TeV and renormalisation
scales fixed respectively at 150, 250, 500, 1000 and 2000 GeV, with up to one OG insertion. The percentages of the total
amount of positive-weighted events, the percentages of the positive and negative measurable matrix elements (mme) and ‡

|int|

are shown for the interference

drawn separately. Contrarily to ine�cient variables, the
distribution of the positive and negative weighted events
are di�erent, resulting in a non-zero and changing sign
distribution for the full interference.

FIG. 1. Di�erential distributions for pp æ 3j at the LHC
with pT > 200 GeV for the jets. The red (blue) line repre-
sents the di�erential cross-section contribution by the positive
(negative) weighted events. Their di�erence, the green line, is
the di�erential cross-section distribution for the interference;
the dashed portion is the opposite of the negative di�erential
distribution. The black line reproduces the SM cross-section
distribution, divided by 100. The last bins contain the over-
flow

NLO predictions for the interferences of operators
known for their cancelation over the phase space seem to
lead in general to very large and/or negative K-factors [4],
as it is the case for analogous weak version of OG, i.e.
OW . They can be understood by the fact that regions
contributing positively and negatively to the interference
have much more reasonable but di�erent K-factors which
can, therefore, significantly a�ect the level of cancela-
tion. As a result, only observables able to separate the
two regions would have stable predictions for the interfer-
ence and would be able extract meaningful information
about such interferences. Due to the heavy computation
needed, we leave, however, the computation of the NLO
corrections for our observables for futur work.

Using the transverse sphericity to split the positive and
negative contributions, we now estimate the limits that
could be obtained on CG

�2 , either for the interference only
or including the O(1/�4) contribution, too. The bounds
are obtained, for each double distribution, from the fol-
lowing ‰-squared

‰
2 =

ÿ

i

3
x

exp
i ≠ x

th
i

‡i

42
=

ÿ

i

A
CG
�2 x

1/�2

i

‡i

B2

(9)

where x
exp
i and x

th
i = x

SM
i + CG

�2 x
1/�2

i are respectively
the measured and predicted content of each bin. Since
the experimental results for the distributions we are in-
terested in have not been published yet, we assume that
the experimental data will follow the SM distributions
for the considered quantities (resulting in the last step of
Eq. (9)) and that the uncertainty, ‡i, for the ith bin is
10% of its SM content. This estimate of the uncertainty
seems consistent with available experimental results [23].
We choose our binning such that each bin would contain
enough events, assuming the SM only to ensure that the
statistical errors are below 10%, for a luminosity of 100
fb≠1. The best results are displayed in table III.

Finally, to assess the validity of the SMEFT with our
approach, we display in figure 2 how the limits on � varies
if a cut on the center-of-mass energy is applied, assum-
ing CG = 1. In principle, the EFT is valid if

Ô
s < �,

which is only satisfied for CG slightly bigger that 1 with
the low pT cuts. The situation improve for the stronger

Close to Schwartz bound

Mostly accessible

much smaller than

Saturate the bound : same shape



C. Degrande

Transverse momentum

3

SM O(1/�2) O(1/�4)
pT,min [GeV] ‡ [pb] ‡ [pb] wgt>0 ‡

|meas| [pb] ‡
|int| [pb] ‡ [pb]

50 9.70·105 4.08 50.4% 7.83·102 1.05·103 3.93·101

200 8.96·102 2.92·10≠1 51.4% 3.5·101 5.02·101 2.73
500 3.10 1.69·10≠2 54.0% 6.04·10≠1 8.96·10≠1 1.48·10≠1

1000 9.08·10≠3 4.56·10≠4 60.1% 1.46·10≠3 2.29·10≠3 3.05·10≠3

TABLE II. Cross-sections for three-jet production, for di�erent values of the pT -cut, �R > 0.4, � = 5 TeV and renormalisation
scales fixed respectively at 150, 250, 500, 1000 and 2000 GeV, with up to one OG insertion. The percentages of the total
amount of positive-weighted events, the percentages of the positive and negative measurable matrix elements (mme) and ‡

|int|

are shown for the interference

drawn separately. Contrarily to ine�cient variables, the
distribution of the positive and negative weighted events
are di�erent, resulting in a non-zero and changing sign
distribution for the full interference.

FIG. 1. Di�erential distributions for pp æ 3j at the LHC
with pT > 200 GeV for the jets. The red (blue) line repre-
sents the di�erential cross-section contribution by the positive
(negative) weighted events. Their di�erence, the green line, is
the di�erential cross-section distribution for the interference;
the dashed portion is the opposite of the negative di�erential
distribution. The black line reproduces the SM cross-section
distribution, divided by 100. The last bins contain the over-
flow

NLO predictions for the interferences of operators
known for their cancelation over the phase space seem to
lead in general to very large and/or negative K-factors [4],
as it is the case for analogous weak version of OG, i.e.
OW . They can be understood by the fact that regions
contributing positively and negatively to the interference
have much more reasonable but di�erent K-factors which
can, therefore, significantly a�ect the level of cancela-
tion. As a result, only observables able to separate the
two regions would have stable predictions for the interfer-
ence and would be able extract meaningful information
about such interferences. Due to the heavy computation
needed, we leave, however, the computation of the NLO
corrections for our observables for futur work.

Using the transverse sphericity to split the positive and
negative contributions, we now estimate the limits that
could be obtained on CG

�2 , either for the interference only
or including the O(1/�4) contribution, too. The bounds
are obtained, for each double distribution, from the fol-
lowing ‰-squared
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i are respectively
the measured and predicted content of each bin. Since
the experimental results for the distributions we are in-
terested in have not been published yet, we assume that
the experimental data will follow the SM distributions
for the considered quantities (resulting in the last step of
Eq. (9)) and that the uncertainty, ‡i, for the ith bin is
10% of its SM content. This estimate of the uncertainty
seems consistent with available experimental results [23].
We choose our binning such that each bin would contain
enough events, assuming the SM only to ensure that the
statistical errors are below 10%, for a luminosity of 100
fb≠1. The best results are displayed in table III.

Finally, to assess the validity of the SMEFT with our
approach, we display in figure 2 how the limits on � varies
if a cut on the center-of-mass energy is applied, assum-
ing CG = 1. In principle, the EFT is valid if

Ô
s < �,

which is only satisfied for CG slightly bigger that 1 with
the low pT cuts. The situation improve for the stronger

~40% efficiency

Efficiency of an observable to revive:
O

σ meas
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Transverse sphericity

2

pT > 50 GeV pT > 200 GeV pT > 1000 GeV
proc. ‡ [pb] w>0 ‡ [pb] w>0 ‡ [pb] w>0

tt̄ 1.384 85% 1.384 85% 1.384 85%
tt̄j 5.20·10≠1 62% 1.13·10≠1 60% 1.37·10≠3 62%
jjj 2.98·101 52% 5.90·10≠1 52% 4.91·10≠4 61%
jjjj -2.89·101 45% -2.50·10≠1 44% -4.12·10≠6 39%

TABLE I. O(�≠2) cross-sections and percentages of positive-
weighted events for processes with a non-null interference be-
tween the SM and the OG operator and a large cross-section.
These results are calculated for jets separated by �R >0.4
and with di�erent minimum values for their transverse mo-
mentum pT

and the results are given for LHC at 13 TeV at the par-
tonic level. We leave the study of the e�ect of NLO
corrections, parton shower and detector e�ects for future
studies.
The cancellation over the phase space is e�cient if the in-
tegrals of the interference in the phase space part where
its matrix element is positive and negative are almost
equal in absolute value. Those two integrals are obtained
from the sum of the weights of events generated accord-
ing to the interference, keeping respectively only positive
or negative weighted events. In table I, we use the per-
centage of positive unweighted events to quantify the e�-
ciency of this cancelation for top and jet processes. Since
the strongest cancellation occurs for three-jets and this
process has the large cross-section necessary for accurate
di�erential measurement, in the remaining of this letter,
we will restrict ourself to this process and leave the other
for future analyses. The integral of the absolute valued
interference di�erential cross-section,

‡
|int|

©

⁄
d�

----
d‡int

d�

---- (5)

is computed from the sum of the absolute values of the
weights and is an upper bound of the total measurable
e�ect of the interference over the whole phase space �.
This quantity is given in table II together with the SM,
the interference and the O

!
1/�4"

total cross-sections.
The comparison of those four quantities shows the strong
suppression of the interference total cross-section, and
how it is lifted by ‡

|int|. Unfortunately, ‡
|int| is not a

measurable quantity as it requires to measure not only
the momenta of the jets, but also their flavours and helic-
ities, as well as those of the incoming partons. Therefore,
we define the measurable absolute value cross-section,

‡
|meas|

©

⁄
d�meas

------

ÿ

{um}

d‡

d�

------
(6)

where {um} is the set of unmeasurable quantities of the
events. For other processes, the sum can be replaced,
at least partially, by integrals over continuous unmea-
surable quantities, such as the longitudinal momenta of

a neutrino. This is the di�erence between the positive
and negative contributions of the interference to the to-
tal cross-section using all the information experimentally
available (and assuming perfect measurements of the jets
momenta). As a result, this is an upper bound for any
asymmetry build on one or a few kinematic variables aim-
ing at restoring the interference, and therefore can be
used to assess the e�ciency of such asymmetry. ‡

|meas|

is estimated by

‡
|meas| = lim

NæŒ

Nÿ

i=1
wi ú sign

A
ÿ

um

ME(p̨i, um)
B

(7)

where ME is the part of the squared amplitude due to
the interference and wi and p̨i label the weight and the
momenta of the jets of the event i. Therefore, this can be
seen as a matrix element method [15–20] at the partonic
level to revive the interference. The values of ‡

|meas|

for the three-jet final state and di�erent cuts are given
in table II. The cancellation among positive and negative
weighted events decreases with the pT cut while the ratio
‡

|meas|
/‡

|int| remains roughly constant.

Di�erential distributions We tested the ability to
separate positive and negative weight for various di�er-
ential and double di�erential cross-sections. Tested dis-
tributions include the transverse momenta pT and the
pseudorapidities ÷ of the jets, their angular distances
�R, their invariant masses, the normalised triple product
among the three-momenta of the jets, and some event-
shape variables, including the transverse thrust, the jet
broadening [21] and the transverse sphericity [22]. Sev-
eral variables such as the pT of the first jet, pT [j1], the
transverse trust and the angular distance between the
two lowest pT jets , �R[j2j3] achieve an e�ciency of
about 40% compared to ‡

|meas|. For comparison, the
e�ciency of the total cross-section is about 2%. The
best e�ciency, however, is obtained for the transverse
sphericity and is about 80%. Moreover, this e�ciency
barely varies with the global lower cut on each of the
three jets pT . The transverse sphericity SphT is defined
by using the eigenvalues ⁄1 Ø ⁄2 of the transverse mo-
mentum tensor:

Mxy =
Njetsÿ

i=1

A
p

2
x,i px,ipy,i

py,ipx,i p
2
y,i

B
, SphT = 2⁄2

⁄2 + ⁄1
.

(8)
Therefore, sign flip occurs between the events that are
more two-jets like (SphT ≥ 0) and those that are three
well separated and balanced jets (SphT ≥ 1). This ex-
plains why the phase space cancellation is lower with the
high pT cut, as strong hierarchy between the jets be-
comes then unlikely. The separations of the negative and
positive contributions for some of those variables are il-
lustrated in figure 1, where the full distributions as well
as those of the positive and negative weighted events are

3

SM O(1/�2) O(1/�4)
pT,min [GeV] ‡ [pb] ‡ [pb] wgt>0 ‡

|meas| [pb] ‡
|int| [pb] ‡ [pb]

50 9.70·105 4.08 50.4% 7.83·102 1.05·103 3.93·101

200 8.96·102 2.92·10≠1 51.4% 3.5·101 5.02·101 2.73
500 3.10 1.69·10≠2 54.0% 6.04·10≠1 8.96·10≠1 1.48·10≠1

1000 9.08·10≠3 4.56·10≠4 60.1% 1.46·10≠3 2.29·10≠3 3.05·10≠3

TABLE II. Cross-sections for three-jet production, for di�erent values of the pT -cut, �R > 0.4, � = 5 TeV and renormalisation
scales fixed respectively at 150, 250, 500, 1000 and 2000 GeV, with up to one OG insertion. The percentages of the total
amount of positive-weighted events, the percentages of the positive and negative measurable matrix elements (mme) and ‡

|int|

are shown for the interference

drawn separately. Contrarily to ine�cient variables, the
distribution of the positive and negative weighted events
are di�erent, resulting in a non-zero and changing sign
distribution for the full interference.

FIG. 1. Di�erential distributions for pp æ 3j at the LHC
with pT > 200 GeV for the jets. The red (blue) line repre-
sents the di�erential cross-section contribution by the positive
(negative) weighted events. Their di�erence, the green line, is
the di�erential cross-section distribution for the interference;
the dashed portion is the opposite of the negative di�erential
distribution. The black line reproduces the SM cross-section
distribution, divided by 100. The last bins contain the over-
flow

NLO predictions for the interferences of operators
known for their cancelation over the phase space seem to
lead in general to very large and/or negative K-factors [4],
as it is the case for analogous weak version of OG, i.e.
OW . They can be understood by the fact that regions
contributing positively and negatively to the interference
have much more reasonable but di�erent K-factors which
can, therefore, significantly a�ect the level of cancela-
tion. As a result, only observables able to separate the
two regions would have stable predictions for the interfer-
ence and would be able extract meaningful information
about such interferences. Due to the heavy computation
needed, we leave, however, the computation of the NLO
corrections for our observables for futur work.

Using the transverse sphericity to split the positive and
negative contributions, we now estimate the limits that
could be obtained on CG

�2 , either for the interference only
or including the O(1/�4) contribution, too. The bounds
are obtained, for each double distribution, from the fol-
lowing ‰-squared
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where x
exp
i and x
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i are respectively
the measured and predicted content of each bin. Since
the experimental results for the distributions we are in-
terested in have not been published yet, we assume that
the experimental data will follow the SM distributions
for the considered quantities (resulting in the last step of
Eq. (9)) and that the uncertainty, ‡i, for the ith bin is
10% of its SM content. This estimate of the uncertainty
seems consistent with available experimental results [23].
We choose our binning such that each bin would contain
enough events, assuming the SM only to ensure that the
statistical errors are below 10%, for a luminosity of 100
fb≠1. The best results are displayed in table III.

Finally, to assess the validity of the SMEFT with our
approach, we display in figure 2 how the limits on � varies
if a cut on the center-of-mass energy is applied, assum-
ing CG = 1. In principle, the EFT is valid if

Ô
s < �,

which is only satisfied for CG slightly bigger that 1 with
the low pT cuts. The situation improve for the stronger

~80% efficiency
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Better sensitivity

4

pT,min [GeV] Distribution SphT cut Bins Upper bound on CG Lower bound on CG

50 pT [j3] vs SphT 0.23 34 2.5·10≠1 (1.1·10≠1) -2.5·10≠1 (-1.2·10≠1)
200 ST vs SphT 0.27 34 7.5·10≠2 (2.3·10≠2) -7.5·10≠2 (-2.4·10≠2)
500 M [j2j3] vs SphT 0.31 21 5.5·10≠2 (5.3·10≠2) -5.5·10≠2 (-3.5·10≠2)
1000 M [j2j3] vs SphT 0.35 7 2.6·10≠2 (1.9·10≠2) -2.6·10≠2 (-1.8·10≠2)

TABLE III. Best bounds on the CG coe�cient for di�erent cuts on the pT , for � =1 TeV and 68% CL. The number of bins
is reported, for each distribution; the cut on the sphericity is the value, between 0 and 1, in which we separated the two bins
used for this variable. In the bounds columns, the first numbers are obtained through the O(�≠2) contribution only, the ones
into brackets take into account the O(�≠4) data, too

constraints derived with higher cuts. In both cases, the
constraints barely change when the events with

Ô
s &6

TeV are included. The bounds, obtained through the in-
terference only, grow faster than the ones which involve
the O(�≠4) contribution too, as it is expected because of
their di�erent dependency on �. The bounds obtained
by using the ST variable, defined in [6], are also shown
for comparison. As expected, our distribution shows a
nice improvement for the bounds at O(�≠2).

Conclusions We used the sign of the measurable
matrix element as a tool to revive the interference and
to quantify the e�ciency of di�erential distributions to
separate negatively and positively contributing regions
of the phase space. We used it to find e�cient distri-
butions to look for the interference e�ect of anomalous
gluon interactions, as predicted by the SMEFT, and to
put on the corresponding operators, for the first time,
contraints which are dominated by the leading (O(�≠2))
interference and not by the O(�≠4) term, coming from
the new physics amplitude squared. Therefore, we have
finally found an answer to the long-standing quest for
a sensitivity to the interference between the anomalous
gluon operator and the SM. Due to its sensitivity to
the interference, our observable is also sensitive to the
sign of its coe�cient. Finally, the proposed measure-
ment can be easily reinterpreted in other BSM scenarios
if SMEFT assumptions turn out not to be valid, as they
are purely kinematic distributions. While the method
has been tested on this particular case, it is fully generic
and can be applied for any interference suppression due
to sign flips over the phase space.
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50 pT [j3] vs SphT 0.23 34 2.5·10≠1 (1.1·10≠1) -2.5·10≠1 (-1.2·10≠1)
200 ST vs SphT 0.27 34 7.5·10≠2 (2.3·10≠2) -7.5·10≠2 (-2.4·10≠2)
500 M [j2j3] vs SphT 0.31 21 5.5·10≠2 (5.3·10≠2) -5.5·10≠2 (-3.5·10≠2)
1000 M [j2j3] vs SphT 0.35 7 2.6·10≠2 (1.9·10≠2) -2.6·10≠2 (-1.8·10≠2)

TABLE III. Best bounds on the CG coe�cient for di�erent cuts on the pT , for � =1 TeV and 68% CL. The number of bins
is reported, for each distribution; the cut on the sphericity is the value, between 0 and 1, in which we separated the two bins
used for this variable. In the bounds columns, the first numbers are obtained through the O(�≠2) contribution only, the ones
into brackets take into account the O(�≠4) data, too
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TeV are included. The bounds, obtained through the in-
terference only, grow faster than the ones which involve
the O(�≠4) contribution too, as it is expected because of
their di�erent dependency on �. The bounds obtained
by using the ST variable, defined in [6], are also shown
for comparison. As expected, our distribution shows a
nice improvement for the bounds at O(�≠2).

Conclusions We used the sign of the measurable
matrix element as a tool to revive the interference and
to quantify the e�ciency of di�erential distributions to
separate negatively and positively contributing regions
of the phase space. We used it to find e�cient distri-
butions to look for the interference e�ect of anomalous
gluon interactions, as predicted by the SMEFT, and to
put on the corresponding operators, for the first time,
contraints which are dominated by the leading (O(�≠2))
interference and not by the O(�≠4) term, coming from
the new physics amplitude squared. Therefore, we have
finally found an answer to the long-standing quest for
a sensitivity to the interference between the anomalous
gluon operator and the SM. Due to its sensitivity to
the interference, our observable is also sensitive to the
sign of its coe�cient. Finally, the proposed measure-
ment can be easily reinterpreted in other BSM scenarios
if SMEFT assumptions turn out not to be valid, as they
are purely kinematic distributions. While the method
has been tested on this particular case, it is fully generic
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into brackets take into account the O(�≠4) data, too
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TeV are included. The bounds, obtained through the in-
terference only, grow faster than the ones which involve
the O(�≠4) contribution too, as it is expected because of
their di�erent dependency on �. The bounds obtained
by using the ST variable, defined in [6], are also shown
for comparison. As expected, our distribution shows a
nice improvement for the bounds at O(�≠2).

Conclusions We used the sign of the measurable
matrix element as a tool to revive the interference and
to quantify the e�ciency of di�erential distributions to
separate negatively and positively contributing regions
of the phase space. We used it to find e�cient distri-
butions to look for the interference e�ect of anomalous
gluon interactions, as predicted by the SMEFT, and to
put on the corresponding operators, for the first time,
contraints which are dominated by the leading (O(�≠2))
interference and not by the O(�≠4) term, coming from
the new physics amplitude squared. Therefore, we have
finally found an answer to the long-standing quest for
a sensitivity to the interference between the anomalous
gluon operator and the SM. Due to its sensitivity to
the interference, our observable is also sensitive to the
sign of its coe�cient. Finally, the proposed measure-
ment can be easily reinterpreted in other BSM scenarios
if SMEFT assumptions turn out not to be valid, as they
are purely kinematic distributions. While the method
has been tested on this particular case, it is fully generic
and can be applied for any interference suppression due
to sign flips over the phase space.
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at O(�≠2) and O(�≠4). The axis on top of the plots quantifies
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is reported, for each distribution; the cut on the sphericity is the value, between 0 and 1, in which we separated the two bins
used for this variable. In the bounds columns, the first numbers are obtained through the O(�≠2) contribution only, the ones
into brackets take into account the O(�≠4) data, too

constraints derived with higher cuts. In both cases, the
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TeV are included. The bounds, obtained through the in-
terference only, grow faster than the ones which involve
the O(�≠4) contribution too, as it is expected because of
their di�erent dependency on �. The bounds obtained
by using the ST variable, defined in [6], are also shown
for comparison. As expected, our distribution shows a
nice improvement for the bounds at O(�≠2).

Conclusions We used the sign of the measurable
matrix element as a tool to revive the interference and
to quantify the e�ciency of di�erential distributions to
separate negatively and positively contributing regions
of the phase space. We used it to find e�cient distri-
butions to look for the interference e�ect of anomalous
gluon interactions, as predicted by the SMEFT, and to
put on the corresponding operators, for the first time,
contraints which are dominated by the leading (O(�≠2))
interference and not by the O(�≠4) term, coming from
the new physics amplitude squared. Therefore, we have
finally found an answer to the long-standing quest for
a sensitivity to the interference between the anomalous
gluon operator and the SM. Due to its sensitivity to
the interference, our observable is also sensitive to the
sign of its coe�cient. Finally, the proposed measure-
ment can be easily reinterpreted in other BSM scenarios
if SMEFT assumptions turn out not to be valid, as they
are purely kinematic distributions. While the method
has been tested on this particular case, it is fully generic
and can be applied for any interference suppression due
to sign flips over the phase space.
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Figure 7. Comparison of the significances (defined as the mean value divided by the standard devia-
tion) of all the observables considered in this work with respect to k̃ and at fixed k = 1. The results
correspond to 1M events per k̃ at 14 TeV. Plain w6 in gray, w14 in black, phase-space optimized w6
and w14 (59) in purple and orange, anti-symmetrized neural network F(w; a) (Section 3.2.2) in blue
and the first order approximation of the latter a · w in red (Section 3.2.3). See text for details on each
observable [27].

We used this approach to extract the optimal weights aj from 107 events generated
with k̃ = k = 1 at 14, 27, and 100 TeV. We also estimated the uncertainty associated with the
optimal weights using the following procedure: First we estimate the statistical spread of
the significance obtained with optimal a. Next we allow a single aj to float in the intervals
[aj � sj, aj + sj], where sj is chosen such that the decrease of the significance due to the
change in aj corresponds to the statistical spread of the significance. We perform an efficient
scan around the optimal vector a in its 22-dimensional neighborhood using spherical
coordinates to trivially fulfill the normalization constraint Âj a2

j = 1. We approximate
the significance with a quadratic function around the extremum to find independent,
uncorrelated directions in the a-space. With this procedure we determine how sharply the
optimal aj are defined. In practice, we estimated the statistical error of the significance
using 107 events. Clearly the uncertainties sj are larger for smaller chosen sample size.
The results of this approach are shown in Figure 8, where the upper (lower) panel shows
the estimated error (significance) for each aj at 14, 27, and 100 TeV. A comparison of the
observable a · w to other approaches discussed previously is shown in Figure 7. We reach
a similar level of improvement compared to the full F(w; a) network with significantly
fewer parameters.

Faroughy, Bortolato, Kamenik, Kosnik Smolkovic,
Symmetry 13 (2021) no.7, 1129
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observables which are invariant under pb $ pb̄ transformation. We construct these
observables from 3-vector quantities with well defined C and P eigenvalues, that are given
in Table 1.

Table 1. Vector quantities with well-defined C and P eigenvalues in 3 dimensional Euclidean space.
More complicated objects with well-defined C and P eigenvalues can be constructed using variables
in this table.

ph p`� + p`+ p`� � p`+ pb + pb̄ pb � pb̄

C + + � + �

P � � � � �

CP � � + � +

We use quantities in Table 1 to construct CP-odd variables w of mass-dimension 5, that
are C-even and invariant under pb $ pb̄ transformation. In order to systematically obtain
all distinct w’s we proceed as follows. First, we construct variables of the form w ⇠ V1 ⇥V2 ·

V3 V4 · V5 (Notice that the possibility of a nested cross product (((V1 ⇥ V2)⇥ V3)⇥ V4) · V5
can also be reduced to this form) using Vj 2 {ph, p`� + p`+ , p`� � p`+ , pb + pb̄, pb � pb̄}

for j 2 {1, ..., 5}. Doing so, we find 150 potential quintuple products. We symmetrize
them with respect to C-conjugation and pb $ pb̄ transformation. The non-zero quintuple
products are w variables, however they may be linearly dependent. Indeed some of the
obtained w’s are connected via the following Euclidean identity

dabecde � dacedeb + dadeebc � daeebcd = 0 , (27)

which can be written as:

a (b ⇥ c · d)� b (c ⇥ d · a) + c (d ⇥ a · b)� d (a ⇥ b · c) = 0 , (28)

where a, b, c and d are four arbitrary vectors in 3 dimensional Euclidean space. The sign of
individual terms in the last expression corresponds to the sign of the cyclic permutation of
the four vectors.

The first class of w’s involves p`+ and p`� in the mixed product, p`� � p`+ in the
scalar product. Both products are invariant under pb $ pb̄:

w1 ⇠ [(p`� ⇥ p`+) · ph][(p`� � p`+) · ph], (29)
w2 ⇠ [(p`� ⇥ p`+) · ph][(p`� � p`+) · (p`� + p`+)], (30)
w3 ⇠ [(p`� ⇥ p`+) · ph][(p`� � p`+) · (pb + pb̄)], (31)
w4 ⇠ [(p`� ⇥ p`+) · (pb + pb̄)][(p`� � p`+) · ph], (32)
w5 ⇠ [(p`� ⇥ p`+) · (pb + pb̄)][(p`� � p`+) · (p`� + p`+)], (33)
w6 ⇠ [(p`� ⇥ p`+) · (pb + pb̄)][(p`� � p`+) · (pb + pb̄)]. (34)

The second class involves pb ⇥ pb̄ and/or pb � pb̄ in both mixed and scalar products:

w7 ⇠ [(pb ⇥ pb̄) · ph][(pb � pb̄) · ph], (35)
w8 ⇠ [(pb ⇥ pb̄) · ph][(pb � pb̄) · (p`� + p`+)], (36)
w9 ⇠ [(pb ⇥ pb̄) · ph][(pb � pb̄) · (pb + pb̄)], (37)

w10 ⇠ [(pb ⇥ pb̄) · (p`� + p`+)][(pb � pb̄) · ph], (38)
w11 ⇠ [(pb ⇥ pb̄) · (p`� + p`+)][(pb � pb̄) · (p`� + p`+)], (39)
w12 ⇠ [(pb ⇥ pb̄) · (p`� + p`+)][(pb � pb̄) · (pb + pb̄)], (40)
w13 ⇠ [(pb ⇥ pb̄) · (p`� � p`+)][(pb � pb̄) · (p`� � p`+)], (41)
w14 ⇠ [(p`� ⇥ p`+) · (pb � pb̄)][(pb � pb̄) · (p`� � p`+)] . (42)
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EW bosons production 4

FIG. 1. tt̄ invariant-mass distribution of the interference be-
tween four-heavy operators and the SM.

with Table I, we define operator coe�cients at mt. QCD
renormalization and factorization scales are fixed to the
same value. The tt̄tt̄ dependencies are computed for the
first time at NLO and provided in Table II together with
their K-factors (NLO over LO rates). Unlike in the SM,
SMEFT K-factors are all smaller than one, except for c1

Qt

at O(�≠2) where NLO corrections lift strong phase-space
cancellations occurring at LO. Without restriction on the
energy scale probed, the current experimental sensitivity
in pp æ tt̄tt̄ is dominated by energy-growing quadratic
SMEFT contributions, especially for color-singlet oper-
ators. Individual sensitivities are then larger than in
pp æ tt̄. Interesting complementarities between the two
processes could however arise with improved measure-
ments, for low-scale UV models, or in a global picture
where various operators are to be disentangled.

As a second application, we consider pair (W +W ≠,
ZZ, W ±Z) and triple (W +W ≠W ±, W +W ≠Z, ZZW ±,
ZZZ) weak-boson production at the LHC

Ô
s = 13 TeV.

The neutral final states can be produced via gg fusion
through a loop of fermions (at order –2

S–2

EW
in the SM).

Novel SMEFT computations made available include that
of triboson production at NLO in QCD, the dependence
of four-quark contributions to qq̄ æ V V not considered
previously [37, 38], and the full gg æ W +W ≠, ZZ de-
pedence extending the results of Ref. [39]. The gg fu-
sion to W +W ≠ and ZZ are sizeable at the LHC and
probe Higgs as well as top-quark couplings. On the con-
trary, the gg-induced production of three bosons is rela-
tively small, with SM cross-sections for gg æ ZZZ and
gg æ W +W ≠Z of about 0.5% (0.07 fb) and 5% (8.6 fb)
of the corresponding qq̄ channel [40] at 13 TeV. Shown
in Figure 2, the K-factors of quark-induced channels
significantly vary, not only from operator to operator,
but also across processes for the same operator, and be-
tween the interference and quadratic contributions. In
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FIG. 2. K-factors (NLO/LO) of the linear (�≠2) and
quadratic (�≠4) contributions to pair and triple weak-boson
production at the LHC

Ô
s = 13 TeV. Charge-conjugated final

states are summed over. OW values at O(�≠2) are divided
by 10 and negative for empty markers.

general, they range between one and two. However, for
the OW operator involving three W field strengths, K-
factors at O(�≠2) are extremely large and even negative,
signalling that NLO corrections are lifting a suppression
that occurs at LO. It is known that the linear contri-
bution of this operator to the inclusive diboson cross-
section is very small at LO relative to the SM prediction
(0.171+4%

≠5% pb vs. 71.0+6%
≠7% pb for WW ) because of helicity

selection rules [41], and changes sign at NLO in QCD,
albeit staying below 1% (≠0.77≠14%

+16% pb vs. 104+5%
≠5% pb).

For WWZ production, the linear LO contribution is
already sizeable (≠12.3+1.4%

≠1.6% fb vs. 91.3+0.0%
≠0.5% fb) and be-

comes larger at NLO (≠32.0+12%
≠9% fb vs. 173.6+8%

≠6% fb). For
W +W +W ≠ production the linear LO contribution is tiny
(0.4(2)+8%

≠10% fb vs. 79.38+0.1%
≠0.6% fb) but becomes significant at

NLO (≠10.8+21%
≠16% fb vs. 142.8+7%

≠5% fb). These results sug-
gest that, in addition to spin correlation observables in
V V [42, 43], the rates of triple-vector-boson production
could help bounding the OW operator. We defer further
discussions of the loop and NLO e�ects in multi-boson
final states to a dedicated publication.

As a third application, we show in Figure 3 the sen-
sitivity of the loop-induced Higgs production processes
gg æ H, HH and HHH to various SMEFT operators in
pp collisions at

Ô
s = 100 TeV. Two panels display linear

and quadratic contributions of OtG, OÏG, OtÏ, OÏ, OÏ⇤
operators normalised by the SM rate. All dependencies
are calculated at one loop with SMEFT@NLO, except for
the linear dependence of gg æ H on OÏ which appears at
two loops and is taken from Ref. [44]. The computation
of SMEFT e�ects in HHH production is presented here
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EFT observable stability under NLO corrections through interference revival
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We illustrate the importance of interference revival when higher order corrections are included, by
presenting LO and NLO di�erential cross-sections and K -factors for three processes that are sensitive
to the dimension-6 SMEFT operator OW : Z -plus-two-jets (Zjj) production through Vector Boson
Fusion (VBF), leptonic diboson WZ and W “. We show how lifting the interference suppression at
LO, through suitable variables and cuts, is necessary to get reliable predictions at NLO. We also
show bounds on CW obtained from these observables

Introduction Despite the achievements and success
of accelerator physics in the past decades, no evidence for
new resonances seems to be in sight in the near future;
the presence of possible new heavy states can be inves-
tigated by searching for small anomalies in the interac-
tions among the Standard Model (SM) particles. The
Standard Model E�ective Field Theory (SMEFT) pro-
vides a general tool to parametrise deviations from the
SM, by adding to it complete sets of higher-dimensional
operators Oi with coe�cients Ci [1][2],

LSMEF T = LSM +
ÿ

i

Ci

�2 Oi + O(�≠4), (1)

with � the new physics (NP) scale. The same expansion
is observed in the di�erential cross-section for a generical
measurable variable X,

d‡

dX
= d‡SM

dX
+

ÿ

i

Ci

�2
d‡1/�2

dX
+ O(�≠4). (2)

It has been observed that the second term, being an in-
terference between the SM amplitudes and the ones that
are linear in Ci, can be suppressed for 2 æ 2 processes
[3] and in higer-multiplicity ones, resulting in the con-
straints coming from the term quadratic in Ci. Inspired
by [4], in a previous work [5] we showed that e�cient dis-
tributions can revive the sensitivity to the interference,
providing constraints to the coe�cient which are domi-
nated by the leading (O(�≠2)) term. In this article, we
show how the application of the same procedure is impor-
tant to get stable predictions at Next-to-Leading Order in
Quantum Chromodynamics (NLO QCD) for these opera-
tors; in particular, we focus on the OW one, for which the
large and negative K -factors computed at O(�≠2) level
[6] highlight the presence of a suppression at Leading
Order (LO), lifted at NLO. The (di�erential) K -factor is
defined as the ratio of the (di�erential) cross-sections at
NLO and LO. Our analysis considers three processes that
are sensitive to the e�ects of this operator, namely the
fully leptonic electroweak (EW) Z -plus-two-jets produc-
tion through Vector Boson Fusion (VBF), the fully lep-
tonic W ±Z diboson production, and the leptonic W ±“;
we show the predictions for some relevant distributions

in the SM and at linear and quadratic orders.
The approach described in this paper is more general
and can be applied to any phase space cancellation of
the interference, not only to the OW case. In particu-
lar, if at least two operators a�ect one process, only one
linear combination of them will impact the total interfer-
ence cross-section, while all the others will be suppressed.
Our approach is thus necessary to fully constrain those
orthogonal directions of the parameter space, for which
a cancellation occurs at linear level.
This method and the quantities it introduces can also be
used together with machine-learning algorithms to de-
velop suitable variables to restore the interference term
or to compute asymmetries [7][8].

Framework The operator we consider in this work
is a dimension-6 CP-even one and can be written as

OW = ‘IJKW I,‹

µ
W J,fl

‹
W K,µ

fl
, (3)

where W I,‹

µ
is the EW field strength. It directly con-

tributes to diboson processes, triple gauge couplings and
top EW production.
In our previous work [5], we introduced the integral of the
absolute-valued interference di�erential cross-section,

‡|int| =
⁄

d�

-----
d‡1/�2

d�

----- , (4)

as an upper bound to the total e�ect of the interference,
over the entire phase space �. A comparison between
this and the actual cross-section gives an estimate of the
suppression that a�ects the second one. This quantity,
though, is not measurable, as it requires the knowledge of
the initial states, neutrino momenta and jet flavors and
helicities in the final state. The measurable absolute-
valued cross-section is thus defined as

‡|meas| =
⁄

d�meas

------

ÿ

{um}

d‡1/�2

d�

------
, (5)

where the sum (integral) is performed over the set of dis-
crete (continuous) unmeasurable quantities. This quan-
tity is derived using only the information that is avail-
able in experiments, so it can be considered as an upper
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SM O(1/�2) O(1/�4)
pp æ ¸

+
¸

≠
jj EW, ¸ = (e, µ)

‡LO (fb) 49±0.06%+8%
≠6% -1.67±0.4%+6%

≠7% 9.4±0.07%+11%
≠10%

‡NLO (fb) 52.2±0.19%+0.8%
≠1.1% -1.66±1.2%+0.4%

≠0.8% 11.1±0.18%+3%
≠4%

K -factor 1.07±0.19%+9%
≠7% 0.99±1.2%+6%

≠8% 1.18±0.17%+14%
≠14%

pp æ ¸
±(≠)

‹ ¸
+

¸
≠, ¸ = (e, µ)

‡LO (fb) 34.6±0.012%+1.2%
≠1.4% 0.169±0.3%+1.8%

≠2% 6.2±0.06%+2%
≠1.6%

‡NLO (fb) 50.5±0.02%+1.6%
≠1.4% -0.91±0.5%+5%

≠7% 7.34±0.07%+0.8%
≠0.7%

‡N2LO (fb) 62.8±0.3%+1.4%
≠1.3% - -

K -factor 1.46±0.03%+3%
≠3% -5.4±0.6%+7%

≠9% 1.18±0.09%+3%
≠3%

N2LO / LO 1.82±0.3%+3%
≠3% - -

pp æ ¸
±(≠)

‹ “, ¸ = (e, µ, ·)
‡LO (fb) 20.7±0.4%+1.4%

≠1.4% -0.67±9%+21%
≠9% 110±0.5%+5%

≠4%
‡NLO (fb) 29.8±0.6%+3%

≠2% -3.4±9%+9%
≠11% 121±0.7%+1.2%

≠1.2%
K -factor 1.44±0.5%+4%

≠4% 5.1±12%+29%
≠22% 1.10±0.7%+6%

≠5%

TABLE I. Cross-section results in fb, for the SM, linear and quadratic contributions, for the fully leptonic EW Zjj, WZ and
W “ production; the total K -factors are also shown. CW /�2 is set to 1 TeV≠2. For each result, the first uncertainty source
is statistical, while the second ones come from scale variation. For the K -factors, the statistical uncertainty is propagated
in quadrature from the cross-section ones, while for the scale variation, the total envelope is considered. These results were
obtained through FO computations for the first two processes, while the last one is matched to parton shower. The WZ results
are averaged over four decay channels

The main issue in this process is represented by the pres-
ence of a neutrino in the final state: since its momentum
cannot be measured, we follow the standard strategy of
reconstructing it by imposing the M¸W ‹ invariant mass
to be equal to the W pole mass MW [29][30]. From
this requirement, up to two possible solutions are ob-
tained, and there is no way to a�rm which of them is
correct. Previous studies [31] verified that choosing the
one which is smaller in absolute value is more e�cient
than a completely random extraction, so this is the strat-
egy we adopt. In reality, being the W boson virtual, its
mass is not equal to MW ; even if this criterion provides
a good approximation of the true value, there are events
in which no real solutions come from this requirement.
The neutrino is thus reconstructed by discarding their
imaginary part.
To be able to compare with the experimental results
in [28], all the cross-sections and distributions for this
process are averaged over the four di�erent e±‹ee+e≠,
e±‹eµ+µ≠, µ±‹µµ+µ≠, µ±‹µe+e≠ channels; uncertain-
ties are propagated in the average assuming total corre-
lation among them.

Results The LO and NLO total cross-sections at FO
are shown in Table I, along with the total K -factors and
their uncertainties. For the SM, the N2LO cross-section
from Matrix [32–39] is also reported, together with
the N2LO/LO ratio: these results are compatible with
[40][41] and the ATLAS ones. The integral and measur-
able absolute-valued cross-sections are shown in Table II.

By comparing the actual interference cross-section with
these values, it can be noticed that a large suppression
occurs. This is partially lifted when the events in which
the negatively-charged Z lepton ¸≠

Z
has helicity h=+1 or

-1 are considered separately: as it can be seen in the Ta-
ble, the ratios of the measurable over the integral cross-
sections increase when this distinction is applied. Even if
Z leptons helicity values are not experimentally accessi-
ble, better predictions can come from variables that are
sensible to them.
In [30] and [42], it is shown that the interference between
the OW operator and the SM in WZ production is pro-
portional to

„W Z = cos(2„W ) + cos(2„Z), (9)

where „V , V = W, Z, is the azimuthal angle between the
plane containing the V boson and the beam axis, and
the plane where its decay products lie, in lab frame. The
direction of the latter is defined as the vectorial prod-
uct of the positive- and negative-helicity lepton three-
momenta; since the Z boson couplings to left- and right-
handed leptons are similar, this can be determined only
up to an overall sign. This introduces an ambiguity on
„Z Ωæ „Z ≠ fi, which however does not a�ect the value
of „W Z , as it is a function of cos(2„Z). For what con-
cerns the W boson, the lepton helicities are constrained
by the left-handed nature of the interaction, but another
ambiguity is introduced by the presence of a neutrino,
whose momentum can only be reconstructed. This par-
tially washes away the 2„W modulations in the variable
above.

higher order underestimated

C.D., M. Maltoni, 2403.16894



C. Degrande

VBF

5

(fb) % of ‡
|int| % of ‡

|meas|

pp æ ¸
+

¸
≠

jj EW, ¸ = (e, µ)
‡

|int| 13.27±0.3% 100 -
‡

|meas| 12.81±0.3% 97 100
�„jj 11.42±0.4% 89 86
‡

1/�2

LO
-1.71±2% 13 13

pp æ ¸
±(≠)

‹ ¸
+

¸
≠, ¸ = (e, µ)

‡
|int| 4.93±0.4% 100 -

‡
|meas| 2.04±1.0% 41 100

p
Z

T ◊ „W Z 1.31±1.5% 27 64
„W Z 0.79±3% 16 39
M

W Z

T 0.66±3% 13 32
cos ◊

ú
¸

≠
Z

Z
0.20±10% 4 10

‡
1/�2
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TABLE II. LO O(1/�2) integral and measurable absolute-
valued cross-sections for Zjj, WZ and W “, in fb. For the
second process, the cases in which the Z leptons helicities
are separated are also shown, together with the regions in
(10). The absolute asymmetries for some relevant variables
are reported: they are the sum of the absolute values of the
bin contents. These results come from event generation at
LO, without parton shower. The statistical uncertainties are
shown: they are computed separately on the positive- and
negative-weighted events through gaussian approximation of
a Poisson distribution, then propagated in quadrature

FIG. 2. Di�erential cross-section for the signed azimuthal
distance between jets in Zjj, at LO without parton shower.
The black line reproduces the SM distribution, divided by 10,
while the red (blue) one the positive- (negative-) weigthed
contribution to the interference term. The orange line is the
di�erence of the last two, namely the interference di�erential
cross-section. The uncertainties are not shown

FIG. 3. FO NLO (continuous) and LO (dotted) di�erential
cross-sections for �„jj in Zjj, with the K -factors and cancel-
lation level (7) for LO interference in each bin. The black
(orange, green) line refers to the SM, divided by 10 (linear,
quadratic terms); the statistical uncertainties and scale varia-
tions are also shown in the first two panels, while the last one
only contains the statistical ones. Experimental data from
[21] is represented by the blue dots with error bars, divided
by 10

The O(1/�2) double di�erential distribution for „W Z

and the transverse momentum of the reconstructed Z bo-
son, pZ

T
, shows similar behaviours when the separation

between the events with h(¸≠
Z

) = ≠1 and h(¸≠
Z

) = +1 is
applied, while the same does not hold for many other ob-
servables. This can be seen in Fig. 4 for the interference
at LO. By cutting the phase-space in areas in which this
double distribution is mainly positive or negative, we can
obtain stable and reasonable K -factors for the variables
computed over this process. In particular, the overall
positive and negative regions are respectively delimited
by

pZ

T
> 50 GeV AND „W Z > ≠0.5, (10a)

pZ

T
< 40 GeV OR „W Z < ≠1. (10b)

2

bound for any asymmetry, built on kinematic variables
by summing the absolute values of the bin contents of
their distributions, with the aim to restore the interfer-
ence. It can be estimated as

‡|meas| = lim
NæŒ

Nÿ

i=1
wi ◊ sign

Q

a
ÿ

{um}

ME(≠æp i, {um})

R

b ,

(6)
where ME is the interference part of the squared
amplitude, wi is the weight of the ith event and ≠æp i are
the momenta of its final states. This quantity is com-
putationally expensive to obtain and it requires model
assumptions, so our aim is to find easily-measurable
kinematic variables that can approximate its value, in
a general way that could be applied even outside the
SMEFT framework or in regions where the EFT validity
is questionable.
Our analysis is performed via Mad-
Graph5 aMC@NLO v3.4.2 [9], which we fed the
SMEFT@NLO [6] Universal FeynRules Output (UFO)
[10], written from a FeynRules model [11] that contains
most of the CP-even dimension-6 operators in the
SMEFT; NLOCT is used to get the rational and ultravi-
olet counterterms [12]. The leptons and quarks, except
the top one, are considered as massless. We use the
NNPDF3.0 parton distribution function (PDF) set [13],
with –S(MZ)=0.118. In all the non-SM distributions
and cross-sections presented in this paper, CW /�2 is set
to 1 TeV≠2. For the calculations at NLO that are carried
out at fixed order (FO), we set the renormalisation
and factorisation scales µR = µF = 1 TeV; the events
generated at NLO [14], on the other hand, are showered
through Pythia8 [15] or Herwig7 [16][17]. The sum
of transverse energies divided by two HT /2 is chosen as
dynamical scale for the events. Jets are reconstructed
using the anti-kt algorithm [18][19], with a radius
parameter R = 0.4.
Numerical and scale uncertainties are reported for each
result [20]. Numerical errors are due to the limited
number of events generated, while scale variations are
computed by taking the envelope of nine scale combina-
tions, in which µR,F are varied by factors 0.5 and 2.
For given distributions, we derive limits on the CW

value, by considering the deviations of each theory,
namely ‡SM

best + CW
�2 ‡1/�2

1
+ C

2
W

�4 ‡1/�4
2

with the 2nd and
3rd terms at LO or NLO, from real data when possible,
or from the best SM prediction ‡SM

best. In these bound
computations, we associate in each bin relative errors to
the LO interference and O(1/�4) contributions equal to
|ki ≠ 1|, with ki the K -factor for the bin; for negative
values or above 2, a 100% uncertainty is considered,
since the scale variations cannot be considered a good
estimate of the missing higher order corrections. For
the SM and the terms at NLO, the numerical and scale
uncertainties from our predictions are considered, being

the only available. As we can see for WZ production
in the top plot of Fig. 6, NLO uncertainties from
MadGraph5 do not include the N2LO results inside
them. This suggests that all the error bars shown in
the plots in this paper, even the NLO ones for the
SM that enter the bound computations for CW , might
underestimate the true uncertainties. In case of lack of
real data, we associate to the best SM prediction in the
ith bin a statistical uncertainty equal to

Ò
‡SM

best,i
/LLHC ,

where the per bin cross-section is divided by the Large
Hadron Collider (LHC) luminosity at Run II, LLHC=
137 fb≠1, plus a 10% systematic one; no correlation
among di�erent bins is assumed.
For each LO interference distributions, we also plot the
relative cancellation

Rw± = wgt > 0 ≠ wgt < 0
wgt > 0 + wgt < 0 , (7)

defined as the di�erence between the numbers of positive
and negative weights in each bin, divided by their sum;
the cancellation is larger where this ratio is closer to 0.

ELECTROWEAK Z + TWO JETS PRODUCTION
THROUGH VECTOR BOSON FUSION

Calculational details The EW Zjj production is
characterised by the exchange of a weak vector boson
in the t-channel. We consider the Z æ ¸+¸≠ decay case,
with ¸ = e, µ. Following ATLAS specifications [21], lep-
tons are required to have transverse momentum pT > 25
GeV and pseudo-rapidity |÷| < 2.4; the total invariant
mass of the leptons coming from the decay of the Z bo-
son has to satisfy 81.2 < M¸¸ < 101.2 GeV, and their
total transverse momentum p¸¸

T
> 20 GeV.

We require a leading jet with pT > 85 GeV and a sub-
leading one with pT > 80 GeV. The rapidity for each jet
has to be |y| < 4.4 and a separation is required among
them and the leptons, namely �R¸j > 0.4 (we consider
�R =


�„2 + �÷2 with �„, �÷ the azimuthal and

pseudorapidity distances).
The EW contribution to the process is characterised by
a large invariant mass for the jets, Mjj > 1 TeV, and a
large gap in rapidity among them, |�yjj | > 2. Further-
more, we impose the Z boson to be centrally produced
relatively to the jets system, by asking ›Z < 0.5; the last
quantity is defined as

›Z =
|y¸¸ ≠

1
2 (yj1 ≠ yj2)|
|�yjj |

, (8)

with y¸¸, yj1 and yj2 the rapidities of the dilepton system,
the leading and subleading jets.

Results An analysis by the ATLAS Collaboration
[21][22], showed that the signed azimuthal angle di�er-
ence between the two jets is particularly sensitive to the
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TABLE II. LO O(1/�2) integral and measurable absolute-
valued cross-sections for Zjj, WZ and W “, in fb. For the
second process, the cases in which the Z leptons helicities
are separated are also shown, together with the regions in
(10). The absolute asymmetries for some relevant variables
are reported: they are the sum of the absolute values of the
bin contents. These results come from event generation at
LO, without parton shower. The statistical uncertainties are
shown: they are computed separately on the positive- and
negative-weighted events through gaussian approximation of
a Poisson distribution, then propagated in quadrature

FIG. 2. Di�erential cross-section for the signed azimuthal
distance between jets in Zjj, at LO without parton shower.
The black line reproduces the SM distribution, divided by 10,
while the red (blue) one the positive- (negative-) weigthed
contribution to the interference term. The orange line is the
di�erence of the last two, namely the interference di�erential
cross-section. The uncertainties are not shown

FIG. 3. FO NLO (continuous) and LO (dotted) di�erential
cross-sections for �„jj in Zjj, with the K -factors and cancel-
lation level (7) for LO interference in each bin. The black
(orange, green) line refers to the SM, divided by 10 (linear,
quadratic terms); the statistical uncertainties and scale varia-
tions are also shown in the first two panels, while the last one
only contains the statistical ones. Experimental data from
[21] is represented by the blue dots with error bars, divided
by 10

The O(1/�2) double di�erential distribution for „W Z

and the transverse momentum of the reconstructed Z bo-
son, pZ

T
, shows similar behaviours when the separation

between the events with h(¸≠
Z

) = ≠1 and h(¸≠
Z

) = +1 is
applied, while the same does not hold for many other ob-
servables. This can be seen in Fig. 4 for the interference
at LO. By cutting the phase-space in areas in which this
double distribution is mainly positive or negative, we can
obtain stable and reasonable K -factors for the variables
computed over this process. In particular, the overall
positive and negative regions are respectively delimited
by

pZ

T
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FIG. 4. WZ interference cross-section per bin at LO with-
out parton shower, as a function of p

Z

T and „W Z , in the two
cases in which the Z leptons have helicities ±1 and û1. Red
(blue) areas mark where the cross-section is positive (nega-
tive), as the positive- (negative-) weighted contribution dom-
inates there. The black dashed lines separate the phase space
areas in (10)

In the phase-space portion in between these two regions,
the LO double distribution changes its sign, yielding un-
stable and large K -factors.

The NLO and LO distributions of „W Z , for the SM,
interference and quadratic correction, are shown in Fig.
5, with the relative di�erential K -factors and cancella-
tion level. In the top plot, that considers the whole
phase space, it can be seen that the O(1/�2) K -factors
present jumps or become large when the cancellation is
almost complete. When the distributions are computed
in the phase space regions defined by the cuts (10), the
K -factors are more reasonable: the cancellation Rw± is
always positive for the first cut and always negative for
the second, as the opposite-sign weights at LO are par-
tially separated. We use bins of 0.4 from -2 to 2.

For the SMEFT interpretation, the WZ transverse
mass has been considered in previous studies [22][28]; this
variable is defined as

MW Z

T
=

ı̂ıÙ
A

ÿ

¸

p¸

T
+ p‹

T

B2

≠

A
ÿ

¸

≠æp ¸

T
+ ≠æp ‹

T

B2

, (11)

where the sums include the charged leptons. This distri-
bution is useful to probe those SMEFT operators whose
e�ects increase with the center-of-mass energy

Ô
s. The

LO and NLO plots for this observable are presented in
Fig. 6, for the SM, linear and quadratic terms, to-
gether with Rw± and the di�erential K -factors. It can be
seen how these are more regular when the cuts (10) over
„W Z and pZ

T
are applied, showing that less suppression

is present in these phase space regions. For the whole
phase space case, SM N2LO predictions from Matrix
are also plotted, together with the N2LO/LO di�eren-
tial ratio and data from [28]. The bins are delimited at
[0, 140, 180, 250, 450, 600, 13000] GeV.

Another previous work [43], about SMEFT corrections

FIG. 5. LO and NLO di�erential cross-section distributions,
for „W Z , over all the phase space (top) and when specific cuts
on p

Z

T and „W Z are applied (center and bottom). The black
(orange, green) line represents the SM, divided by 50 (inter-
ference, quadratic correction divided by 4). The K -factors
are also shown, together with their statistical and scale un-
certainties. For each case, the relative cancellation for LO
interference is plotted. Note the di�erent variable range in
the central plot, due to the cuts

to WZ production, suggests other angular variables that
are sensitive to new physics e�ects. In particular, we
focus on cos ◊ú

¸
≠
Z Z

, the cosine of the angle between the
negatively-charged Z lepton three-momentum, in the Z
boson rest frame, and the direction of flight of the boson,
seen in the center-of-mass (com) frame; this coordinate
system is defined in [44]. The com reference system re-
construction is a�ected by the neutrino momentum ig-
norance. The LO SM distribution for this variable is
sensitive to the ¸Z helicity configurations, as it can be
seen in Fig. 7: the two plots have di�erent trends, with
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TABLE II. LO O(1/�2) integral and measurable absolute-
valued cross-sections for Zjj, WZ and W “, in fb. For the
second process, the cases in which the Z leptons helicities
are separated are also shown, together with the regions in
(10). The absolute asymmetries for some relevant variables
are reported: they are the sum of the absolute values of the
bin contents. These results come from event generation at
LO, without parton shower. The statistical uncertainties are
shown: they are computed separately on the positive- and
negative-weighted events through gaussian approximation of
a Poisson distribution, then propagated in quadrature

FIG. 2. Di�erential cross-section for the signed azimuthal
distance between jets in Zjj, at LO without parton shower.
The black line reproduces the SM distribution, divided by 10,
while the red (blue) one the positive- (negative-) weigthed
contribution to the interference term. The orange line is the
di�erence of the last two, namely the interference di�erential
cross-section. The uncertainties are not shown

FIG. 3. FO NLO (continuous) and LO (dotted) di�erential
cross-sections for �„jj in Zjj, with the K -factors and cancel-
lation level (7) for LO interference in each bin. The black
(orange, green) line refers to the SM, divided by 10 (linear,
quadratic terms); the statistical uncertainties and scale varia-
tions are also shown in the first two panels, while the last one
only contains the statistical ones. Experimental data from
[21] is represented by the blue dots with error bars, divided
by 10

The O(1/�2) double di�erential distribution for „W Z

and the transverse momentum of the reconstructed Z bo-
son, pZ
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, shows similar behaviours when the separation

between the events with h(¸≠
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) = ≠1 and h(¸≠
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) = +1 is
applied, while the same does not hold for many other ob-
servables. This can be seen in Fig. 4 for the interference
at LO. By cutting the phase-space in areas in which this
double distribution is mainly positive or negative, we can
obtain stable and reasonable K -factors for the variables
computed over this process. In particular, the overall
positive and negative regions are respectively delimited
by
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bin contents. These results come from event generation at
LO, without parton shower. The statistical uncertainties are
shown: they are computed separately on the positive- and
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FIG. 2. Di�erential cross-section for the signed azimuthal
distance between jets in Zjj, at LO without parton shower.
The black line reproduces the SM distribution, divided by 10,
while the red (blue) one the positive- (negative-) weigthed
contribution to the interference term. The orange line is the
di�erence of the last two, namely the interference di�erential
cross-section. The uncertainties are not shown

FIG. 3. FO NLO (continuous) and LO (dotted) di�erential
cross-sections for �„jj in Zjj, with the K -factors and cancel-
lation level (7) for LO interference in each bin. The black
(orange, green) line refers to the SM, divided by 10 (linear,
quadratic terms); the statistical uncertainties and scale varia-
tions are also shown in the first two panels, while the last one
only contains the statistical ones. Experimental data from
[21] is represented by the blue dots with error bars, divided
by 10
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servables. This can be seen in Fig. 4 for the interference
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TABLE II. LO O(1/�2) integral and measurable absolute-
valued cross-sections for Zjj, WZ and W “, in fb. For the
second process, the cases in which the Z leptons helicities
are separated are also shown, together with the regions in
(10). The absolute asymmetries for some relevant variables
are reported: they are the sum of the absolute values of the
bin contents. These results come from event generation at
LO, without parton shower. The statistical uncertainties are
shown: they are computed separately on the positive- and
negative-weighted events through gaussian approximation of
a Poisson distribution, then propagated in quadrature

FIG. 2. Di�erential cross-section for the signed azimuthal
distance between jets in Zjj, at LO without parton shower.
The black line reproduces the SM distribution, divided by 10,
while the red (blue) one the positive- (negative-) weigthed
contribution to the interference term. The orange line is the
di�erence of the last two, namely the interference di�erential
cross-section. The uncertainties are not shown

FIG. 3. FO NLO (continuous) and LO (dotted) di�erential
cross-sections for �„jj in Zjj, with the K -factors and cancel-
lation level (7) for LO interference in each bin. The black
(orange, green) line refers to the SM, divided by 10 (linear,
quadratic terms); the statistical uncertainties and scale varia-
tions are also shown in the first two panels, while the last one
only contains the statistical ones. Experimental data from
[21] is represented by the blue dots with error bars, divided
by 10

The O(1/�2) double di�erential distribution for „W Z

and the transverse momentum of the reconstructed Z bo-
son, pZ

T
, shows similar behaviours when the separation

between the events with h(¸≠
Z

) = ≠1 and h(¸≠
Z

) = +1 is
applied, while the same does not hold for many other ob-
servables. This can be seen in Fig. 4 for the interference
at LO. By cutting the phase-space in areas in which this
double distribution is mainly positive or negative, we can
obtain stable and reasonable K -factors for the variables
computed over this process. In particular, the overall
positive and negative regions are respectively delimited
by

pZ

T
> 50 GeV AND „W Z > ≠0.5, (10a)

pZ

T
< 40 GeV OR „W Z < ≠1. (10b)
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FIG. 4. WZ interference cross-section per bin at LO with-
out parton shower, as a function of p

Z

T and „W Z , in the two
cases in which the Z leptons have helicities ±1 and û1. Red
(blue) areas mark where the cross-section is positive (nega-
tive), as the positive- (negative-) weighted contribution dom-
inates there. The black dashed lines separate the phase space
areas in (10)

In the phase-space portion in between these two regions,
the LO double distribution changes its sign, yielding un-
stable and large K -factors.

The NLO and LO distributions of „W Z , for the SM,
interference and quadratic correction, are shown in Fig.
5, with the relative di�erential K -factors and cancella-
tion level. In the top plot, that considers the whole
phase space, it can be seen that the O(1/�2) K -factors
present jumps or become large when the cancellation is
almost complete. When the distributions are computed
in the phase space regions defined by the cuts (10), the
K -factors are more reasonable: the cancellation Rw± is
always positive for the first cut and always negative for
the second, as the opposite-sign weights at LO are par-
tially separated. We use bins of 0.4 from -2 to 2.

For the SMEFT interpretation, the WZ transverse
mass has been considered in previous studies [22][28]; this
variable is defined as

MW Z

T
=

ı̂ıÙ
A

ÿ

¸

p¸

T
+ p‹

T

B2

≠

A
ÿ

¸

≠æp ¸

T
+ ≠æp ‹

T

B2

, (11)

where the sums include the charged leptons. This distri-
bution is useful to probe those SMEFT operators whose
e�ects increase with the center-of-mass energy

Ô
s. The

LO and NLO plots for this observable are presented in
Fig. 6, for the SM, linear and quadratic terms, to-
gether with Rw± and the di�erential K -factors. It can be
seen how these are more regular when the cuts (10) over
„W Z and pZ

T
are applied, showing that less suppression

is present in these phase space regions. For the whole
phase space case, SM N2LO predictions from Matrix
are also plotted, together with the N2LO/LO di�eren-
tial ratio and data from [28]. The bins are delimited at
[0, 140, 180, 250, 450, 600, 13000] GeV.

Another previous work [43], about SMEFT corrections

FIG. 5. LO and NLO di�erential cross-section distributions,
for „W Z , over all the phase space (top) and when specific cuts
on p

Z

T and „W Z are applied (center and bottom). The black
(orange, green) line represents the SM, divided by 50 (inter-
ference, quadratic correction divided by 4). The K -factors
are also shown, together with their statistical and scale un-
certainties. For each case, the relative cancellation for LO
interference is plotted. Note the di�erent variable range in
the central plot, due to the cuts

to WZ production, suggests other angular variables that
are sensitive to new physics e�ects. In particular, we
focus on cos ◊ú

¸
≠
Z Z

, the cosine of the angle between the
negatively-charged Z lepton three-momentum, in the Z
boson rest frame, and the direction of flight of the boson,
seen in the center-of-mass (com) frame; this coordinate
system is defined in [44]. The com reference system re-
construction is a�ected by the neutrino momentum ig-
norance. The LO SM distribution for this variable is
sensitive to the ¸Z helicity configurations, as it can be
seen in Fig. 7: the two plots have di�erent trends, with
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TABLE II. LO O(1/�2) integral and measurable absolute-
valued cross-sections for Zjj, WZ and W “, in fb. For the
second process, the cases in which the Z leptons helicities
are separated are also shown, together with the regions in
(10). The absolute asymmetries for some relevant variables
are reported: they are the sum of the absolute values of the
bin contents. These results come from event generation at
LO, without parton shower. The statistical uncertainties are
shown: they are computed separately on the positive- and
negative-weighted events through gaussian approximation of
a Poisson distribution, then propagated in quadrature

FIG. 2. Di�erential cross-section for the signed azimuthal
distance between jets in Zjj, at LO without parton shower.
The black line reproduces the SM distribution, divided by 10,
while the red (blue) one the positive- (negative-) weigthed
contribution to the interference term. The orange line is the
di�erence of the last two, namely the interference di�erential
cross-section. The uncertainties are not shown

FIG. 3. FO NLO (continuous) and LO (dotted) di�erential
cross-sections for �„jj in Zjj, with the K -factors and cancel-
lation level (7) for LO interference in each bin. The black
(orange, green) line refers to the SM, divided by 10 (linear,
quadratic terms); the statistical uncertainties and scale varia-
tions are also shown in the first two panels, while the last one
only contains the statistical ones. Experimental data from
[21] is represented by the blue dots with error bars, divided
by 10

The O(1/�2) double di�erential distribution for „W Z

and the transverse momentum of the reconstructed Z bo-
son, pZ

T
, shows similar behaviours when the separation
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) = +1 is
applied, while the same does not hold for many other ob-
servables. This can be seen in Fig. 4 for the interference
at LO. By cutting the phase-space in areas in which this
double distribution is mainly positive or negative, we can
obtain stable and reasonable K -factors for the variables
computed over this process. In particular, the overall
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TABLE II. LO O(1/�2) integral and measurable absolute-
valued cross-sections for Zjj, WZ and W “, in fb. For the
second process, the cases in which the Z leptons helicities
are separated are also shown, together with the regions in
(10). The absolute asymmetries for some relevant variables
are reported: they are the sum of the absolute values of the
bin contents. These results come from event generation at
LO, without parton shower. The statistical uncertainties are
shown: they are computed separately on the positive- and
negative-weighted events through gaussian approximation of
a Poisson distribution, then propagated in quadrature

FIG. 2. Di�erential cross-section for the signed azimuthal
distance between jets in Zjj, at LO without parton shower.
The black line reproduces the SM distribution, divided by 10,
while the red (blue) one the positive- (negative-) weigthed
contribution to the interference term. The orange line is the
di�erence of the last two, namely the interference di�erential
cross-section. The uncertainties are not shown

FIG. 3. FO NLO (continuous) and LO (dotted) di�erential
cross-sections for �„jj in Zjj, with the K -factors and cancel-
lation level (7) for LO interference in each bin. The black
(orange, green) line refers to the SM, divided by 10 (linear,
quadratic terms); the statistical uncertainties and scale varia-
tions are also shown in the first two panels, while the last one
only contains the statistical ones. Experimental data from
[21] is represented by the blue dots with error bars, divided
by 10

The O(1/�2) double di�erential distribution for „W Z

and the transverse momentum of the reconstructed Z bo-
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, shows similar behaviours when the separation

between the events with h(¸≠
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) = +1 is
applied, while the same does not hold for many other ob-
servables. This can be seen in Fig. 4 for the interference
at LO. By cutting the phase-space in areas in which this
double distribution is mainly positive or negative, we can
obtain stable and reasonable K -factors for the variables
computed over this process. In particular, the overall
positive and negative regions are respectively delimited
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TABLE II. LO O(1/�2) integral and measurable absolute-
valued cross-sections for Zjj, WZ and W “, in fb. For the
second process, the cases in which the Z leptons helicities
are separated are also shown, together with the regions in
(10). The absolute asymmetries for some relevant variables
are reported: they are the sum of the absolute values of the
bin contents. These results come from event generation at
LO, without parton shower. The statistical uncertainties are
shown: they are computed separately on the positive- and
negative-weighted events through gaussian approximation of
a Poisson distribution, then propagated in quadrature

FIG. 2. Di�erential cross-section for the signed azimuthal
distance between jets in Zjj, at LO without parton shower.
The black line reproduces the SM distribution, divided by 10,
while the red (blue) one the positive- (negative-) weigthed
contribution to the interference term. The orange line is the
di�erence of the last two, namely the interference di�erential
cross-section. The uncertainties are not shown

FIG. 3. FO NLO (continuous) and LO (dotted) di�erential
cross-sections for �„jj in Zjj, with the K -factors and cancel-
lation level (7) for LO interference in each bin. The black
(orange, green) line refers to the SM, divided by 10 (linear,
quadratic terms); the statistical uncertainties and scale varia-
tions are also shown in the first two panels, while the last one
only contains the statistical ones. Experimental data from
[21] is represented by the blue dots with error bars, divided
by 10

The O(1/�2) double di�erential distribution for „W Z

and the transverse momentum of the reconstructed Z bo-
son, pZ

T
, shows similar behaviours when the separation

between the events with h(¸≠
Z

) = ≠1 and h(¸≠
Z

) = +1 is
applied, while the same does not hold for many other ob-
servables. This can be seen in Fig. 4 for the interference
at LO. By cutting the phase-space in areas in which this
double distribution is mainly positive or negative, we can
obtain stable and reasonable K -factors for the variables
computed over this process. In particular, the overall
positive and negative regions are respectively delimited
by
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> 50 GeV AND „W Z > ≠0.5, (10a)
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< 40 GeV OR „W Z < ≠1. (10b)
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FIG. 10. LO and NLO double di�erential distribution of p
“

T
◊

|„f |. The black (orange, green) line shows the SM divided by
10 (interference, NP squared divided by 10). The blue dots
with error bars represent the experimental data from [45],
divided by 10. The K -factors and the O(1/�2) cancellation
are also reported

the „W case; for „f , the matrix given in the CMS pa-
per is used for statistical uncertainties, while scale varia-
tion ones are added in quadrature on the diagonal. The
bounds we obtain from p“

T
◊ |„W | are better than the

ones from p“

T
◊ |„f | already at LO for the interference.

CONCLUSIONS

In this paper, we showed some results for three pro-
cess that are a�ected by the OW operator, for which the
linear correction to the SM is suppressed: EW Zjj VBF,
WZ and W“ production. We reported di�erential distri-
butions for relevant variables, at LO and NLO, for the

FIG. 11. LO and NLO double di�erential distribution of p
“

T
◊

|„W |. The black (orange, green) line shows the SM divided by
10 (interference, NP squared divided by 10). The K -factors
and the O(1/�2) cancellation are also reported

SM, the linear and the quadratic corrections. We showed
how the choice of these variables is important to im-
prove the new physics predictions when the interference
is suppressed, and how the K -factors display a perturba-
tive expansion under better control and, therefore, better
uncertainties when the positive- and negative-weighted
components of the interference at LO are separated with
suitable phase space cuts. We also reported bounds on
the operator coe�cient from the comparison among our
predictions and real data, showing how some di�eren-
tial distributions can provide limits that, at linear level,
are comparable with the ones from the quadratic order,
which does not experience the same cancellation. These
variables are fully generical, since they only depend on
the kinematics, and do not rely on model assumptions
as much as the matrix element method does. The corre-
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FIG. 12. 68% and 95% CL LO (dashed) and NLO (continuous) bounds on the CW coe�cient, with and without the inclusion
of the quadratic term, coming from Zjj VBF, W

±
Z and W

±
“. For the second process, we show the limits over the whole phase

space and in the two regions (10); for the last one, limits from two double distributions are reported. The variables we use are
noted next to the process definitions. The bounds in the gray area come from comparison with the best SM distribution we
obtain, while the others with real data. The numerical values are reported on the right

sponding predictions can also be updated at any order,
due to this model independence. The techniques intro-
duced in this paper can be used in conjunction with ma-
chine learning to get better predictions for the interfer-
ence among the SM and SMEFT operators. We showed
that, in general, a low cancellation over the phase space
is needed to obtain meaningful predictions for the inter-
ference with respect to higher order terms. Although we
focused here on QCD corrections, we expect this conclu-
sion to be valid for EW ones as well. In particular, the
very good revival obtained in VBF through the �„jj dis-
tribution suggests that, even if the EW corrections are
expected to be large for the interference, they should not
yield K -factors too far from unity. The same statement
cannot be a�rmed with the same confidence in the di-
boson cases, as the unmeasurable cancellation is larger.
However, W“ displays a strong constraining power, sim-
ilar to VBF, when interference-reviving distributions are
used.
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C. Degrande

dim-8 operators

For the Lorentz class   †�2D3, we have following operators in 2-component Weyl fermion
notation:

Q11 = i(uCp�
µ !D ⌫u†C

r)(DµH†D⌫H),

Q12 = i(dCp�
µ !D ⌫d†C

r)(DµH†D⌫H),

Q13 = i(Qp�
µ !D ⌫Q†r)(DµH†D⌫H),

Q14 = i(Qpi�
µ !D ⌫d†C

rj)(DµH†iD⌫Hj),

Q15 = i(uCp�
µ !D ⌫d†C

r)✏ij(DµHiD
⌫Hj), (2.9)

where the last one, Q15, is an operator of the complex type for which the conjugated operator
counts as an independent operator.

Using identities in eq. (2.3)-(2.8) and the Fierz identity of the SU(N) gauge group, the opera-
tors in eq. (2.2) and (2.9), and their complex conjugate can be converted to the following indepen-
dent operators:

O1 = iBµ
⌫B

⌫
�(d̄Rp�

� !D µdRr),

O2 = iBµ
⌫B

⌫
�(ūRp�

� !D µuRr),

O3 = iBµ
⌫B

⌫
�

⇣
q̄Lp�

� !D µqLr
⌘
,

O4 = iW Iµ
�B

⌫�
⇣
q̄iLp�⌫

�
⌧ I
�
i
j !D µqLrj

⌘
,

O5 = iW Iµ
�B̃

⌫�
⇣
q̄iLp�⌫

�
⌧ I
�
i
j !D µqLrj

⌘
,

O6 = iW I⌫
�B

µ�
⇣
q̄iLp�⌫

�
⌧ I
�
i
j !D µqLrj

⌘
,

O7 = iW I⌫
�B̃

µ�
⇣
q̄iLp�⌫

�
⌧ I
�
i
j !D µqLrj

⌘
,

O8 = iW Iµ
⌫W

I⌫
�(d̄Rp�

� !D µdRr),

O9 = iW Iµ
⌫W

I⌫
�(ūRp�

� !D µuRr),

O10 = iW Iµ
⌫W

I⌫
�

⇣
q̄Lr�

� !D µqLp

⌘
,

O11 = i✏IJKW Iµ
⌫W

J⌫
�

⇣
q̄iLp�

�
�
⌧K

�
i
j !D µqLrj

⌘
,

O12 = i✏IJKW̃ Iµ
⌫W

J⌫
�

⇣
q̄iLp�

�
�
⌧K

�
i
j !D µqLrj

⌘
,

O13 = i✏IJKW Iµ
⌫W̃

J⌫
�

⇣
q̄iLp�

�
�
⌧K

�
i
j !D µqLrj

⌘
,

O14 = i
⇣
ūRr�

� !D µuRp

⌘⇣
D�H

†DµH
⌘
,

O15 = i
⇣
d̄Rr�

� !D µdRp

⌘⇣
D�H

†DµH
⌘
,

O16 = i
⇣
q̄Lr�

� !D µqLp

⌘⇣
D�H

†DµH
⌘
,

O17 = i
⇣
q̄Lp�

�⌧K
 !
D µqLr

⌘⇣
D�H

†⌧KDµH
⌘
,

O18 = i(ūRp�
µ !D ⌫dRr)✏

ij(DµHiD
⌫Hj), (2.10)
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Figure 1: Corrections that contribute to diboson processes from SMEFT operators.

and   †�2D3, where  and  † represent left-handed and right-handed fermion fields, � is a scalar
corresponding to the Higgs doublet or its conjugate in the SMEFT. FL and FR are gauge boson
field strength tensors that transform as (2, 0) and (0, 2) representations of the Lorentz group, and
they are related to the ordinary field strength tensor Fµ⌫ in following formulae:

Fµ⌫
L/R =

1

2

⇣
Fµ⌫
⌥ iF̃µ⌫

⌘
, F̃µ⌫ =

1

2
✏µ⌫⇢�F⇢�. (2.1)

The reason that   †�2D3 can generate an enhancement of E4/⇤4 in the high energy regime can
be more easily understood in the Feynman gauge, where additional derivatives acting on the Gold-
stones in the Higgs doublet increases the power of energy dependence in the amplitude. This ob-
servation also tells us that the enhancement must occur in the longitudinal-longitudinal component
of the helicity amplitude as we will confirm in section 4.

After filling the F ’s and  (†)’s with the concrete fields in the SM, we obtain the following
independent operators for Lorentz classes FLFR  †D, and FLFL  †D:

Q1 = iB�µ
R BL�⌫(dCp�µ

 !
D ⌫d†Cr)

Q2 = iB�µ
R BL�⌫(uCp�µ

 !
D ⌫u†Cr)

Q3 = iB�µ
R BL�⌫(Qp�µ

 !
D ⌫Q†

r)

Q4 = i⌧ Iij W I�µ
R BL�⌫(Qpi�µ

 !
D ⌫Q†rj)

Q5 = i⌧ Iij W I�µ
L BL�⌫(Qpi�µ

 !
D ⌫Q†rj)

Q6 = iW I�µ
R W I

L�⌫(dCp�µ
 !
D ⌫d†Cr)

Q7 = iW I�µ
R W I

L�⌫(uCp�µ
 !
D ⌫u†Cr)

Q8 = iW I�µ
R W I

L�⌫(Qp�µ
 !
D ⌫Q†r)

Q9 = i✏IJK⌧Ki
j W I�µ

R W J
L�⌫(Qpi�µ

 !
D ⌫Q†rj)

Q10 = i✏IJK⌧Ki
j W I�µ

L W J
L�⌫(Qpi�µ

 !
D ⌫Q†rj), (2.2)

where W and B are the gauge field strength tensors of SU(2)L and U(1)Y gauge group, respec-
tively, the double arrow on the covariant derivative is defined as X

 !
D Y = X(DY )� (DX)Y , Q

conjugate Lorentz class of FLFL  
†D. The same concept applies to the operator level in eq. (2.2).

– 4 –

CD,H.-L. Li, 2303.10493

https://arxiv.org/abs/2303.10493


C. Degrande

Interference behaviour

CPV

Operator 2Re(ASM
A

NP⇤) 2
R
d⌦Re(ASM

A
NP⇤)

O8 dd̄ : b8S + c8 0

O9 ūu : b9S + c9 0

O10 uū/dd̄ : a10 · S2 + b10 · S + c10 uū/dd̄ : a10 · S2 + b10 · S + c10

O11 0 0

O12

uū : au
12
S2 + bu

12
S + cu

12
uū : au

12
S2 + b

u
12S + cu

12
+D

u
12 logS

dd̄ : ad
12
S2 + bd

12
S + cd

12 dd̄ : ad
12
S2 + b

d
12S + cd

12
+D

d
12 logS

O13

uū : au
13
S2 + bu

13
S + cu

13
uū : au

13
S2 + b

u
13S + cu

13
+D

u
13 logS

dd̄ : ad
13
S2 + bd

13
S + cd

13 dd̄ : ad
13
S2 + b

d
13S + cd

13
+D

d
13 logS

O14 uū : a14S2 + b14S + c14 0

O15 dd̄ : a15S2 + b15S + c15 0

O16

uū : au
16
S2 + bu

16
S + cu

16
uū : b

u
16S + cu

16
+D

u
16 logS

dd̄ : ad
16
S2 + bd

16
S + cd

16 dd̄ : b
d
16S + cd

16
+D

d
16 logS

O17

uū : au
17
S2 + bu

17
S + cu

17
uū : b

u
17S + cu

17
+D

u
17 logS

dd̄ : ad
17
S2 + bd

17
S + cd

17 dd̄ : b
d
17S + cd

17
+D

d
17 logS

Table 2: Scaling of qq̄ ! WW interference amplitude after summing and averaging over spins and helici-
ties.

Figure 2: The coordinate system in studying the qq̄ ! WW process, ✓ is defined to be and angle between
by the positive directions of momenta of W+ and the quark q in the bosons center of mass frame.

suppressed by a loop factor 1/(16⇡2) ⇠ 0.01 compared to the dim-8 and SM interference by naive
dimension analysis.
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Interference by helicity (O8)

(hW+ , hW�) A
8

hi
/C8
⇤4 A

SM

hi

�,+ S sin2
�
✓
2

�
sin(✓)

�
S � 2M2

W

�
�ab 0

�,� S sin(✓) cos(✓)M2

W �ab
4⇡↵ sin(✓)M2

Z�ab

r

1�
4M2

W
S

3(S�M2
Z)

�, 0
S3/2

sin
2( ✓

2)(2 cos(✓)+1)M2
W �abp

2MW

4⇡↵ sin
2( ✓

2)M
2
Z�ab

p
2S�8M2

W

3SMW�3MWM2
Z

+,+ S sin(✓) cos(✓)M2

W �ab
4⇡↵ sin(✓)M2

Z�ab

r

1�
4M2

W
S

3(S�M2
Z)

+,� �2S sin
�
✓
2

�
cos3

�
✓
2

�
�ab

�
S � 2M2

W

�
0

+, 0
S3/2

cos
2( ✓

2)(2 cos(✓)�1)M2
W �abp

2MW

4⇡↵ cos
2( ✓

2)M
2
Z�ab

p
2S�8M2

W

3SMW�3MWM2
Z

0,+ �
S3/2

sin
2( ✓

2)(2 cos(✓)+1)M2
W �abp

2MW

4
p
2⇡↵ sin

2( ✓
2)M

2
Z�ab

p
S�4M2

W

3MWM2
Z�3SMW

0,�
S3/2

cos
2( ✓

2)(1�2 cos(✓))M2
W �abp

2MW

4
p
2⇡↵ cos

2( ✓
2)M

2
Z�ab

p
S�4M2

W

3MWM2
Z�3SMW

0, 0 �S sin 2✓M2

W �ab
2⇡↵ sin(✓)M2

Z�ab(2M2
W+S)

r

1�
4M2

W
S

3M2
W (M2

Z�S)

Table 3: Helicity amplitudes for dd̄ ! WW for hd = 1 and hd̄ = �1, where A
8
hi

is generated by O8.

(hW+ , hW�) A
15

hi
/C15

⇤4

�,+ S sin2
�
✓
2

�
sin(✓)M2

W �ab

�,� �S sin2
�
✓
2

�
sin(✓)M2

W �ab

�, 0
S3/2

sin
2( ✓

2) cos(✓)MW �abp
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+,+ S sin(✓) cos2
�
✓
2

�
M2

W �ab

+,� �S sin(✓) cos2
�
✓
2

�
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W �ab

+, 0
S3/2

cos
2( ✓

2) cos(✓)MW �abp
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0,+ �
S3/2

sin
2
(✓)MW �ab

2
p
2

0,� S3/2
sin

2
(✓)MW �ab

2
p
2

0, 0 �
1

8
S2 sin(2✓)�ab

Table 4: Helicity amplitudes for dd̄ ! WW for hd = 1 and hd̄ = �1, where A
15
hi

is generated by O15.

The dominance of the dim-6 square contribution is coming from the enhancement in the am-
plitude scaling as S2 in the high energy limit. In the left panel, the three solid lines in green, red,
and purple represent the differential interference cross-sections for operators O10, O12 and O13
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Interference by helicity (O15)
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Table 4: Helicity amplitudes for dd̄ ! WW for hd = 1 and hd̄ = �1, where A
15
hi

is generated by O15.

The dominance of the dim-6 square contribution is coming from the enhancement in the am-
plitude scaling as S2 in the high energy limit. In the left panel, the three solid lines in green, red,
and purple represent the differential interference cross-sections for operators O10, O12 and O13
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Figure 3: Differential cross-sections for dimension-8 and dimension-6 operators. The solid lines are for
interference cross-sections for the dim-8 operators, while dash-dotted brown and blue lines are for the
BSM ⇥ SM interference and the BSM2 generated by the dimension-6 OW respectively. The results for
O8,9 operators are scaled by a factor of 100. The result for BSM2 is rescaled by a factor of 0.1, and taking
into account the loop-generated nature of OW , in reality it could be further suppressed compared to the
dim-8 ⇥ SM contributions due to an additional loop factor.

respectively, and they all have different angular distributions comparing with each other and with
the dim-6 originated contributions. Therefore in principle, one can measure the angular distribution
of the vector boson in the diboson production to differentiate effects from dim-8 SMEFT operators
with dim-6 ones. On the other hand, the distributions for O12 and O13 look similar except for a
global sign, thus presenting a difficulty in discerning the two operators.

In the right panel in the figure 3, we plot the similar differential cross-section for the operators
that contain the Higgs field — O14�17. One can find that the scales of the interference cross-
sections are generally smaller than those generated by operators without Higgs field by one to two
orders of magnitude for O16,17 compared to O10�13. The reason is that only the (0, 0) polarized
final state gets enhanced by S2 in the high energy regime for O16,17, while the SM amplitude of
two longitudinal polarized W bosons for the left-handed initiated process is generally smaller than
those of the (+,�) or (�,+) polarized final states as one can see from the left panel in figure 4,
where we plot the SM parton level cross-sections of each helicity configurations as functions of the
center of mass energy.

On the contrary, the corresponding differential interference cross-section for O14,15 and O8,9

are at a similar order even though for the right-handed quark-initiated process, the amplitude of
the (0, 0) polarized final state is generally larger than those of the final states with transverse po-
larization as one can see from the right panel in figure 4. This results from the fact that the qq̄ and
q̄q processes get strong cancellations for these four operators, such that a simple order of magni-
tude comparison for individual amplitude is not valid anymore. The relation between the total pp
differential cross-section and the separated partonic cross-sections are illustrated in figure 5. The
definition of the differential cross-section with respect to the pseudo-rapidity of W+ in the COM
frame of the pp system is detailed in appendix C. To illustrate the cancellation between qq̄ and
q̄q channels, we plot in figure 6 the interference differential cross-sections d�qq̄/d⌘(x1, x2, ⌘) and
d�q̄q/d⌘(x1, x2, ⌘) for qq̄ and q̄q processes respectively, where x1 and x2 indicate the momentum
fractions for q and q̄ for the qq̄ process and vice verse for the q̄q process, and ⌘ is the pseudo-
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Figure 7: Comparisons of the interference cross-sections of dim-8 operator O10, O12 and O13 respectively
from left to right with respect to the cross-section from the dim-6 amplitude square (top) and dim-6 inter-
ference (bottom). Different colors represent different cuts on the diboson invariant mass, the lower bonds
for the dashed lines are fixed at the diboson production threshold. The dim-8 interference cross-section and
dim-6 square cross-section (top) or dim-6 interference cross-section (bottom) have equal magnitude for each
point on the lines.

the CP conjugate processes by summing over the helicity configurations, as done for the WW final
state, does not apply here. On the other hand, O18 generates amplitudes only involving the right-
handed quark, contrary to the SM, where only the left-handed quark contributes, thus resulting in
vanishing interference amplitudes. Table 5 lists the scaling behavior of the interference amplitudes
for all the dim-8 operators that contribute to ud̄ ! W+Z. The relevant analytical results can be
found in [43].

In figure 8, we present the hadronic angular distribution for the W+ boson in the production
process pp ! W+Z, where ✓ is defined as the angle between the W+ and the beam axis in the
diboson frame. It can be observed that the differential interference cross-sections of O4 and O6 are
smaller compared to those of O12 and O13. Furthermore, the angular distributions for O4 and O6

are highly similar, as can be seen from the plot where they overlap with each other to a significant
extent, making it difficult to differentiate between the effects of these two operators in the WZ

production channel based on this distribution alone.
In the first row of figure 9, we plot the ratio of the dim-8 dimensionless Wilson coefficient Ci

to CW against the NP scale ⇤, ensuring that the dim-8 interference cross-sections are equal to the
dim-6 square (dim-6 interference) cross-sections. The colors in the plot represent various cuts on
the invariant mass of the diboson system. In contrast to the WW final state, we observe that the
solid lines, which pertain to the high invariant mass region, approach a constant. This behavior
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Figure 9: Comparisons of interference cross-sections of the dim-8 operator O4, O6, O12 and O13 respec-
tively from left to right with respect to the cross-section from the dim-6 amplitude square (top) and dim-6
interference (bottom) for pp ! W+Z. Different colors represent different cuts on the diboson invariant
mass. Each line represents the ratio of the dim-8 and dim-6 Wilson coefficients such that the dim-8 inter-
ference cross-section and the dim-6 square cross-section (top) or dim-6 interference cross-section (bottom)
have the same magnitude.

5 Conclusion and Outlook

We investigate the dim-8 SMEFT contributions to diboson production with WW/WZ final states.
We classify all the operators that are capable of generating E4/⇤4 enhancement in the interference
amplitude, and quantitatively compare their values with the dim-6 interference and dim-6 square
amplitudes. We find that the non-interference found for dimension-six operators is not observed
for dimension-eight and therefore further limit the legitimacy of constraining operators mainly
from the square of the dimension-six amplitudes. Preliminary result seems to indicate that this is
also true for the other electroweak diboson processes. We find that the dim-8 operator O10 can
generate the interference cross-section for the process pp ! W+W� that is comparable with
the dim-6 interference cross-section from the operator OW assuming equal dimensionless Wilson
coefficients. For the WZ final state, the interference cross-section generated by O12 or O13 is
also comparable with the dim-6 interference cross-section from OW . We also point out that at
the total cross-section level, the non-interference can occur due to the selection rule of the angular
momentum of the scattering process, while suppression of the interference cross-section can also
result from the cancellation between the qq̄ and q̄q initiated channels in the pp collider. Both of
these effects can be analyzed with the J-basis operators prior to the derivation of Feynman rules
and the calculation of amplitudes.

Finally, we note that precise bounds on the Wilson coefficients of various operators require
dedicated collider simulations. We anticipate that the semileptonic decay channel, where one of the
vector bosons decays leptonicly, will have better sensitivity in the moderate invariant mass regime.
This is due to the lepton signature which can effectively reduce the large QCD background. For
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• SMEFT is good to parametrise any heavy new physics BUT we need to 

• understand  the interference 

• understand errors 

• from EFT :  (dim8, …) 

•  

• design specific observables 

• more  model independent and intuitive 

• easier to understand/compute errors/uncertainties 

• learn  about the SM 

• Reduce uncertainties 

• SM  predictions (pert and non-pert) 

• Experimental
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