UCLouvain

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie E,

Efficiently probing the SMEFT interference Celine Degrande

Plan

- Introduction to SMEFT
- SMEFT requires understanding the interference
- Interference resurrection
 - gluon operator
- Keeping uncertainties under control (NLO QCD)
- Dimension 8 contribution
- Final comments

Introduction to SMEFT

Indirect detection of NP

• Assumption : NP scale >> energies probed in experiments

Taylor expand : 1, 2 ,...parameters

Taylor expand : 1, 2 ,...parameters

Taylor expand : 1, 2 ,...parameters

How big of a gap?

How big of a gap?

How big of a gap?

$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d - SM \text{ fields \& sym.}$

EFT

Parametrize any NP but an ∞ number of coefficients

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d \quad \text{SM fields \& sym.}$$

• Assumption : $\mathbf{E}_{exp} \ll \Lambda$
 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i^6$
a finite number of coefficients
=>Predictive!

- Model independent (i.e. parametrize a large class of models) : any HEAVY NP
- SM is the leading term : EFT for precision physics
- higher the exp. precision => smaller EFT error

EFT

Parametrize any NP but an ∞ number of coefficients

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} \frac{C_i}{\Lambda^{d-4}} \mathcal{O}_i^d \quad \text{SM fields \& sym.}$$
• Assumption : $\mathbf{E}_{exp} << \Lambda$

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i^6$$
a finite number of coefficients =>Predictive!

C. Degrande

- Model independent (i.e. parametrize a large class of models) : any HEAVY NP
- SM is the leading term : EFT for precision physics
- higher the exp. precision => smaller EFT error

m

High energy tails

SMEFT requires understanding the interference

\mbox{Errors} : higher power of $1/\Lambda$

Dimension 8 basis: Li et al., 2005.00008

Errors : higher power of $1/\Lambda$

Dimension 8 basis: Li et al., 2005.00008

Pushing the scale

interference : to double the scale, we need 4x better precision

dim6^2/dim8 : to double the scale, we need 16 better precision

HL-LHC :

- 10 x more data
- 3 x better precision
- 1.8 improvement of the scale from interference
- 1.3 improvement of the scale from dim8/dim6^2

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\mathrm{SM}}) $	$ h(A_4^{\mathrm{BSM}}) $
VVVV	0	$4,\!2$
$VV\phi\phi$	0	2
$VV\psi\psi$	0	2
$V\psi\psi\phi$	0	2

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\rm SM}) $	$ h(A_4^{\mathrm{BSM}}) $				
VVVV	0	$4,\!2$	$\psi\psi\psi\psi\psi$	2,0	2,0	
$VV\phi\phi$	0	2	$\psi\psi\phi\phi$	0	0	
$VV\psi\psi$	0	2	$\phi\phi\phi\phi$	0	0	
$V\psi\psi\phi$	0	2		I	•	,

interference suppression

Azatov et al., Helicity Selection Rules and Non-Interference for BSM Amplitudes, <u>1607.05236</u>

A_4	$ h(A_4^{\mathrm{SM}}) $	$ h(A_4^{\mathrm{BSM}}) $				
VVVV	0	$4,\!2$	$\psi\psi\psi\psi\psi$	2,0	2,0	
$VV\phi\phi$	0	2	$\psi\psi\phi\phi$	0	0	
$VV\psi\psi$	0	2	$\phi\phi\phi\phi$	0	0	
$V\psi\psi\phi$	0	2			·	

$$|M(x)|^{2} = \frac{|M_{SM}(x)|^{2}}{\Lambda^{0}} + \frac{2\Re (M_{SM}(x)M_{d6}^{*}(x))}{\Lambda^{-2}} + \frac{|M_{d6}(x)|^{2} + \dots}{\Lambda^{-4}} + \mathcal{O}(\Lambda^{-6})$$

$$\mathcal{O}(1) \qquad \sim 0 \qquad \qquad \mathcal{O}(0.1) \qquad \qquad \mathcal{O}(0.03)$$

Assuming ~0 C. Degrande

$$\begin{split} |M(x)|^{2} &= \boxed{|M_{SM}(x)|^{2}}_{\Lambda^{0}} + \frac{2\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right)}{\Lambda^{-2}} + \boxed{|M_{d6}(x)|^{2} + \dots}_{\mathcal{O}\left(\Lambda^{-4}\right)} \\ \Re \left(M_{SM}(x)M_{d6}^{*}(x)\right) &= \sqrt{|M_{SM}(x)|^{2} |M_{d6}(x)|^{2}} \cos \alpha \\ & \text{mom spin} \qquad \text{Not always positive} \\ \sigma &\propto \sum_{x} |M(x)|^{2} \quad \text{if} \qquad M_{SM}(x_{1}) = 1, M_{SM}(x_{2}) = 0 \\ & M_{d6}(x_{1}) = 0, M_{d6}(x_{2}) = 1 \\ \end{split}$$

Observable dependent

$$\begin{split} |M(x)|^2 &= \boxed{|M_{SM}(x)|^2}_{\Lambda^0} + \underbrace{2\Re \left(M_{SM}(x)M_{d6}^*(x)\right)}_{\Lambda^{-2}} + \underbrace{|M_{d6}(x)|^2 + \dots}_{\mathcal{O}\left(\Lambda^{-4}\right)} \\ \Re \left(M_{SM}(x)M_{d6}^*(x)\right) &= \sqrt{|M_{SM}(x)|^2 |M_{d6}(x)|^2} \cos \alpha \\ & \text{mom} \\ \text{mom} \\ \text{spin} \\ \text{Not always positive} \\ \sigma &\propto \sum_x |M(x)|^2 \quad \text{if} \\ M_{SM}(x_1) &= 1, M_{SM}(x_2) = \emptyset \\ M_{d6}(x_1) &= \emptyset, M_{d6}(x_2) = 1 \\ -1 \\ & \text{Observable dependent} \\ \end{split}$$

$$\begin{split} |M(x)|^{2} &= \boxed{|M_{SM}(x)|^{2}}_{\Lambda^{0}} + \underbrace{2\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right)}_{\Lambda^{-2}} + \underbrace{|M_{d6}(x)|^{2} + \dots}_{\mathcal{O}\left(\Lambda^{-4}\right)} \\ \Re \left(M_{SM}(x)M_{d6}^{*}(x)\right) &= \sqrt{|M_{SM}(x)|^{2} |M_{d6}(x)|^{2} \cos \alpha} \\ & \text{mom&spin} \qquad \text{Not always positive} \\ \sigma &\propto \sum_{x} |M(x)|^{2} \quad \text{if} \qquad \underbrace{M_{SM}(x_{1}) = 1, M_{SM}(x_{2}) = \emptyset}_{M_{d6}(x_{1}) = \emptyset, M_{d6}(x_{2}) = 1} \\ \sigma_{int} = 0 \\ & \sigma_{int} \approx \pi/2 \qquad M^{2} \rightarrow M^{2} - i\Gamma M \qquad \underbrace{\sigma_{int} \propto \Gamma}_{C. \text{ Degrande}} \\ \end{split}$$

$$\begin{split} |M(x)|^{2} &= \boxed{|M_{SM}(x)|^{2}}_{\Lambda^{0}} + \underbrace{2\Re \left(M_{SM}(x)M_{d6}^{*}(x)\right)}_{\Lambda^{-2}} + \underbrace{|M_{d6}(x)|^{2} + \dots}_{\mathcal{O}\left(\Lambda^{-4}\right)} \\ \Re \left(M_{SM}(x)M_{d6}^{*}(x)\right) &= \sqrt{|M_{SM}(x)|^{2} |M_{d6}(x)|^{2} \cos \alpha} \\ & \text{mom} \\ \text{spin} \\ \text{Not always positive} \\ \sigma &\propto \sum_{x} |M(x)|^{2} \quad \text{if} \\ M_{SM}(x_{1}) &= 1, M_{SM}(x_{2}) = \cancel{M} \\ M_{d6}(x_{1}) &= \cancel{M}, M_{d6}(x_{2}) = 1 \\ & \text{of } \alpha \approx \pi/2 \\ M^{2} \rightarrow M^{2} - i\Gamma M \\ \\ \end{bmatrix} \\ \begin{array}{c} \mathcal{M}_{SM}(x) M_{d6}^{*}(x) + \left[M_{d6}(x)\right]^{2} + \dots \\ \mathcal{O}\left(\Lambda^{-4}\right) \\ \mathcal{O}\left(\Lambda^{-4}\right) \\ & \mathcal{O}\left(\Lambda^{-4}\right)$$

Interference suppression from phase space

Interference revival: Formalism

C.D., M. Maltoni 2012.06595

$$\begin{split} \sigma^{|int|} &\equiv \int d\Phi \left| \frac{d\sigma_{int}}{d\Phi} \right| >> \sigma_{int} & = \text{Phase space Suppression} \\ \sigma^{|meas|} &\equiv \int d\Phi_{meas} \left| \sum_{\{um\}} \frac{d\sigma}{d\Phi} \right| & \text{Experimentally accessible?} \\ &= \lim_{N \to \infty} \sum_{i=1}^{N} w_i * \text{sign} \left(\sum_{um} ME(\vec{p_i}, um) \right) \\ \text{Fully: } \frac{d\sigma_{int}}{d\theta} (ee \to Z\gamma) \propto \cos \theta \\ \text{Not at all: } \sigma_{int}(\mu_L) &= -\sigma_{int}(\mu_R) \end{split}$$

gluon operator

Interference revival : 1st example

$$O_G = g_s f_{abc} \ G^{a,\mu}_{\nu} G^{b,\nu}_{\rho} G^{c,\rho}_{\mu}$$

Interference vanishes in dijet

R. Goldouzian, M. D. Hildreth, Phys. Lett. B **811**, 135889 (2020), arXiv:2001.02736

$$\frac{C_G}{\Lambda^2} < (0.031 \text{ TeV})^{-2} \qquad \text{from dijet at } \mathcal{O}\left(1/\Lambda^4\right)$$

Krauss et al, 1611.00767

Triple gluon operator

Triple gluon operator

Transverse momentum

Efficiency of an observable to revive:

~40% efficiency

()

 $\sigma^{|meas|}$

Transverse sphericity

$$M_{xy} = \sum_{i=1}^{N_{jets}} \begin{pmatrix} p_{x,i}^2 & p_{x,i}p_{y,i} \\ p_{y,i}p_{x,i} & p_{y,i}^2 \end{pmatrix}, \ Sph_T = \frac{2\lambda_2}{\lambda_2 + \lambda_1}$$

Better sensitivity

$p_{T,min}$ [GeV]	Distribution	Sph_T cut	Bins	Upper bound on C_G Lower bound on C_G
50	$p_T[j_3]$ vs Sph_T	0.23	34	$2.5 \cdot 10^{-1} (1.1 \cdot 10^{-1}) -2.5 \cdot 10^{-1} (-1.2 \cdot 10^{-1})$
200	S_T vs Sph_T	0.27	34	$7.5 \cdot 10^{-2} (2.3 \cdot 10^{-2}) -7.5 \cdot 10^{-2} (-2.4 \cdot 10^{-2})$
500	$M[j_2j_3]$ vs Sph_T	0.31	21	$5.5 \cdot 10^{-2} (5.3 \cdot 10^{-2}) -5.5 \cdot 10^{-2} (-3.5 \cdot 10^{-2})$
1000	$M[j_2j_3]$ vs Sph_T	0.35	7	$2.6 \cdot 10^{-2} (1.9 \cdot 10^{-2}) -2.6 \cdot 10^{-2} (-1.8 \cdot 10^{-2})$
				Λ^{-2} Λ^{-4}

Better sensitivity

$p_{T,min}$ [GeV]	Distribution	Sph_T cut	Bins	Upper bound on C_G Lower bound on C_G
50	$p_T[j_3]$ vs Sph_T	0.23	34	$2.5 \cdot 10^{-1} (1.1 \cdot 10^{-1}) - 2.5 \cdot 10^{-1} (-1.2 \cdot 10^{-1})$
200	S_T vs Sph_T	0.27	34	$7.5 \cdot 10^{-2} (2.3 \cdot 10^{-2}) -7.5 \cdot 10^{-2} (-2.4 \cdot 10^{-2})$
500	$M[j_2j_3]$ vs Sph_T	0.31	21	$5.5 \cdot 10^{-2} (5.3 \cdot 10^{-2}) -5.5 \cdot 10^{-2} (-3.5 \cdot 10^{-2})$
1000	$M[j_2j_3]$ vs Sph_T	0.35	7	$2.6 \cdot 10^{-2} (1.9 \cdot 10^{-2}) -2.6 \cdot 10^{-2} (-1.8 \cdot 10^{-2})$
				Λ^{-2} Λ^{-4}

Special operators with no change of normalisation

If more than one operator contribute to one process:

- One linear combination for the cross-section
- all the orthogonal one are 'pure' shapes (at the interference level)

Observables vs ML trained on model

Faroughy, Bortolato, Kamenik, Kosnik Smolkovic, Symmetry 13 (2021) no.7, 1129

Neural network

Linear combination

$$\omega_{14} \sim [(p_{\ell^-} \times p_{\ell^+}) \cdot (p_b - p_{\bar{b}})][(p_b - p_{\bar{b}}) \cdot (p_{\ell^-} - p_{\ell^+})]$$

$$\omega_6 \sim [(p_{\ell^-} \times p_{\ell^+}) \cdot (p_b + p_{\bar{b}})][(p_{\ell^-} - p_{\ell^+}) \cdot (p_b + p_{\bar{b}})]$$

Keeping uncertainties under control

EW bosons production

Large/small K-factor

 σ is not the right variable to probe the interference

Interference revival: toy example

$$A = d\sigma(\cos \theta > 0) - d\sigma(\cos \theta < 0)$$

$$A_{int}^{LO} = 2 \qquad > > \sigma_{int}^{LO} = 0.16$$

$$A_{int}^{NLO} = 2.15$$

$$K_A = 1.1$$

No/little cancellation (Much) larger sensitivity Less sensitive to corrections (smaller errors)

Owww

 $O_W = \epsilon^{IJK} W^{I,\nu}_{\mu} W^{J,\rho}_{\nu} W^{K,\mu}_{\rho}$

C.D., M. Maltoni, 2403.16894

	SM	${\cal O}(1/\Lambda^2)$	${\cal O}(1/\Lambda^4)$
	$pp \to \ell^+ \ell^- j$	$j \text{ EW}, \ell = (e, \mu)$	
σ_{LO} (fb)	$49{\pm}0.06\%^{+8\%}_{-6\%}$	$-1.67 \pm 0.4 \%^{+6\%}_{-7\%}$	$9.4{\pm}0.07\%^{+11\%}_{-10\%}$
σ_{NLO} (fb)	$52.2 \pm 0.19\%^{+0.8\%}_{-1.1\%}$	$-1.66 \pm 1.2\%^{+0.4\%}_{-0.8\%}$	$11.1 {\pm} 0.18 \%^{+3\%}_{-4\%}$
K-factor	$1.07{\pm}0.19\%^{+9\%}_{-7\%}$	$0.99{\pm}1.2\%^{+6\%}_{-8\%}$	$1.18 \pm 0.17\%^{+14\%}_{-14\%}$
	$pp \rightarrow \ell^{\pm} \overset{(-)}{\nu}$	$\ell^+\ell^-,\ell=(e,\mu)$	
σ_{LO} (fb)	$34.6 \pm 0.012 \%^{+1.2\%}_{-1.4\%}$	$0.169 {\pm} 0.3\%^{+1.8\%}_{-2\%}$	$6.2 \pm 0.06\%^{+2\%}_{-1.6\%}$
σ_{NLO} (fb)	$50.5 \pm 0.02\%^{+1.6\%}_{-1.4\%}$	$-0.91{\pm}0.5\%^{+5\%}_{-7\%}$	$7.34 \pm 0.07 \%^{+0.8\%}_{-0.7\%}$
σ_{N^2LO} (fb)	$62.8 \pm 0.3\%^{+1.4\%}_{-1.3\%}$	-	-
K-factor	$1.46 {\pm} 0.03 \%^{+3\%}_{-3\%}$	$-5.4 \pm 0.6\%^{+7\%}_{-9\%}$	$1.18 {\pm} 0.09 \%^{+3\%}_{-3\%}$
$\rm N^2LO$ / $\rm LO$	$1.82{\pm}0.3\%^{+3\%}_{-3\%}$	-	-
	$pp \to \ell^{\pm} {}^{(-)} \nu$	$^{ m o}\gamma,\ell=(e,\mu, au)$	
σ_{LO} (fb)	$20.7 \pm 0.4\%^{+1.4\%}_{-1.4\%}$	$-0.67 \pm 9\%^{+21\%}_{-9\%}$	$110 \pm 0.5\%^{+5\%}_{-4\%}$
σ_{NLO} (fb)	$29.8 {\pm} 0.6 \%^{+3\%}_{-2\%}$	$-3.4 \pm 9\%^{+9\%}_{-11\%}$	$121 \pm 0.7\%^{+1.2\%}_{-1.2\%}$
K-factor	$1.44{\pm}0.5\%^{+4\%}_{-4\%}$	$5.1 \pm 12\%^{+29\%}_{-22\%}$	$1.10{\pm}0.7\%^{+6\%}_{-5\%}$

higher order underestimated

VBF

WZ

	(fb)	$\%$ of $\sigma^{ \mathrm{int} }$	$\%$ of $\sigma^{ \rm meas }$			
	$pp \to \ell^{\pm} {}^{(-)} \ell^+ \ell^-, \ \ell = (e, \mu)$					
$\sigma^{ \mathrm{int} }$	$4.93 \pm 0.4\%$	100	-			
$\sigma^{ \mathrm{meas} }$	$2.04 \pm 1.0\%$	41	100			
$p_T^Z \times \phi_{WZ}$	$1.31 \pm 1.5\%$	27	64			
ϕ_{WZ}	$0.79\pm3\%$	16	39			
M_T^{WZ}	$0.66 \pm 3\%$	13	32			
$\cos \theta^*_{\ell = Z}$	$0.20{\pm}10\%$	4	10			
$\sigma_{LO}^{1/\Lambda^2}$	$0.20{\pm}10\%$	4	10			
p_T^Z	> 50 GeV A	ND $\phi_{WZ} >$	-0.5			
$\sigma^{ \mathrm{int} }$	$2.260{\pm}0.7\%$	100	-			
$\sigma^{ \mathrm{meas} }$	$0.873 \pm 1.7\%$	39	100			
M_T^{WZ}	$0.660{\pm}2\%$	29	76			
$\sigma_{LO}^{1/\Lambda^2}$	$0.660{\pm}2\%$	29	76			
p	$p_T^Z < 40 \text{ GeV OR } \phi_{WZ} < -1$					
$\sigma^{ \mathrm{int} }$	$1.810 \pm 0.5\%$	100	-			
$\sigma^{ \mathrm{meas} }$	$0.870 \pm 1.1\%$	48	100			
M_T^{WZ}	$0.480{\pm}2\%$	27	55			
$\sigma_{LO}^{1/\Lambda^2}$	$-0.480\pm 2\%$	27	55			

WZ

	(fb)	$\%$ of $\sigma^{ \mathrm{int} }$	$\%$ of $\sigma^{ \rm meas }$			
	$pp \to \ell^{\pm} {}^{(-)} \ell^+ \ell^-, \ \ell = (e, \mu)$					
$\sigma^{ \mathrm{int} }$	4.93±0.4%	100	-			
$\sigma^{ \mathrm{meas} }$	$2.04 \pm 1.0\%$	41	100			
$p_T^Z \times \phi_{WZ}$	$1.31 \pm 1.5\%$	27	64			
ϕ_{WZ}	$0.79 \pm 3\%$	16	39			
M_T^{WZ}	$0.66 \pm 3\%$	13	32			
$\cos \theta^*_{\ell^{Z}Z}$	0.20±10%	4	10			
$\sigma_{LO}^{1/\Lambda^2}$	$0.20{\pm}10\%$	4	10			
p_T^Z	> 50 GeV A	ND $\phi_{WZ} >$	-0.5			
$\sigma^{ \mathrm{int} }$	$2.260{\pm}0.7\%$	100	-			
$\sigma^{ \mathrm{meas} }$	$0.873 \pm 1.7\%$	39	100			
M_T^{WZ}	$0.660{\pm}2\%$	29	76			
$\sigma_{LO}^{1/\Lambda^2}$	$0.660{\pm}2\%$	29	76			
p	$p_T^Z < 40 \text{ GeV OR } \phi_{WZ} < -1$					
$\sigma^{ \mathrm{int} }$	$1.810 {\pm} 0.5\%$	100	-			
$\sigma^{ \mathrm{meas} }$	$0.870 \pm 1.1\%$	48	100			
M_T^{WZ}	$0.480{\pm}2\%$	27	55			
$\sigma_{LO}^{1/\Lambda^2}$	$-0.480{\pm}2\%$	27	55			

Wγ

Constraints

Dim-8 in diboson

dim-8 operators

$$\begin{aligned} \mathcal{O}_{1} &= iB^{\mu}{}_{\nu}B^{\nu}{}_{\lambda}(\bar{d}_{\mathrm{R}p}\gamma^{\lambda}\overleftrightarrow{D}_{\mu}d_{\mathrm{R}r}), \\ \mathcal{O}_{2} &= iB^{\mu}{}_{\nu}B^{\nu}{}_{\lambda}(\bar{u}_{\mathrm{R}p}\gamma^{\lambda}\overleftrightarrow{D}_{\mu}u_{\mathrm{R}r}), \\ \mathcal{O}_{3} &= iB^{\mu}{}_{\nu}B^{\nu}{}_{\lambda}\left(\bar{q}_{\mathrm{L}p}\gamma^{\lambda}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}r}\right), \\ \mathcal{O}_{4} &= iW^{I\mu}{}_{\lambda}B^{\nu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{5} &= iW^{I\mu}{}_{\lambda}\tilde{B}^{\nu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{6} &= iW^{I\nu}{}_{\lambda}B^{\mu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{7} &= iW^{I\nu}{}_{\lambda}\tilde{B}^{\mu\lambda}\left(\bar{q}_{\mathrm{L}p}^{i}\gamma_{\nu}\left(\tau^{I}\right)_{i}{}^{j}\overleftrightarrow{D}_{\mu}q_{\mathrm{L}rj}\right), \\ \mathcal{O}_{8} &= iW^{I\mu}{}_{\nu}W^{I\nu}{}_{\lambda}(\bar{d}_{\mathrm{R}p}\gamma^{\lambda}\overleftarrow{D}_{\mu}d_{\mathrm{R}r}), \\ \mathcal{O}_{9} &= iW^{I\mu}{}_{\nu}W^{I\nu}{}_{\lambda}(\bar{u}_{\mathrm{R}p}\gamma^{\lambda}\overleftarrow{D}_{\mu}u_{\mathrm{R}r}), \end{aligned}$$

 $\mathcal{O}_{10} = i W^{I\mu}{}_{\nu} W^{I\nu}{}_{\lambda} \left(\bar{q}_{\mathrm{L}r} \gamma^{\lambda} \overleftarrow{D}{}_{\mu} q_{\mathrm{L}p} \right),$ $\mathcal{O}_{11} = i\epsilon^{IJK} W^{I\mu}{}_{\nu} W^{J\nu}{}_{\lambda} \left(\bar{q}^{i}_{\mathrm{L}p} \gamma^{\lambda} \left(\tau^{K} \right)_{i}{}^{j} \overleftarrow{D}_{\mu} q_{\mathrm{L}rj} \right),$ $\mathcal{O}_{12} = i\epsilon^{IJK} \tilde{W}^{I\mu}{}_{\nu} W^{J\nu}{}_{\lambda} \left(\bar{q}^{i}_{\mathrm{L}p} \gamma^{\lambda} \left(\tau^{K} \right)_{i}{}^{j} \overleftarrow{D}_{\mu} q_{\mathrm{L}rj} \right),$ $\mathcal{O}_{13} = i\epsilon^{IJK} W^{I\mu}{}_{\nu} \tilde{W}^{J\nu}{}_{\lambda} \left(\bar{q}^{i}_{\mathrm{L}p} \gamma^{\lambda} \left(\tau^{K} \right)_{i}{}^{j} \overleftarrow{D}_{\mu} q_{\mathrm{L}rj} \right),$ $\mathcal{O}_{14} = i \left(\bar{u}_{\mathrm{R}r} \gamma^{\lambda} \overleftarrow{D}_{\mu} u_{\mathrm{R}p} \right) \left(D_{\lambda} H^{\dagger} D^{\mu} H \right),$ $\mathcal{O}_{15} = i \left(\bar{d}_{\mathrm{R}r} \gamma^{\lambda} \overleftarrow{D}_{\mu} d_{\mathrm{R}p} \right) \left(D_{\lambda} H^{\dagger} D^{\mu} H \right),$ $\mathcal{O}_{16} = i \left(\bar{q}_{\mathrm{L}r} \gamma^{\lambda} \overleftarrow{D}_{\mu} q_{\mathrm{L}p} \right) \left(D_{\lambda} H^{\dagger} D^{\mu} H \right),$ $\mathcal{O}_{17} = i \left(\bar{q}_{\mathrm{L}p} \gamma^{\lambda} \tau^{K} \overleftarrow{D}_{\mu} q_{\mathrm{L}r} \right) \left(D_{\lambda} H^{\dagger} \tau^{K} D^{\mu} H \right),$ $\mathcal{O}_{18} = i(\bar{u}_{\mathrm{B}n}\gamma^{\mu}\overleftrightarrow{D}^{\nu}d_{\mathrm{B}r})\epsilon^{ij}(D^{\mu}H_iD^{\nu}H_i),$

C. Degrande

(b) dim-8 contact corrections

Interference behaviour

Table 2: Scaling of $q\bar{q} \rightarrow WW$ interference amplitude after summing and averaging over spins and helicities.

Interference by helicity (O₈)

(h_{W^+}, h_{W^-})	$\mathcal{A}_{h_i}^8/rac{C_8}{\Lambda^4}$	$\mathcal{A}_{h_i}^{ ext{SM}}$	
,+	$\mathbf{S}^2 S \sin^2\left(\frac{\theta}{2}\right) \sin(\theta) \left(S - 2M_W^2\right) \delta_{ab}$	0	
,	$\mathbf{S} \qquad S\sin(\theta)\cos(\theta)M_W^2\delta_{ab}$	$\frac{4\pi\alpha\sin(\theta)M_Z^2\delta_{ab}\sqrt{1-\frac{4M_W^2}{S}}}{3\left(S-M_Z^2\right)} S^{-1}$	
-, 0	$\frac{S^{3/2} \ \frac{S^{3/2} \sin^2(\frac{\theta}{2})(2\cos(\theta)+1)M_W^2 \delta_{ab}}{\sqrt{2}M_W}}{\sqrt{2}M_W}$	$\frac{4\pi\alpha\sin^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{2S-8M_W^2}}{3SM_W-3M_WM_Z^2}S^{-1}$./2
+,+	$\mathbf{S} \qquad S\sin(\theta)\cos(\theta)M_W^2\delta_{ab}$	$\frac{4\pi\alpha\sin(\theta)M_Z^2\delta_{ab}\sqrt{1-\frac{4M_W^2}{S}}}{3\left(S-M_Z^2\right)} S^{-1}$	
+,-	$S^{\underline{2}}2S\sin\left(\frac{\theta}{2}\right)\cos^{3}\left(\frac{\theta}{2}\right)\delta_{ab}\left(S-2M_{W}^{2}\right)$	0	
+, 0	$\frac{S^{3/2} \ S^{3/2} \ \cos^2\left(\frac{\theta}{2}\right) (2\cos(\theta) - 1) M_W^2 \delta_{ab}}{\sqrt{2} M_W}$	$\frac{4\pi\alpha\cos^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{2S-8M_W^2}}{3SM_W-3M_WM_Z^2} S$	-1/2
0,+	$\frac{S^{3/2} - \frac{S^{3/2} \sin^2(\frac{\theta}{2})(2\cos(\theta) + 1)M_W^2 \delta_{ab}}{\sqrt{2}M_W}}{\sqrt{2}M_W}$	$\frac{4\sqrt{2}\pi\alpha\sin^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{S-4M_W^2}}{3M_WM_Z^2-3SM_W}S$	-1/2
0, -	$\frac{S^{3/2} \ S^{3/2} \ \cos^2\left(\frac{\theta}{2}\right) (1 - 2\cos(\theta)) M_W^2 \delta_{ab}}{\sqrt{2} M_W}$	$\frac{4\sqrt{2}\pi\alpha\cos^{2}\left(\frac{\theta}{2}\right)M_{Z}^{2}\delta_{ab}\sqrt{S-4M_{W}^{2}}}{3M_{W}M_{Z}^{2}-3SM_{W}}S$	-1/2
0,0	$S -S\sin 2\theta M_W^2 \delta_{ab}$	$\frac{2\pi\alpha\sin(\theta)M_{Z}^{2}\delta_{ab}(2M_{W}^{2}+S)\sqrt{1-\frac{4M_{W}^{2}}{S}}}{3M_{W}^{2}(M_{Z}^{2}-S)}$	0

Table 3: Helicity amplitudes for $d\bar{d} \to WW$ for $h_d = 1$ and $h_{\bar{d}} = -1$, where $\mathcal{A}_{h_i}^8$ is generated by \mathcal{O}_8 .

Interference by helicity (O₁₅)

(h_{W^+}, h_{W^-})	$\mathcal{A}_{h_i}^{15}/rac{C_{15}}{\Lambda^4}$	$\mathcal{A}_{h_i}^{ ext{SM}}$
-,+	$\mathbf{S} \ S \sin^2\left(\frac{\theta}{2}\right) \sin(\theta) M_W^2 \delta_{ab}$	0
,	$S - S \sin^2\left(\frac{\theta}{2}\right) \sin(\theta) M_W^2 \delta_{ab}$	$\frac{4\pi\alpha\sin(\theta)M_Z^2\delta_{ab}\sqrt{1-\frac{4M_W^2}{S}}}{3(S-M_Z^2)} S^{-1}$
-,0	$\frac{S^{3/2} \sin^2\left(\frac{\theta}{2}\right) \cos(\theta) M_W \delta_{ab}}{\sqrt{2}}$	$\frac{4\pi\alpha\sin^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{2S-8M_W^2}}{3SM_W-3M_WM_Z^2} S^{-1/2}$
+,+	$\mathbf{S} S \sin(\theta) \cos^2\left(\frac{\theta}{2}\right) M_W^2 \delta_{ab}$	$\frac{4\pi\alpha\sin(\theta)M_Z^2\delta_{ab}\sqrt{1-\frac{4M_W^2}{S}}}{3(S-M_Z^2)} S^{-1}$
+,-	$S - S\sin(\theta)\cos^2\left(\frac{\theta}{2}\right)M_W^2\delta_{ab}$	0
+, 0	$\frac{S^{3/2} \cos^2\left(\frac{\theta}{2}\right) \cos(\theta) M_W \delta_{ab}}{\sqrt{2}}$	$\frac{4\pi\alpha\cos^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{2S-8M_W^2}}{3SM_W-3M_WM_Z^2} \mathbf{S}^{-1}$
0, +	$S^{3/2} - \frac{S^{3/2} \sin^2(\theta) M_W \delta_{ab}}{2\sqrt{2}}$	$\frac{4\sqrt{2}\pi\alpha\sin^2\left(\frac{\theta}{2}\right)M_Z^2\delta_{ab}\sqrt{S-4M_W^2}}{3M_WM_Z^2-3SM_W}$
0, -	$\frac{S^{3/2}}{\frac{S^{3/2}\sin^2(\theta)M_W\delta_{ab}}{2\sqrt{2}}}$	$\frac{4\sqrt{2\pi\alpha\cos^2\left(\frac{\theta}{2}\right)M_Z^2}\delta_{ab}\sqrt{S-4M_W^2}}{3M_WM_Z^2-3SM_W}$
0,0	$S^2 - \frac{1}{8}S^2\sin(2\theta)\delta_{ab}$	$\frac{2\pi\alpha\sin(\theta)M_Z^2\delta_{ab}(2M_W^2+S)\sqrt{1-\frac{4M_W^2}{S}}}{3M_W^2(M_Z^2-S)}$

Distributions

Comparison to dim6

WZ

Final comments

Final comments

- SMEFT is good to parametrise any heavy new physics BUT we need to
- understand the interference
- understand errors
 - from EFT : $1/\Lambda$ (dim8, ...)
 - α_S, α_{EW}
- design specific observables
 - more model independent and intuitive
 - easier to understand/compute errors/uncertainties
 - learn about the SM
- Reduce uncertainties
 - SM predictions (pert and non-pert)
 - Experimental

