Bottom-up EFI (a handworker talk about LFV) Sacha Davidson, Lyon

This talk is motivated by $\mu \! \leftrightarrow \! e$ LFV because...

- 1. leptons are nice: no strong interactions
- 2. $[m_{\nu}]$ tells us there is NewPhysics in the leptonic sector; I assume heavy NP \Leftrightarrow EFT
- 3. diversity of unsuccessful searches for LFV \equiv FCNC for leptons (colliders, ν physics, meson, τ or μ decays... \Rightarrow ? constrain $\Lambda_{NP} \gtrsim$ few Tev for all ops?)

4.
$$\mu \leftrightarrow e$$
: current reach of $\left\{ \begin{array}{l} \mu \rightarrow e\gamma \\ \mu \rightarrow e\overline{e}e \\ \mu A \rightarrow eA \end{array} \right\}$: $\Lambda_{NP} \lesssim 100 \text{ TeV}$
and weak decay

upcoming exptal sensitivity will improve: $BR \lesssim 10^{-12} \Big|_{\text{now}} \rightarrow \sim 10^{-(16 \rightarrow 17)} \Big|_{2025 \rightarrow 2030}$

5. $\mu \leftrightarrow e$: restrictive constraints on few operators \Rightarrow *do bottom-up*/*EFT*

data (
$$\mu
ightarrow e\gamma, \mu
ightarrow ear{e}e, \mu A
ightarrow eA$$
)

based on work with M Ardu+ M Gorbahn + S Lavignac

Why not do EFT bottom-up? (Please tell me...)

1. (I beleive that) data tells us what is true

 \Rightarrow to discover NP, best to start from what we know?

(prior to inventing a dragon, figure out colour, size and properties it should have)

- 2. data changes slowly \Rightarrow efficient/ "green" to take data $\rightarrow \Lambda_{NP}$
- 3. "one-at-a-time-bounds" are (almost) constraints when calculated bottom-up!
- 4. bottom-up is motivated when exptal bds are hierarchical $(= \# \text{ good exptal bds} \ll \# \text{ operators})$

(also simple: can get $\mu \leftrightarrow e$ bds bottom-up by hand;

nobody has obtained bds (= the correlation matrix) top-down)

- But technically different:
- in mass basis
- want all ops+ anom-dims to which data is sensitive

(quark flavour calculated "bottom-up" for decades?)

data (
$$\mu \rightarrow e\gamma, \mu \rightarrow e\bar{e}e, \mu A \rightarrow eA$$
)

 \mathbb{A}

One-at-a-time-"bounds", bottom up

recall: bound = how big could it be \leftrightarrow sensitivity = how small can one see

bounds:

 $|x|, |y| \le 1.25$ |x|, |y| larger than this is excluded

1-at-at-time bds(sensitivities):

 $|x|, |y| \leq .125$ |x|, |y| undetectable if smaller than this

 \star 1-at-a-time-bd neglects possible cancellations \star

cancellations can happen: accidental, Eqns of Motion (\Rightarrow exact cancellations), symmetries of the model unrecognised in the EFT,...

One-at-a-time-"bounds", bottom up

Suppose a model, **1.**parametrised at Λ_{NP} by $\vec{C} = \{C_1, C_2, C_3\}$ **3.** constrained at Λ_{exp} by rates R_A, R_B which impose: $|L_c|^2 < \epsilon_B^2$ $A|L_a|^2 + |L_b|^2 < \epsilon_A^2$

2. RGEs can be solved as
$$\vec{L} = \vec{C}[D]$$

 $L_a = C_1 D_{1a} + C_2 D_{2a}$
 $L_b = C_1 D_{1b} + C_2 D_{2b}$
 $L_c = C_1 D_{1c} + C_3 D_{3c}$

1-at-a-time-bds: calculate $R_A(C_2 = C_3 = 0)$, $R_B(C_2 = C_3 = 0)$, obtain smallest values of C_1 that could have been seen. (?so what?)

One-at-a-time-"bounds", bottom up

Suppose a model, 1.parametrised at Λ_{NP} by $\vec{C} = \{C_1, C_2, C_3\}$ 3. constrained at Λ_{exp} by rates R_A, R_B which impose: $|L_c|^2 < \epsilon_B^2$ $A|L_a|^2 + |L_b|^2 < \epsilon_A^2$

2. RGEs can be solved as $\vec{L} = \vec{C}[D]$ $L_a = C_1 D_{1a} + C_2 D_{2a}$ $L_b = C_1 D_{1b} + C_2 D_{2b}$ $L_c = C_1 D_{1c} + C_3 D_{3c}$

bottom-up perspective: focus on constrained $\{L\}$ in terms of $\{C\}$. exptal bd on $|L_b|$ gives "1-at-a-time-bd" $C_i < \epsilon_A/D_{ib}$. Make table $\forall C_i, L_{\alpha}$ Without absolute values(for $D_{i\alpha} \in \Re$) allows to reconstruct the correlated constraint!

 $\begin{array}{c|c} \operatorname{coef} & R_A & R_B \\ \hline C_1 & \frac{\epsilon_A}{\sqrt{AD_{1a}^2 + D_{1b}^2}} & \frac{\epsilon_B}{|D_{1c}|} \\ \hline C_2 & \frac{\epsilon_A}{\sqrt{AD_{2a}^2 + D_{2b}^2}} & \\ \hline C_3 & & \frac{\epsilon_B}{|D_{1c}|} \end{array}$

coef	$ L_a $	$ L_b $	$ L_c $
C_1	$\frac{\epsilon_A}{D_{1a}\sqrt{A}}$	$\frac{\epsilon_A}{D_{1b}}$	$\frac{\epsilon_B}{D_{1c}}$
C_2	$\frac{\epsilon_A}{D_{2a}\sqrt{A}}$	$\frac{\epsilon_A}{D_{2b}}$	
C_3			$rac{\epsilon_B}{D_{3c}}$

First technicality: what basis are we in?

Exptal constraints are in the mass eigenstate basis of broken EW \Rightarrow do LEFT in mass basis, et tout va bien.

At m_W , match to SMEFT:

 $[m_e] = [Y_e]v - [C_{EH}]v + \dots$, (for $\delta \mathcal{L} \supset \frac{C_{EH}}{v^2}Q_{EH} + h.c$)

 \Rightarrow not know $[Y_e] + [C_{EH}]$, but need $[Y_e]$ for RGEs— what to do?

..?stay in mass basis, and approximate $[Y_e]$ diagonal?

(Messy to match to models.

But model knows Y_e and C_{EH} .)

Works for LFV : $h \to l_{\alpha}^{\pm} l_{\beta}^{\mp}$ constrains $[C_{EH}]$ to be small enough

(such that rotn mass \rightarrow Yukawa eigenbasis is sufficiently small that off-diagonal Y_e do not generate observable LFV)

Technicality 2: to what order, bottom up?

If EFT takes data to models, then need all the operators and interactions to which the data is sensitive.

Because, bottom up: know exptal precision of observables $\{L_{\alpha}\}$. But not which of $\{C\}$ generated it. eg, if see $\mu A \rightarrow eA$: did model match to $\bar{e}\sigma \cdot F\mu$? or $(\bar{b}b)(\bar{e}\mu)$? or ...? \Rightarrow for $\mu \leftrightarrow e$: need all the 4-legged $\mu \leftrightarrow e$ operators below $m_W \operatorname{eg} \bar{e}\mu GG$ + small flock of dim8 SMEFT operators, if $\Lambda_{NP} \lesssim 30$ TeV. $(\bar{\ell}_e H\mu)(\bar{\ell}_e He)$ + small family of 2-loop anom dims. nicer than all 2-loop adms and d8 ops $\star \mu \leftrightarrow e$ analysis at 1-loop with dim6 operators has incomplete basis and RGEs \star

ArduDGorbahn

$[\mu \rightarrow \tau] \times [\tau \rightarrow e] = [\mu \rightarrow e] \Rightarrow ?$

recall exptal reach: BR($\mu \rightarrow e$) $\rightarrow 10^{-(18 \rightarrow 20)} \sim [BR(\tau \rightarrow l) \rightarrow 10^{-9}]^2$? learn about $\tau \rightarrow l$ from $\mu \rightarrow e$?

- 1. if model has $(\mu \to \tau) \text{,} (\tau \to e)$, then no conserved flavour, so "expect" $\mu \to e$
- 2. can one calculate anything model-independent? In SMEFT, $(\dim 6)^2 \rightarrow \dim 8$, eg $\overline{\ell}e\varepsilon \overline{q}u \times (\overline{\ell}\gamma \ell)(\overline{q}\gamma q) \rightarrow \overline{\ell}e\varepsilon \overline{q}uH^{\dagger}H$

$$\frac{\Delta^{(8)}C^{e\mu uu}}{\Lambda_{NP}^4} \simeq \frac{\{y_t^2, g^2\}}{16\pi^2} \frac{C_{LQ}^{e\tau ut}}{\Lambda_{NP}^2} \frac{C_{LEQU}^{\tau\mu tu}}{\Lambda_{NP}^2}$$

so effective low-energy 4-fermion interaction $2\sqrt{2}G_FC_S$

$$\Delta {}^{(6)}C_S^{e\mu uu} \propto \frac{v^4}{16\pi^2\Lambda_{NP}^4}C^{e\tau ut}C^{\tau\mu tu}$$

3. find eg, $\mu A \rightarrow eA$ sensitivity complementary to $B^- \rightarrow \{e, \mu\}\nu$ decays for some operators:

Sacha's summary of Attractions of Bottom-up EFT

Using EFT to take data to models makes phenomenological sense: travel from known to unknown, and data changes rarely (solve RGEs less often and better?)

Does it work? (Buras doubts...)

...I think so? RGEs run up or down. Matching is defined top-down, but usually just means there could be flat directions (irrelevant: in taking exptal bds to models, unconstrained = irrelevant).

caveat = basis: Match $m \leftrightarrow Y_e - C_{EH}$; what about $Y_e + C_{EH}$? (not an irrelevant flat direction because Y_e is in RGEs) OK for leptons because $h \rightarrow l_{\alpha}^{\pm} l_{\beta}^{\mp}$ constrains C_{EH} .

bottom-up works differently: include next order when data is sensitive to it = only need a few dim8 operators and 2-loop anom dims...

?reduce need to scan model parameters (no measure on model parameter space), because can analytically check whether parameters match into allowed amoeba in coefficient space at Λ_{NP}

nature

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

<u>nature</u> > <u>letters</u> > article

Letter | Published: 14 September 2016

Discovery of species-wide tool use in the Hawaiian crow

<u>Christian Rutz</u>[™], <u>Barbara C. Klump</u>, <u>Lisa Komarcz</u> <u>Saskia Wischnewski, Shoko Sugasawa, Michael B. I</u> <u>Clair, Richard A. Switzer & Bryce M. Masuda</u>

Nature **537**, 403–407 (2016) <u>Cite this article</u>

Subjects engaging with tool tasks during probe trial

What we know: categories of LFV constraints

loops pprox not mix categories below Λ_{NP}

what we know about LFV : bounds/upcoming reach $\Delta LF = 1, \Delta QF = 0$ decays: $\tau \rightarrow e + ..., \mu \rightarrow e + ...$

plagiarised from Bellell

BanerjeeEtal Snowmass 2203.14919

upcoming $\mu \rightarrow e$

that plot in words...

 $\mu \leftrightarrow e$: restrictive bounds, but only on three processes

$$\frac{\Gamma(\mu \to e...)}{\Gamma(\mu \to e\bar{\nu}\nu)} < 10^{-12} \to 10^{-(16 \to 17)} \Rightarrow \Lambda_{LFV} > 10^3 v \to 10^4 v$$

 $au \leftrightarrow l$: \approx as many bds as Wilson coefficients(!), excluded up to $\Lambda_{NP} \gtrsim 70v \rightarrow 200v$

interpretations

 $\mu \leftrightarrow e$ afficcionado: discover LFV in $\mu \leftrightarrow e$, distinguish models with $\tau \leftrightarrow l$ $\tau \leftrightarrow l$ afficcionado: NP couples preferentially to 3rd generation

(How preferential do those couplings need to be ?

$$\begin{aligned} \mathcal{A}(l_{\alpha} \to l_{\beta} + ...) &\propto y_{\alpha} , y_{\alpha}^{2} , y_{\alpha}y_{\beta} \\ \frac{\Gamma(\mu \to e...)}{\Gamma(\tau \to l...)} &\sim \frac{m_{\mu}^{2}}{m_{\tau}^{2}} , \frac{m_{\mu}^{4}}{m_{\tau}^{4}} , \frac{m_{e}^{2}}{m_{\tau}^{2}} \\ 3 \times 10^{-3} , 10^{-5} , 10^{-7} \text{ vs } \frac{\Gamma(\mu \to e...)}{\Gamma(\tau \to l...)} \sim 10^{-5} \big|_{now} 10^{-7} \big|_{soon} \end{aligned}$$

 \Rightarrow need strong preference for 3rd gen ? (and remember to reproduce $[m_{\nu}])...)$

The $\tau \leftrightarrow l$ sector : marvellous place to distinguish models

many processes: current data give indep bounds on magnitude of $_{\rm (almost)}$ all operator coeffs, with $\Lambda_{NP}\gtrsim 10~{\rm TeV}$ (quid flavour indices)?

 \Rightarrow promising for distinguishing models (+insensitive to most loops \approx theoretically simple)

expected sensitivity of Bellell: $BR \lesssim 10^{-9} \rightarrow 10^{-10} \Leftrightarrow \Lambda_{NP} \sim 30 \text{ TeV}$:

(taken from BanerjeeEtal, Snowmass WPaper 2203.14919) dipole as $C_{\gamma}v\mathcal{O}_D = C_D m_{\tau}\mathcal{O}_D$!

The $\mu\leftrightarrow e\,\,{\rm sector}$

process	current bd on BR	future sensitivities
$\mu ightarrow e\gamma$	$< 3.1 \times 10^{-13}$ (MEGII,now) \rightarrow	$6 imes 10^{-14}$ (MEGII) $ ightarrow$
$\mu \to e \bar{e} e$	$< 1.0 imes 10^{-12}$ (SINDRUM)	$2 imes 10^{-15}$ (2025, Mu3e) $ ightarrow 10^{-16}$
$\mu Ti \rightarrow eTi$	$< 6 imes 10^{-13}$, (SINDRUMII)	$\stackrel{<}{_\sim} 10^{-(16 ightarrow ?)}$ (Mu2el,COMETI+II, ?2025-30)
$\mu Au \rightarrow eAu$	$< 7 imes 10^{-13}$, (SINDRUMII)	$10^{-(18 ightarrow?)}$ (prism/prime/enigma)
$(\mu \! \rightarrow \! e \gamma \gamma$	$< 7.2 imes 10^{-11})$ (CrystalBox)	

- 1. current data constrains (\approx measures?) 12 complex operator coefficients
- **3.** if we see something, what can we learn? \approx could observations rule out models?
- 2. is that enough? \approx if $\mu\text{-}e$ LFV is there, will we see it?
- (4. does one need all three processes,
 - and how to illustrate that?)

What can be measured in $\mu \to e\gamma$ or $\mu \to e\bar{e}e$?

$$\begin{split} \delta \mathcal{L}_{\substack{\mu \to e\bar{\gamma}\\\mu \to e\bar{e}e}} \Big|_{m\mu} &= \left. \frac{1}{v^2} \Big[C_{DR}(m_{\mu} \overline{e} \sigma^{\alpha\beta} \mu_R) F_{\alpha\beta} + C_{SRR}(\overline{e} P_R \mu) (\overline{e} P_R e) + C_{VLR}(\overline{e} \gamma^{\alpha} \mu_L) (\overline{e} \gamma_{\alpha} e_R) \right] \\ &+ C_{VLL}(\overline{e} \gamma^{\alpha} P_L \mu) (\overline{e} \gamma_{\alpha} P_L e) \Big] + \frac{1}{v^2} \Big[R \leftrightarrow L \Big] \quad , \quad \frac{1}{v^2} = 2\sqrt{2}G_F \end{split}$$

What can be measured in $\mu \to e\gamma$ or $\mu \to e\bar{e}e?$ (review from KunoOkada)

$$\begin{split} \delta \mathcal{L}_{\substack{\mu \to e\bar{\gamma}\\\mu \to e\bar{e}e}} \Big|_{m\mu} &= \left. \frac{1}{v^2} \Big[C_{DR}(m_{\mu} \overline{e} \sigma^{\alpha\beta} \mu_R) F_{\alpha\beta} + C_{SRR}(\overline{e} P_R \mu) (\overline{e} P_R e) + C_{VLR}(\overline{e} \gamma^{\alpha} \mu_L) (\overline{e} \gamma_{\alpha} e_R) \right] \\ &+ C_{VLL}(\overline{e} \gamma^{\alpha} P_L \mu) (\overline{e} \gamma_{\alpha} P_L e) \Big] + \frac{1}{v^2} \Big[R \leftrightarrow L \Big] \quad , \quad \frac{1}{v^2} = 2\sqrt{2}G_F \end{split}$$

 $\mu
ightarrow e \gamma$ with μ -polarisation fraction P_{μ} , $heta_e$ = angle between μ -spin and $ec{p_e}$

$$\frac{dBR(\mu \to e\gamma)}{d\cos\theta_e} = 192\pi^2 \Big[|C_{DR}|^2 (1 - P_\mu \cos\theta_e) + |C_{DL}|^2 (1 + P_\mu \cos\theta_e) \Big]$$
KunoOkada

What can be measured in $\mu
ightarrow e \gamma$ or $\mu
ightarrow e ar e e$? (review from KunoOkada)

$$\begin{split} \delta \mathcal{L}_{\substack{\mu \to e\bar{e}\gamma\\\mu \to e\bar{e}e}} \Big|_{m\mu} &= \left. \frac{1}{v^2} \Big[C_{DR}(m_\mu \overline{e} \sigma^{\alpha\beta} \mu_R) F_{\alpha\beta} + C_{SRR}(\overline{e} P_R \mu) (\overline{e} P_R e) + C_{VLR}(\overline{e} \gamma^{\alpha} \mu_L) (\overline{e} \gamma_{\alpha} e_R) \right] \\ &+ C_{VLL}(\overline{e} \gamma^{\alpha} P_L \mu) (\overline{e} \gamma_{\alpha} P_L e) \Big] + \frac{1}{v^2} \Big[R \leftrightarrow L \Big] \quad , \quad \frac{1}{v^2} = 2\sqrt{2}G_F \end{split}$$

 $\mu
ightarrow e \gamma$ with μ -polarisation fraction P_{μ} , $heta_e$ = angle between μ -spin and $ec{p_e}$

$$\frac{dBR(\mu \to e\gamma)}{d\cos\theta_e} = 192\pi^2 \Big[|C_{DR}|^2 (1 - P_\mu \cos\theta_e) + |C_{DL}|^2 (1 + P_\mu \cos\theta_e) \Big]_{\text{KunoOkada}}$$

$$\mu \to e\overline{e}e: \quad (e \text{ relativistic} \Rightarrow \text{ negligeable interference between } e_L, e_R) \\ BR = \frac{|C_{S,LL}|}{8} + 2|C_{V,RR} + 4eC_{D,L}|^2 + (64\ln\frac{m_\mu}{m_e} - 136)|eC_{D,L}|^2 + |C_{V,RL} + 4eC_{D,L}|^2 + \{L \leftrightarrow R\}$$

$$\mu \text{ pol} + e \text{ angular distributions} \Rightarrow \text{ measure } 4l \text{ coefficients} + \text{ some phases}$$

 μ pol. + e angular distributions \Rightarrow measure 4l coefficients + some phases (but S indistinguishable from V)

 \Rightarrow measure magnitude of $\{C_{DR}, C_{VLL}, C_{VLR}, C_{SRR}, +[L \leftrightarrow R]\}$

If observe $\mu A \rightarrow eA$ — what can be measured?

target (Z=13,A=27, J=5/2)

KunoNagamineYamazaki

• μ^- captured by nucleus, falls to 1s. $(r_\mu \lesssim r_A$, can obtain some μ polarisation)

• in SM: muon "capture" $\mu + p \rightarrow \nu + n$, or decay-in-orbit

If observe $\mu A \rightarrow eA$ — what can be measured?

target (Z=13,A=27, J=5/2)

KunoNagamineYamazaki

• μ^- captured by nucleus, falls to 1s. ($r_\mu \lesssim r_A$, can obtain some μ polarisation)

• $\mu \leftrightarrow e$ via dipole (with \vec{E}) or $\widetilde{C}^{N}_{\Gamma,X}(\bar{e}\Gamma P_X \mu)(\bar{N}\Gamma N)$ or interacting with pion(s)...

 \star much work to include SpinDep, better nucleon distributions, more isotopes, NLO $\chi {\rm PT},$...

If observe $\mu A \rightarrow eA$ — what can be measured?

target (Z=13,A=27, J=5/2)

- μ^- captured by nucleus, falls to 1s. ($r_\mu \lesssim r_A$, can obtain some μ polarisation)
- $\mu \leftrightarrow e$ via dipole (with \vec{E}) or $\widetilde{C}^{N}_{\Gamma,X}(\bar{e}\Gamma P_X \mu)(\bar{N}\Gamma N)$ or interacting with pion(s)...

$$\mu \rightarrow D$$

$$\mu \rightarrow$$

... probe different combo of coefficients by changing target A $_{\rm KitanoKoikeOkada\ 2002}$

• count that $(\mu A \rightarrow eA)_{SI}$ (now) constrains coefficient on p+n and p-n for $\{e_L, e_R\}$: $\{C_{Al,L}, C_{Al,R}, C_{Au\perp,L}, C_{Au\perp,R}\})$ DKunoYamanada

 \star much work to include SpinDep, better nucleon distributions, more isotopes, NLO $\chi {\rm PT},$...

operators + **RGEs**: everything to which data could be sensitive

operator basis: below m_W , all gauge invariant operators with $\leq 4 \text{ legs} \approx 100 \text{ ops.}$ add to \mathcal{L}_{SM} as $\delta \mathcal{L} = 2\sqrt{2}G_F C_{V,LL}^{e\mu ee}(\overline{e}\gamma\mu)(\overline{e}\gamma e) + \dots$

> (not dim6: bottom-up perspective/ operator dim. not preserved in matching) above m_W : dim 6 + selected dim 8 (guess by powercounting) ArduDavidson

ex: $(\bar{e}\mu)G_{\alpha\beta}G^{\alpha\beta}$ is dim7 < m_W , dim8 in SMEFT. But • dim6 heavy quark scalar ops $(\bar{e}\mu)(\bar{Q}Q)$ match to $(\bar{e}\mu)GG$ at m_Q (coef. $C_{QQ}/(m_Q\Lambda_{NP}^2)$):

• gluons contribute most of the mass of the nucleon ShifmanVainshteinZahkarov $\langle N|m_N\overline{N}N|N\rangle = \sum_{q\in\{u,d,s\}}\langle N|m_q\overline{q}q|N\rangle - \frac{\alpha_s}{8\pi}\beta_0\langle N|GG|N\rangle$ $\Rightarrow \dim 7 \ (\bar{e}\mu)GG$ contributes significantly to $\mu A \rightarrow eA$ via scalar $\mu \rightarrow e$ interactions with nucleons N. CiriglianoKitanoOkadaTuscon

operators + **RGEs**: everything to which data could be sensitive

operator basis: below m_W , all gauge invariant operators with $\leq 4 \text{ legs} \approx 100 \text{ ops.}$ add to \mathcal{L}_{SM} as $\delta \mathcal{L} = 2\sqrt{2}G_F C_{V,LL}^{e\mu ee}(\overline{e}\gamma\mu)(\overline{e}\gamma e) + \dots$

> (not dim6: bottom-up perspective/ operator dim. not preserved in matching) above m_W : dim 6 + selected dim 8 (guess by powercounting) ArduDavidson

RGEs+matching: at "leading order" \equiv largest contribution of each operator to each observable. (2GeV $\rightarrow m_W$:resum LL QCD, $\alpha_e \log$, some $\alpha_e^2 \log^2$, $\alpha_e^2 \log$)

why not just 1-loop RGEs?

- expand in loops, hierarchical Yukawas, $1/\Lambda^2_{NP}$,... largest effect maybe not 1-loop (ex: Barr-Zee)
- sometimes 1-loop vanishes...eg: 2-loop $\Delta a_{\mu}|_{EW} \simeq 1$ -loop $\Delta a_{\mu}|_{EW}$. Because 2-loop log-enhanced
 - = mixing vector ops to dipole in 2-loop RGEs.

if see $\mu \to e\gamma$, $\mu \to e\bar{e}e$, or $\mu A \to eA$...?can distinguish models?

...model predictions studied for decades...

EFT recipe to study this: (not scan model space—no measure)

- current bounds give a "12-d" ellipse/box in coefficient-space (in an ideal theorist's world)
- \bullet with RGEs, can take ellipse to Λ_{NP}

• are there parts of ellipse that a model *cannot* fill? If yes, model can be distinguished/ruled out by future $\mu \leftrightarrow e$ data.

Apply recipe to some TeV-scale models: (we thought all models would fill ellipse

and would need colliders to distinguish...)

1) type II seesaw 2) inverse seesaw 3)(singlet LQ for R_D^*)

Type II seesaw — add SU(2) triplet scalar \vec{T}

$$\mathcal{L} \supset \left([Y]_{\alpha\beta} \,\overline{\ell_{\alpha}^{c}} \varepsilon \vec{\tau} \cdot \vec{T} \ell_{\beta} + M_{T} \lambda_{H} \ H \varepsilon \vec{\tau} \cdot \vec{T^{*}} H + \text{h.c.} \right) + \dots$$

get $[m_{\nu}]$ in matching, at tree (NB two mass scales):

$$\begin{array}{c}
\nu \\
\nu \\
\overline{T} \\
\mu \\
H
\end{array} \qquad [m_{\nu}]_{\alpha\beta} \sim \frac{[Y]_{\alpha\beta} \lambda_H M_T v^2}{M_T^2} \sim 0.03 \text{ eV} \times [Y]_{\alpha\beta} \frac{\lambda_H}{10^{-12}} \frac{\text{TeV}}{M_T}
\end{array}$$

Type II seesaw — add SU(2) triplet scalar \vec{T}

$$\mathcal{L} \supset \left([Y]_{\alpha\beta} \overline{\ell_{\alpha}^{c}} \varepsilon \vec{\tau} \cdot \vec{T} \ell_{\beta} + M_{T} \lambda_{H} \quad H \varepsilon \vec{\tau} \cdot \vec{T^{*}} H + \text{h.c.} \right) + \dots$$

$$\text{get } [m_{\nu}] \text{ at tree (NB: 2 mass scales, so unclear notion of } \Lambda_{NP}):$$

$$\overset{\nu}{\nu} \qquad \overbrace{T}^{\prime} \qquad \overbrace{H}^{\prime} \qquad [m_{\nu}]_{\alpha\beta} \sim \frac{[Y]_{\alpha\beta} \lambda_{H} M_{T} v^{2}}{M_{T}^{2}} \sim 0.03 \text{ eV} \times [Y]_{\alpha\beta} \frac{\lambda_{H}}{10^{-12}} \frac{\text{TeV}}{M_{T}}$$

$$\text{expect } \mu \rightarrow e \vec{e} e \text{ at tree (can vanish via unknown Majorana phases } \phi_{i}):$$

$$\mu \rightarrow e \vec{e} e \qquad \overbrace{T}^{\prime} \qquad e \qquad C_{e}^{e \mu e e} \sim \frac{[Y]_{\mu e} [Y^{*}]_{e e} v^{2}}{M_{T}^{2}}$$

$$\text{and } \mu \rightarrow e \gamma, \mu A \rightarrow e A \text{ at loop} \qquad C_{Al,L}^{e \mu q q} \sim \text{known from } m_{\nu} + \text{phase dep}$$

$$\mu \rightarrow e \gamma \qquad \overbrace{T}^{\prime} \qquad e \qquad \underbrace{F}_{e} \qquad C_{D,L} \sim \frac{y_{\mu} [YY^{\dagger}]_{\mu e} v^{2}}{128\pi^{2}M_{T}^{2}} + tiny \ f(\sum m_{\nu_{i}}, \phi_{i})$$

• 7 $C{
m s} \propto y_e$ (LFV-involving-singlet-leptons)

(predicted by all m_{ν} models where NP interacts with doublets); test by polarising μ .

• 3 Cs arise via penquin so are \propto each other

• Remain three "unpredicted": $C_{VLL}(\mu \to e\bar{e}e), C_{Al,L}(\mu A \to eA), C_{DR}(\mu \to e\gamma)$

(depend on m_{ν} scale and Majorana phases),

but if one vanishes there are correlations among other two = combos of $\mathsf{BR}(\mu \to e\gamma)$, $BR(\mu A \rightarrow eA)$, $BR(\mu \rightarrow e\overline{e}e)$ that model cannot reproduce.

*? did not find vanishing dipole in literature? (2-loop EW (g-2) not included for $\mu \rightarrow e\gamma...$)

Kuno Okada

 $\begin{array}{c} \textbf{Type II seesaw: predictions} \\ \text{recall 12 (complex) operator coefficients} \\ \begin{cases} C_{DR}, \ C_{VLL}^{e\mu ee}, \ C_{VLR}^{e\mu ee}, \ C_{SRR}^{e\mu ee}, \ C_{AlightL}, \ C_{AheavyR} \\ C_{DL}, \ C_{VRL}^{e\mu ee}, \ C_{VRR}^{e\mu ee}, \ C_{SLL}^{e\mu ee}, \ C_{AlightL}, \ C_{AheavyR} \end{cases} \end{array}$

"Inverse" Seesaw @ TeV

Typel seesaw model with extra singlets: add n gen. of singlet Dirac fermions $\psi_D^T = (S_L, N_R)$, and tiny Majorana $[\mu]$

$$\delta \mathcal{L} = i\overline{N}\partial N + i\overline{S}\partial S - \left(Y_{\nu}^{\alpha a}(\overline{\ell}_{\alpha}\tilde{H}N_{a}) + M_{ab}\overline{S}_{a}N_{b} + \frac{1}{2}\mu_{ab}\overline{S}_{a}S_{b}^{c} + \text{h.c}\right),$$

* gives $m_{\nu} \sim Y_{\nu} v M^{-1} \mu [M^T]^{-1} Y_{\nu}^T v$, = can obtain m_{ν} by ajusting $\mu(Y_{\nu}) \Leftrightarrow Y_{\nu}$ indep of m_{ν} , "can be large", generically LFV * we take $M \sim \text{TeV}$

obtain observable LFV-coeffs via EW loops, (no QED-RG effects cut off by charged-lepton masses)

★ despite no info about Y_{ν} , M from m_{ν} , single-scale model is more predictive ★ than type II seesaw because all $\mu \leftrightarrow e \ \mathsf{LFV} \propto [Y_{\nu}Y_{\nu}^{\dagger}]_{e\mu}, [Y_{\nu}Y_{\nu}^{\dagger}Y_{\nu}Y_{\nu}^{\dagger}]_{e\mu}$ \Rightarrow occupies plane in ellipse (for real Cs)