The Good, the Bad, and the Evanescent

Zachary Polonsky (University of Zurich)

Jan. 29, 2025 SMEFT-Tools 2025 MITP

・ロト 《四下 《田下 《田下 』 うらぐ

The Good

<□> <0</p>

't Hooft-Veltmann/BMHV

't Hooft-Veltmann/BMHV

Everything Else

◆□◆ ▲□◆ ▲目◆ ▲目◆ ▲□◆

't Hooft-Veltmann/BMHV

Everything Else

◆□◆ ▲□◆ ▲目◆ ▲目◆ ▲□◆

Evanescent Operators: The Standard Story

[Dugan, Grinstein; Phys.Lett.B 256 (1991) 239-244] [Collins, *Renormalization*] [Herrlich, Nierste; 9412375] [Fuentes-Martin, et al.; 2211.09144]...

- Purely four-dimensional objects (γ_5 , $\epsilon^{\mu\nu\sigma\rho}$) are not well-defined in dim-reg
- Operators which coincide in d = 4 are no longer linearly dependent
 Must introduce evanscent operators

$${m E} = ig(\gamma^{\mu_1}\gamma^{\mu_2}\gamma^{\mu_3}{m P}_Lig)\otimesig(\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}{m P}_Lig) - (16 - a_{11}\epsilon - \dotsig)ig(\gamma^{\mu}{m P}_Lig)\otimesig(\gamma_{\mu}{m P}_Lig)$$

Rank(ϵ): give finite (local) effects when multiplied by UV poles

• Infinitely many \Rightarrow explicitly subtract finite Z_{EQ} to avoid initial conditions

The b \rightarrow se⁺e⁻ and b \rightarrow s γ decays with next-to-leading logarithmic QCD-corrections

Mikołaj Misiak¹

Institut für Theoretische Physik, Universität Zürich, Schönberggasse 9, CH-8001 Zürich, Switzerland

Received 17 July 1992 Accepted for publication 24 August 1992

What we usually require from an arbitrary regularization is that:

(i) It commutes with differentiation with respect to external momenta.

(ii) It does not affect convergent integrals.

(iii) It gives unique results independently on whether some diagram is considered separately or as a subdiagram, and independently on the order in which the subdiagrams are calculated. What we would like to suggest here is forbidding the use of $\{\gamma_{\mu}, \gamma_{5}\} = 0$ in fermionic lines containing odd numbers of γ_{5} 's, and not to evaluate $\operatorname{Trf} \gamma_{\mu} \gamma_{5} \gamma_{5} \gamma_{5} \gamma_{5}$ at all in $d \neq 4$ dimensions. This brings to life new evanescent operators containing structures like

$$\gamma_{\mu_1}\gamma_{\mu_2}\ldots\gamma_{\mu_n}\{\gamma_{\nu},\,\gamma_5\}\tag{A.2}$$

or

$$\gamma^{\mu} \mathrm{Tr}[\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\gamma_{5}] - 4(\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma} - g_{\nu\rho}\gamma_{\sigma} + g_{\nu\sigma}\gamma_{\rho} - g_{\rho\sigma}\gamma_{\nu})\gamma_{5}, \qquad (A.3)$$

(See talks by Lukas and Achilleas earlier today)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- In generic graph, generate both local and non-local UV divergences
- Non-local divergences arise only from divergent sub-diagrams
 subtracted by lower-order CT insertions
- Remaining local UV divergences can be renormalized

- Never explicitly reduce algebraic structures appearing in loop graphs
 Add new structures to Green's basis
- New structures generated in divergent ℓ-loop graphs appear as sub-structures in ℓ + n-loop graphs
 - \rightarrow Directly re-inserted as counterterms to cancel subdivergences

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\xrightarrow{} (div) \times S^{(2)} \Longrightarrow$ (div) × F(p) S⁽ⁿ⁾, S⁽²⁾ ∈ S⁽ⁿ⁾ x -> Exactly concels non-local div

- イロト イロト イヨト イヨト ヨー のへで

We would like to specify method of reducing structures back to physical basis

$$S_i^{(\ell)} o M_{ij}^{(\ell)} Q_j$$

▶ ℓ -loop counterterms no longer necessarily cancel $(\ell + n)$ -loop subdivergences!

 \rightarrow (div)×(M⁽²⁾Q)

 $\swarrow \sim \mathcal{M}^{(c)}(\mathcal{M}^{(3)} \mathbb{Q})$

Fix issue by hand: remove bad reductions and re-insert proper structure

(divergent coefficient)
$$imes (S_i^{(\ell)} - \mathcal{M}_{ij}^{(\ell)} Q_j)$$

• Exactly an insertion of $Z_{QE} \times E$

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

Fix issue by hand: remove bad reductions and re-insert proper structure

(divergent coefficient)
$$imes (S_i^{(\ell)} - \mathcal{M}_{ij}^{(\ell)} Q_j)$$

• Exactly an insertion of $Z_{QE} \times E$

Evanescent operators guarantee the cancellation of subdivergences when inconsistencies arise in algebraic reductions

The b \rightarrow se⁺e⁻ and b \rightarrow s γ decays with next-to-leading logarithmic QCD-corrections

Mikołaj Misiak¹

Institut für Theoretische Physik, Universität Zürich, Schönberggasse 9, CH-8001 Zürich, Switzerland

Received 17 July 1992 Accepted for publication 24 August 1992

What we usually require from an arbitrary regularization is that:

(i) It commutes with differentiation with respect to external momenta.

(ii) It does not affect convergent integrals.

(iii) It gives unique results independently on whether some diagram is considered separately or as a subdiagram, and independently on the order in which the subdiagrams are calculated. What we would like to suggest here is forbidding the use of $\{\gamma_{\mu}, \gamma_{3}\} = 0$ in fermionic lines containing odd numbers of γ_{3} 's, and not to evaluate $Tf_{3}\gamma_{\mu}\gamma_{\gamma}\gamma_{\mu}\gamma_{3}\gamma_{3}$ at all in $d \neq 4$ dimensions. This brings to life new evanescent operators containing structures like

$$\gamma_{\mu_1}\gamma_{\mu_2}\ldots\gamma_{\mu_n}\{\gamma_{\nu},\,\gamma_5\} \tag{A.2}$$

or

$$\gamma^{\mu} \operatorname{Tr}[\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\gamma_{5}] - 4(\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma} - g_{\nu\rho}\gamma_{\sigma} + g_{\nu\sigma}\gamma_{\rho} - g_{\rho\sigma}\gamma_{\nu})\gamma_{5}, \qquad (A.3)$$

The b \rightarrow se⁺e⁻ and b \rightarrow s γ decays with next-to-leading logarithmic QCD-corrections

Mikołaj Misiak¹

Institut für Theoretische Physik, Universität Zürich, Schönberggasse 9, CH-8001 Zürich, Switzerland

Received 17 July 1992 Accepted for publication 24 August 1992

What we usually require from an arbitrary regularization is that:

(i) It commutes with differentiation with respect to external momenta.

(ii) It does not affect convergent integrals.

(iii) It gives unique results independently on whether some diagram is considered separately or as a subdiagram, and independently on the order in which the subdiagrams are calculated. What we would like to suggest here is forbidding the use of $\{\gamma_{\mu}, \gamma_{3}\} = 0$ in fermionic lines containing odd numbers of γ_{3} 's, and not to evaluate $\operatorname{Tr} \{\gamma_{\mu}, \gamma_{\lambda}, \gamma_{\mu}, \gamma_{\gamma}\}$ at all in $d \neq 4$ dimensions. This brings to life new evanescent operators containing structures like

$$\gamma_{\mu},\gamma_{\mu},\ldots,\gamma_{\mu}\{\gamma_{\nu},\gamma_{5}\}$$
(A.2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

or

$$\gamma^{\mu} \operatorname{Tr}[\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\gamma_{5}] - 4(\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma} - g_{\nu\rho}\gamma_{\sigma} + g_{\nu\sigma}\gamma_{\rho} - g_{\rho\sigma}\gamma_{\nu})\gamma_{5}, \qquad (A.3)$$

Evanescent operators don't cause violations of (iii), but resolve them

Example I: Nested Subdivergences

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Example I: Nested Subdivergences

 ▶ Clear ordering of structure reductions ⇒ can eliminate evanescent op. (see Marko's talk for more details)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Example II: Overlapping Subdivergences

► Can eliminate evanescent operators by relating O(eⁿ) parts of reductions → Linear algebra problem: enough degrees of freedom?

Example II: Overlapping Subdivergences

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Commit to one reduction

 \rightarrow only need introduce evanescent for other reductions

- Generic reductions do not preserve gauge invariance [Jegerlehner; 0005255]
- Can't resolve inconsistencies if no evanescent operators introduced
 Traces in NDR still can be problematic if not treated with care

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Avoid initial Dirac reductions: worse tensor integal reductions

- Evanescent ops. understood as ensuring cancellation of subdivergences when using inconsistent reductions of algebraic structures
- Smart choices of reductions can greatly reduce the number of evanescent operators/effects
- **Not magic:** Not eliminating all evanescents, and possible issues still arise
- Allows greater flexibility for automation of higher-order RGEs