SMEFiT 3.0 and beyond: Future colliders, UV models, and RGE effects

SMEFT-Tools 2025

Mainz, Germany 27 January 2024

Alejo N. Rossia

On behalf of the SMEFiT Collaboration

Dipartimento di Fisica e Astronomia, Università degli Studi di Padova Instituto Nazionale di Fisica Nucleare INFN Sezione di Padova

Based on:

[2309.04523] JHEP 01 (2024) 179 (w/ J. ter Hoeve, G. Magni, J. Rojo, and E. Vryonidou)

[2404.12809] JHEP 09 (2024) 091 (w/ E. Celada, T. Giani, J. ter Hoeve, L. Mantani, J. Rojo, M. Thomas and E. Vryonidou)

[2502.xxyyzz] Connecting Scales: RGE Effects in the SMEFT from LHC to Future Colliders (w/ J. ter Hoeve, L. Mantani, J. Rojo, and E. Vryonidou) [2503.xxyyzz] From Coupling Modifiers and the SMEFT to UV-Physics at Future Colliders (w/ T. Armadillo, E. Celada, J. ter Hoeve, F. Maltoni, L. Mantani, J. Rojo, S. Tentori, M. Thomas, and E. Vryonidou)

Università degli Studi di Padova

The Standard Model EFT (SMEFT)

SMEFiT 3.0 and beyond | Alejo N. Rossia, 27 January 2025

di Padova

Why Global fits of SMEFT

Correlations, correlations everywhere...

An overview of SMEFiT

SMEFIT In a nutshell

v. 2.0: [2302.06660] v. 3.0: [2404.12809]

A Python software for global interpretation of particle physics data in SMEFT

Operator basis

• Warsaw basis with rotations.

• Flavour sym.: $U(2)_q \times U(3)_d \times U(2)_u \times (U(1)_l \times U(1)_e)^3 + y_{b,c,\tau}^{SM} + c_{\varphi(b,c,\tau)}$

Operator	Coefficien	t Definition	Operator	Coefficien	t Definition			
3rd generation quarks								
${\cal O}^{(1)}_{_{arphi Q}}$	$c^{(1)}_{arphi Q}$ (*)	$i (\varphi^\dagger \overleftrightarrow{D}_\mu \varphi) (\bar{Q} \gamma^\mu Q)$	\mathcal{O}_{tW}	c_{tW}	$i \left(\bar{Q} au^{\mu u} au_{I} t ight) ilde{arphi} W^{I}_{\mu u} + ext{h.c.}$			
${\cal O}^{(3)}_{arphi Q}$	$c^{(3)}_{\varphi Q}$	$iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu au_{\scriptscriptstyle I} arphiig)ig(ar{Q}\gamma^\mu au^{\scriptscriptstyle I}Qig)$	\mathcal{O}_{tB}	c_{tB} (*)	$i(\bar{Q}\tau^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}$ + h.c.			
${\cal O}_{arphi t}$	$c_{arphi t}$	$i ig(arphi^\dagger \overset{\leftrightarrow}{D}_\mu arphi ig) ig(ar{t} \gamma^\mu t ig)$	\mathcal{O}_{tG}	c_{tG}	$ig_{\scriptscriptstyle S}\left(ar{Q} au^{\mu u}T_{\scriptscriptstyle A}t ight) ilde{arphi}G^A_{\mu u}\!+\! ext{h.c}$			
${\cal O}_{tarphi}$	c_{tarphi}	$\left(\varphi^{\dagger} \varphi \right) ar{Q} t \tilde{\varphi} + {\rm h.c.}$	\mathcal{O}_{barphi}	c_{barphi}	$\left(arphi^{\dagger} arphi ight) ar{Q} b arphi + { m h.c.}$			
		1st, 2nd gene	eration quar	ks				
$\mathcal{O}^{(1)}_{_{arphi q}q}$	$c^{(1)}_{arphi q}$ (*)	$\sum_{i=1,2} i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\bar{q}_i \gamma^{\mu} q_i \right)$	$\mathcal{O}_{arphi d}$	$c_{arphi d}$	$\sum_{i=1,2,3} i (\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi) (\bar{d}_i \gamma^{\mu} d_i)$			
${\cal O}^{(3)}_{_{arphi q}}$	$c^{(3)}_{arphi q}$	$\sum\limits_{i=1,2}^{\infty} iig(arphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} au_{{\scriptscriptstyle I}} arphiig) ig(ar{q}_{i} \gamma^{\mu} au^{{\scriptscriptstyle I}} q_{i}ig)$	$\mathcal{O}_{c \varphi}$	$c_{c arphi}$	$\left(arphi^{\dagger} arphi ight) ar{q}_2 c ilde{arphi} + { m h.c.}$			
$\mathcal{O}_{arphi u}$	$c_{arphi u}$	$\sum\limits_{i=1,2} iig(arphi^\dagger \overset{\leftrightarrow}{D}_\mu arphi ig) ig(ar{u}_i \gamma^\mu u_i ig)$						
		two-le	eptons					
$\mathcal{O}_{_{\varphi\ell_i}}$	$c_{arphi \ell_i}$	$iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphiig)ig(ar{\ell}_i\gamma^\mu\ell_iig)$	$\mathcal{O}_{arphi\mu}$	$c_{arphi\mu}$	$i (\varphi^\dagger \overleftrightarrow{D}_\mu \varphi) (\bar{\mu} \gamma^\mu \mu)$			
${\cal O}^{(3)}_{_{arphi\ell_i}}$	$c^{(3)}_{arphi\ell_i}$	$iig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu au_{\scriptscriptstyle I} arphiig)ig(ar{\ell}_i\gamma^\mu au^{\scriptscriptstyle I}\ell_iig)$	$\mathcal{O}_{arphi au}$	$c_{arphi au}$	$i \bigl(\varphi^\dagger \overleftrightarrow{D}_\mu \varphi \bigr) \bigl(ar{ au} \gamma^\mu au \bigr)$			
$\mathcal{O}_{arphi e}$	$c_{arphi e}$	$i ig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphi ig) ig(ar e \gamma^\mu e ig)$	$\mathcal{O}_{ auarphi}$	$c_{ auarphi}$	$\left(arphi^{\dagger} arphi ight) ar{\ell_3} au arphi + { m h.c.}$			
		four-l	eptons					
$\mathcal{O}_{\ell\ell}$	Cff	$(\bar{\ell}_1 \gamma_\mu \ell_2) (\bar{\ell}_2 \gamma^\mu \ell_1)$						

Operator	Coefficient	Definition	Operator	Coefficient	Definition
$\mathcal{O}_{\varphi G}$	$c_{\varphi G}$	$\left(arphi^{\dagger} arphi ight) G^{\mu u}_{\scriptscriptstyle A} G^{\scriptscriptstyle A}_{\mu u}$	$\mathcal{O}_{\varphi\Box}$	$c_{arphi\square}$	$\partial_\mu (arphi^\dagger arphi) \partial^\mu (arphi^\dagger arphi)$
$\mathcal{O}_{arphi B}$	$c_{arphi B}$	$\left(\varphi^{\dagger} \varphi \right) B^{\mu \nu} B_{\mu \nu}$	$\mathcal{O}_{arphi D}$	$c_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$
$\mathcal{O}_{arphi W}$	$c_{arphi W}$	$\left(arphi^{\dagger} arphi ight) W^{\mu u}_{\scriptscriptstyle I} W^{I}_{\mu u}$	\mathcal{O}_W	c_{WWW}	$\epsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$
$\mathcal{O}_{arphi WB}$	$c_{\varphi WB}$	$(\varphi^{\dagger} au_{\scriptscriptstyle I} \varphi) B^{\mu u} W^{\scriptscriptstyle I}_{\mu u}$			
V	$\sim V$	V	t h		
V		V	\overline{t}	\overline{t}	\bar{f} \bar{t}
DoF	Definition (in Wa	arsaw basis notation)	DoF	Definition (in Wa	arsaw basis notation)
c_{QQ}^1	$2c_{qq}^{1(3333)} - rac{2}{3}c_{qq}^{3(333)}$	33)	c^8_{QQ}	$8c_{qq}^{3(3333)}$	
c_{Qt}^1	$c_{qu}^{1(3333)}$		c_{Qt}^8	$c_{qu}^{8(3333)}$	
$c_{Qq}^{1,8}$	$c_{qq}^{1(i33i)} + 3c_{qq}^{3(i33i)}$		$c_{Qq}^{1,1}$	$c_{qq}^{1(ii33)} + \frac{1}{6}c_{qq}^{1(i33i)}$	$+ \frac{1}{2} c_{qq}^{3(i33i)}$

Fit of 45 (50) WCs at the linear (quadratic) level

 $c_{Qq}^{3,1}$

 c_{tq}^1

 c_{Qu}^1

 c_{td}^1

 c_{Qd}^1

 $c_{qq}^{3(ii33)} + \frac{1}{6}(c_{qq}^{1(i33i)} - c_{qq}^{3(i33i)})$

 $c_{qu}^{1(ii33)}$

 $c_{qu}^{1(33ii)}$

 $c_{ud}^{1(33jj)}$

 $c_{qd}^{1(33jj)}$

 $c_{uu}^{(ii33)} + \frac{1}{3}c_{uu}^{(i33i)}$

 $c_{qq}^{1(i33i)} - c_{qq}^{3(i33i)}$

 $c_{qu}^{8(ii33)}$

 $2c_{uu}^{(i33i)}$

 $c_{qu}^{8(33ii)}$

 $c_{ud}^{8(33jj)}$

 $c_{qd}^{8(33jj)}$

The likelihood

Gaussian approximation

Slide concept from L. Mantani

Open-source code

Fitting code and database in 2 Github repositories

•

竣

MEFIT

ective Field Theory

plica method

fit covariance

mat

Produce a report

Link to reports

github.com/LHCfitNikhef/smefit_release

smefit_re	lease Public		🖈 Edit Pins 👻 🤄	Watch 3 - V For	k 1 マ ☆ Star 6 マ
양 main ▾	💱 20 Branches 🛇 4 Tags	Q Go to file	t Add file 👻 <> C	ode 👻 About	:
jacoterh M	erge pull request #115 from LHCfitNikhe	f/ordering_coeff_plots 🚥 🗸	4de7005 · 2 days ago 🛛 893 Co	ommits SMEFiT a St Theory fitte	andard Model Effective Field r
.github		reformatting all existing code	2 mont	ths ago 🛛 🛱 Readme	
		SME	=iT		
					🖨 SM
		C tests passing C codecov 429	codefactor A		Search docs
	SMEFIT is a python program f	or Standard Model Effective Field The	eory fits		THEORY:
	Installation				Standard Model Effect
	T 1 4 11 12 14				Fitting assumptions
	lo install smefit you can do:				Nested Sampling
	pip install smefit			C	Analytic solution
					The Monte Carlo repl
	Installation from so	urce using conda			DATA AND THEORY T
	You can install smefit from so	urce using a conda environnement. T	o install it vou need a conda installa	tion and run:	Experimental data for
		3	,		Theory tables
	./install.sh -n <env_name=< td=""><td>'smefit_installation'></td><td></td><td>C.</td><td>Construction of the f</td></env_name=<>	'smefit_installation'>		C.	Construction of the f
	The installed package will be	available in an environnement called	<pre>smefit_installation , to activate it</pre>	you can do:	Basis rotation
	conda activate <env_name='< td=""><td><pre>smefit_installation'></pre></td><td></td><td>C</td><td>Projections</td></env_name='<>	<pre>smefit_installation'></pre>		C	Projections
	smetit -n				FITTING CODE:
	Rupping				Code structure
					How to run the code
	The fitting code provide two e	equivalent fitting strategies. To run th	e code with Nested Sampling you c	an do:	SMEFIT Tutorial
	smefit N5 <path_to_runcard< td=""><td>Þ</td><td></td><td>Q</td><td>REPORTS:</td></path_to_runcard<>	Þ		Q	REPORTS:
					D

() github.com/LHCfitNikhef/smefit_database

🔀 smefit_database 💷	🔅 Edit Pins 🕶 💿 Watch 3	
🐉 main 👻 🐉 8 Branches 🟷 0 Tags	Q Go to file	t) Add file 👻 <> Code 👻
LucaMantani Merge pull request #35	from LHCfitNikhef/move-opt-L0 🚥 🗸	89a4bb4 - last month 🕚 185 Commits
aithub	Merce branch 'main' into NLO-FW-7H	last month
		View page source

Documentation and results repo

Project description

Ihcfitnikhef.github.io/smefit release/

SMEFiT is a Python package for global analyses of particle physics data in the framework of the Standard Model Effective Field Theory (SMEFT). The SMEFT represents a powerful model-independent framework to constrain, identify, and parametrize potential deviations with respect to the predictions of the Standard Model (SM). A particularly attractive feature of the SMEFT is its capability to systematically correlate deviations from the SM between different processes. The full exploitation of the SMEFT potential for indirect New Physics searches from precision measurements requires combining the information provided by the broadest possible dataset, namely carrying out extensive global analysis which is the main purpose of SMEFiT.

The SMEFiT framework has been used in the following scientific publications:

- A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector, N. P. Hartland, F. Maltoni, E. R. Nocera, J. Rojo, E. Slade, E. Vryonidou, C. Zhang [HMN+19].
- Constraining the SMEFT with Bayesian reweighting, S. van Beek, E. R. Nocera, J. Rojo, and E. Slade [vBNRS19].
- SMEFT analysis of vector boson scattering and diboson data from the LHC Run II , J. Ethier, R. Gomez-Ambrosio, G. Magni, J. Rojo [EGAMR21].
- · Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC, J. Ethier, G.Magni, F. Maltoni, L. Mantani, E. R. Nocera, J. Rojo, E. Slade, E. Vryonidou, C. Zhang [EMM+21].
- The automation of SMEFT-assisted constraints on UV-complete models, J. ter Hoeve, G. Magni, J. Rojo, A. N. Rossia, E. Vryonidou [tHMR+23].
- Mapping the SMEFT at High-Energy Colliders: from LEP and the (HL-)LHC to the FCC-ee, E.Celada, T. Giani, J. ter Hoeve, L. Mantani, J. Rojo, A. N. Rossia, M. O. A. Thomas, E. Vryonidou [CGtH+24].

Results from these publications, including driver and analysis scripts, are available in the Previous studies section

User-friendly input format

Slide concept from L. Mantani

User-friendly interface

Università degli Studi di Padova

Automated analysis tools

Recent updates (2023-now)

Projections module to get HL-LHC projections + FCC-ee/CEPC predictions.

SMEFiT + UV: Match2fit

[2309.04523]

• Full LEP dataset + Most recent LHC Run 2 data.

SMEFiT 3.0

[2404.12809]

- External likelihoods interface:
 - Beyond Gaussian approximation.
 - Easy interface with other tools.
- RGE running: interface to Wilson with Matrix Evolution Approximation.
 [1804.05033]
- Double Higgs (HL-)LHC measurements/projections + $e^+e^- \rightarrow Zh$ @NLO EW.
 - One more operator to fit: $\mathcal{O}_{\varphi} = |\varphi|^6$.
- JAX-enhanced: fast matrix calculations and GPU acceleration.

SMEFIT + RGE

[2502.xxyyy]

SMEFiT 3.0: more data, present and future

Celada, Giani, ter Hoeve, Mantani, Rojo, ANR, Thomas, Vryonidou [2404.12809] [JHEP 09 (2024) 091]

Extended dataset

Catogory	Processes	n _c	lat	
Category	I TOCESSES	SMEFIT2.0	SMEFIT3.0)
	$t\bar{t} + X$	94	115	+21
	$t\bar{t}Z, t\bar{t}W$	14	21	+7
	$t\bar{t}\gamma$		2	+2
Top quark production	single top (inclusive)	27	28	+1
	tZ, tW	9	13	+4
	$t\bar{t}t\bar{t},\ t\bar{t}b\bar{b}$	6	12	+6
	Total	150	191	<u>+41</u>
	Run I signal strengths	22	22	
Higgs production	Run II signal strengths	40	36~(*)	
and decay	Run II, differential distributions & STXS	35	71	+36
	Total	97	129	<u>+32</u>
	LEP-2	40	40	
Diboson production	LHC	30	41	+11
	Total	70	81	+11
EWPOs	LEP-2		44	+44
Baseline dataset	Total	317	445	
)

<u>+128</u>

Impact of new LHC Run 2 data

SMEFIT 3.0 results

Pulls and correlations

An eye on the future

How to forecast

Snowmass + FCC midterm Feas. Rep.

• Take SMEFiT 3.0 LHC datasets with

highest int. luminosity

Improvements at HL-LHC and FCC-ee

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}\left(\Lambda^{-4}\right)$, Marginalised

| SMEFiT 3.0 and beyond | Alejo N. Rossia, 27 January 2025

SMEFiT + UV: connecting to Matchmakereft via Match2fit

Ter Hoeve, Magni, Rojo, ANR, Vryonidou [2309.04523] [JHEP 01 (2024) 179]

UV perspective

- Stronger correlations
- Model dependent
- Sharper interpretation

$$\sigma(\mathbf{c}) \longrightarrow \sigma(\mathbf{g}_{\mathrm{UV}})$$

Automation across scales

Reusing EFT global fits for the UV

match2fit

- A Wolfram Mathematica[™] package, fully documented.
- Reads results from Matchmakereft and produces run cards that can be fed into smefit to perform a fit.
- Uses the same WC basis than SMEFiT.

 $\mathrm{U}(2)_q \times \mathrm{U}(3)_d \times \mathrm{U}(2)_u \times (\mathrm{U}(1)_\ell \times \mathrm{U}(1)_e)^3 + c_{b\varphi}, c_{\tau\varphi}, c_{c\varphi}$

- It can impose UV flavor assumptions and evaluates the masses.
- It can run Matchmakereft to do all at once.

It supports 1-loop matching results.

- Improved v2.0 to be released soon: better handling of multi-particle models, better interface to SMEFiT, mass scans...
- Many ideas for v3.0: interface to SOLD, Matchete, WCxf, additional WC bases, ability to run SMEFiT...

UERS/

di Padova

Match2fit v2.0 preview

		Model name: Varphi
<< match2fit`		UV Collection: 1LoopMatching
match2fit: an interface between matching and fitting codes.		UV model: Varphi
materizite, an interface between matering and fitting codes.		coefficients:
Version: 2.0		Opd:
$v_{z}/2025$		constrain:
		- lamvarpn1:
Author: Alejo N. Kossia		1.15/05/20085195/0-/
Affiliations: The University of Manchester		- lamvarphi
<pre>matcbResToUVscanCard[NotebookDirectory[] <> "/sample_results/MatchingResult_Varphi_oneloop.dat",</pre>		0 00014841970260108073
8, 1,		- 2
<pre>vvFlavourAssumption" -></pre>	# UV dictionary with WCs in terms of UV variables	
<pre>Join[realDiagSMYukas, {yVarphiD[i_, j_] :> 0, yVarphiE[i_, j_] :> 0,</pre>	# NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	min: -100
<pre>yVarphiU[i_, j_] :> KroneckerDelta[i, 3] * KroneckerDelta[j_3] * yVarphiuf33. lamvarphi -> lamvarphi}],</pre>	UV Collection : 1LoopMatching	OpD:
"Collection" -> "1LoopMatching", "Model" -> "Varphi", "OutputFormat" -> "SMEFiT")	UV model : Varphi	constrain:
<pre>matchResToUVscanCard[NotebookDirectory[] <> "/sample_results/MatchingResult_Varphi_oneloop.dat",</pre>	Model name : Varphi	- lamvarphi:
8,0,	# NNNNNNNNNNNNNNNNNNNN	1.3552404694322209e-8
"UVFlavourAssumption" ->	UV couplings : [lamvarphi, yVarphiuf33]	- 0
<pre>Join[realDiagSMYukas, {yVarphiD[i_, j_] :> 0, yVarphiE[i_, j_] :> 0,</pre>	UV masses : [Mvarphi]	max: 100
<pre>yVarphiU[i_, j_] :> KroneckerDelta[i, 3] * KroneckerDelta[j, 3] * yVarphiuf33, lamvarphi -> lamvarphi}],</pre>	# NNNNNNNNNNNNNNNNNNN	min: -100
"Collection" -> "1LoopMatching", "Model" -> "Varphi"}]	# Loop level of the results : Tree	OWWW :
<pre>modelToUVscanCard[NotebookDirectory[] <> "sample_model/", "T1" 1; "loop")</pre>	# NNNNNNNNNNNNNNNNNNN	constrain:
<pre>E F T {"UVFlavourAssumption" → {lambdaT1[a_] :> lambdaT1[3]}, "Collection -> "1Loop"}]</pre>	# Setting of the UV mass in TeV:	- lamvarphi:
The matching results are available in:	m : 8 # TeV	- 7.649753615115059e-8
/home/alejo/Documents/match2fit-11oop_update/sample_model/T1_MM/MatchingResult.dat	# NNNNNNNNNNNNNNNNNNNN	- 0
	# Expressions for all the WCs in SMEFiT basis	max: 100
(Mass value [Te\/])	cpG : [{lamvarphi: [0.,0],yVarphiuf33: [1,0]}]	min: -100
	cpB : [{lamvarphi: [0.,0],yVarphiuf33: [1,0]}]	constrain:
	cpW : [{lamvarphi: [0.,0],yVarphiuf33: [1,0]}]	- lamvarphi:
(Matching Loon level)	cpWB : [{lamvarphi: [0.,0],yVarphiuf33: [1,0]}]	- 7,265968249068972e-8
Watering Loop level	cpd : [{lamvarphi: [0.,0],yVarphiuf33: [1,0]}]	- 0
	cpD : [{lamvarphi: [0.,0],yVarphiuf33: [1,0]}]	max: 100
(Output format)	cWWW : [{lamvarphi: [0.,0],yVarphiuf33: [1,0]}]	min: -100
Output format	cpqMi : [{lamvarphi: [0.,0],yVarphiuf33: [1,0]}]	
	cpQM : [{lamvarphi: [0.,0],yVarphiuf33: [1,0]}]	
DECLI STUDI		•)

One-part. models at tree level

Dataset: SMEFiT 2.0 + EWPOs

One-loop matching makes a difference

Projections for the future: 1-part. models

95% CL reach in mass for unit UV couplings

Projections for the future: UV couplings

Connecting Scales: RGE effects in the SMEFiT Global Fit from LHC to FCC-ee

Ter Hoeve, Mantani, Rojo, ANR, Vryonidou [2502.xxyyy]

How we solve the RG Equations

$$\frac{dc_i(\mu)}{d\ln\mu} = \sum_{j=1}^{n_{\rm op}} \gamma_{ij}^{(6)}(\bar{g}) c_j(\mu)$$

$$\xrightarrow{\bar{g}} = \bar{g}$$

$$\frac{d\bar{g}_i(\mu)}{d\ln\mu} = \sum_{j=1}^{n_{\rm op}} \gamma_{ij}^{(4)}(\bar{g}, \mathbf{X} \bar{g}_j(\mu))$$

Matrix Evolution Approximation: decouples and linearizes the equations.

$$c_{i}(\mu) = \sum_{j=1}^{n_{\text{op}}} \Gamma_{ij}(\mu, \mu_{0}; \bar{g}) c_{j}(\mu_{0}), \qquad i = 1, \dots, n_{\text{op}}$$
$$\Gamma_{ij}(\mu, \mu_{0}; \bar{g}) = \exp\left(\int_{\mu_{0}}^{\mu} d\log(\mu') \gamma_{ij}^{(6)}(\bar{g}(\mu'))\right)$$

RGE implementation in the code

SMEFiT is interfaced to and includes wilson

1 rge: 2 init_scale: 5000.0 # The reference scale \$\mu_0\$ for the Wilson coefficients 3 obs_scale: dynamic # "float" or "dynamic" 4 scale_variation: 0.5 # Apply a scale factor to the dynamic observable scale 5 smeft_accuracy: integrate # Options: integrate, leadinglog 6 yukawa: top # Options: top, full, or none 7 adm_QCD: False # If true, the EW couplings are set to zero

$$\bar{g} = \{g_s, g, g', y_t, \mu_h^2, \lambda\}$$

Plenty of options on how to run

RGE implies scale choices

Each datapoint is assigned a scale for the dynamic mode

.....

				-				L	Jata	Sca	ies t	or Hi		IC +)-ee								
Process	Scale Choice μ	Process	Scale Choice μ	$\bar{t}t\bar{t}t + \bar{t}t\bar{b}b$ -							9			13								- 1	.00 an	
Higgs (ggF)	$\sqrt{m^2 + (n^H)^2}$	 _t ībī	 9m.	– Higgs –	_	_	92	24 3	8 16	12	14	34	2	6								- 8	30	
IIIggs (ggr)	$\sqrt{m_H} + (p_T)$			_ LEP -	23			6	1													- 7	70	
Higgs (VBF)	$\sqrt{m_H^2 + (p_T^H)^2}$	$t\bar{t}V$	$\sqrt{(2m_t + m_V)^2 + (p_T^V)^2}$					10	1 3		31	17	17	14	23 22	14	9	5 10	9 4	2		- 6	30	
VH	$\sqrt{(m_V + m_H)^2 + (p_T^V)^2}$	tV	$m_t + m_V$ or $\sqrt{(m_t + m_V)^2 + (p_T^t)^2}$	$\bar{t}tV$ -			1					28	6									- 5	50	nts
$t\bar{t}H$	$\sqrt{(2m_t + m_H)^2 + (p_T^H)^2}$	W - helicities	m_t	<i>t</i> -				36	_													- 4	10 s	ta poi
tH	$m_t + m_H$	WZ	m_T^{WZ} or $\sqrt{(m_Z + m_W)^2 + (p_T^Z)^2}$	- tV-					16	2	2											- 3	30 C 7	of Da
$t\bar{t}$	m_{tt}	WW	$m_{e\mu}$	- VV- 4	4 4	4	2	22 2	0 10)	8	2	2		2 2							- 2	²⁰ ≠	#
				_ FCC-ee 91 GeV -	14																	- 1	.0	
Single- t	m_t	V pole (incl. EWPOs)		FCC-ee 161 GeV -	3			13														- 5	j	
$t\bar{t}\gamma$	$2m_t$	Bhabha scattering	\sqrt{s}	FCC-ee 240 GeV –	3		1		33													- 2	2	
$t\bar{t}t\bar{t}$	$4m_t$	$e^+e^- \to WW / t\bar{t} / f\bar{f}$	\sqrt{s}	- FCC-ee 365 GeV -	3						42											- 1	n	
	1	11	1	- 60	80 1	00 12	20 150	180	220	270 3	00 40	0 500	600	700	900 1	100 14	00 170	0 2000 2	2500 3	3100 38	00	- 0	,	
											Sc	ales [Ge\	/										

Effects in the global fit

2FB

Effects in linear the global fit

36

UNI DEGLI STUDI DI PADOVA

| SMEFiT 3.0 and beyond | Alejo N. Rossia, 27 January 2025

37

RGE with UV models at future colliders

Conclusions

- We have the tools for the full cycle of the EFT program for BSM Physics.
- SMEFiT allows to interpret LHC data at the EFT and UV model levels from one set of predictions.
- SMEFiT includes up-to-date LHC Run 2 data and future projections. And it's easy to add datasets!
- Match2fit provides a simple and flexible SMEFiT-MMEFT interface.
- We can account for RGE effects, which are particularly big for UV models and future colliders.
- SMEFiT is becoming more than just a fitting code, it's a hub for SMEFT phenomenology.
- Several exciting developments to come.

Thanks for your attention!

Contact:

Alejo N. Rossia

E-mail: alejonahuel dot rossia at unipd dot it

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

Appendix

Automated SMEFT-Assisted constraints on UV models | Alejo N. Rossia, 27 Sept 24

Restrictions from EFT flavor symmetry for UV fits

- Your model produces an operator that should vanish and does not enter in any fitted process.
 - The bounds from the fit might be suboptimal with respect to bounds from other processes.
- Your model produces an operator that should vanish and enters some processes in the dataset.
 - The bounds from the fit might not be trustworthy and suboptimal.
- The symmetry assumes two WCs to be equal but your model produces them with different values.
 - Match2fit will take only one of those values and ignore the other. Unless the difference is small, the bounds from the fit are not trustworthy.

Additional technicalities for UV fits

SMEFiT supports relations among fit parameters like:

$$\sum_{i} a_i (c_1)^{n_{1,i}} \dots (c_N)^{n_{N,i}} = 0$$

The exponents can be rational numbers of any sign. This imposes restrictions on the supported matching relations.

Probability in UV and WC spaces

The relation between PDFs in WC and UV space can be misleading.

One-part. models at tree level

Good agreement with the Fitmaker results

Dataset: SMEFiT 2.0 + EWPOs

Multi-particle models at tree level

List of models

	Scalars		Fermions	Vectors					
Particle	Irrep	Particle	Irrep	Particle	Irrep				
S	$(1,1)_{0}$	N	$(1,1)_{0}$	${\cal B}$	$(1,1)_{0}$				
\mathcal{S}_1	$(1,1)_{1}$	E	$(1,1)_{-1}$	\mathcal{B}_1	$(1,1)_{1}$				
ϕ	$(1,2)_{1/2}$	Δ_1	$(1,2)_{-1/2}$	\mathcal{W}	$(1,3)_0$				
[1]	$(1,3)_0$	Δ_3	$(1,2)_{-3/2}$	\mathcal{W}_1	$(1,3)_1$				
Ξ_1	$(1,3)_1$	Σ	$(1,3)_0$	${\cal G}$	$(8,1)_0$				
ω_1	$(3,1)_{-1/3}$	Σ_1	$(1,3)_{-1}$	${\cal H}$	$(8,3)_0$				
ω_4	$(3,1)_{-4/3}$	U	$(3,1)_{2/3}$	\mathcal{Q}_5	$(8,3)_0$				
ζ	$(3,3)_{-1/3}$	D	$(3,1)_{-1/3}$	\mathcal{Y}_5	$(ar{6},2)_{-5/6}$				
Ω_1	$(6,1)_{1/3}$	Q_1	$(3,2)_{1/6}$						
Ω_4	$(6,1)_{4/3}$	Q_7	$(3,2)_{7/6}$						
Υ	$(6,3)_{1/3}$	T_1	$(3,3)_{-1/3}$						
Φ	$(8,2)_{1/2}$	T_2	$(3,3)_{2/3}$						
		Q_5	$(3,2)_{-5/6}$						

UV Couplings

:	Scalars	F	ermions	Vectors						
Model	UV couplings	Model	UV couplings	Model	UV couplings					
S	$\kappa_{\mathcal{S}}$	N	$(\lambda^e_N)_3$	B	$(g^u_B)_{33},(g^q_B)_{33},g^{\varphi}_B,$					
ϕ	$\lambda_{\phi},\;(y^u_{\phi})_{33}$	E	$(\lambda_E)_3$		$(g^e_B)_{11},(g^e_B)_{22},(g^e_B)_{33},$					
Ξ	κ_{Ξ}	Δ_1	$\left(\lambda_{\Delta_1} ight)_3$		$\left(g_B^\ell ight)_{22},\ \left(g_B^\ell ight)_{33}$					
Ξ_1	κ_{Ξ_1}	Δ_3	$\left(\lambda_{\Delta_3} ight)_3$	\mathcal{B}_1	$g^{arphi}_{B_1}$					
ω_1	$\left(y^{qq}_{\omega_1} ight)_{33}$	Σ	$(\lambda_\Sigma)_3$	\mathcal{W}	$\left(g_{\mathcal{W}}^{l}\right)_{11} = 2 \left(g_{\mathcal{W}}^{l}\right)_{22}, \left(g_{\mathcal{W}}^{l}\right)_{33}$					
ω_4	$(y^{uu}_{\omega_4})_{33}$	Σ_1	$\left(\lambda_{\Sigma_1} ight)_3$		$g^{arphi}_{\mathcal{W}},~(g^q_{\mathcal{W}})_{33}$					
ζ	$\left(y^{qq}_{\zeta} ight)_{33}$	U	$(\lambda_U)_3$	\mathcal{W}_1	$g^{\varphi}_{\mathcal{W}_1}$					
Ω_1	$\left(y^{qq}_{\Omega_1} ight)_{33}$	D	$(\lambda_D)_3$	${\cal G}$	$\left(g^q_{\mathcal{G}} ight)_{33}, \left(g^u_{\mathcal{G}} ight)_{33}$					
Ω_4	$(y_{\Omega_4})_{33}$	Q_1	$\left(\lambda^u_{\mathcal{Q}_1} ight)_3$							
Υ	$(y_\Upsilon)_{33}$	Q_7	$\left(\lambda_{\mathcal{Q}_7} ight)_3$	${\cal H}$	$(g_{\mathcal{H}})_{33}$					
Φ	$(y^{qu}_{\Phi})_{33}$	T_1	$(\lambda_{T_1})_3$	\mathcal{Q}_5	$\left(g^{uq}_{\mathcal{Q}_5} ight)_{33}$					
		T_2	$(\lambda_{T_2})_3$	\mathcal{Y}_5	$(g_{\mathcal{Y}_5})_{33}$					

Correlations in linear fit

Correlation: NLO $\mathcal{O}\left(\Lambda^{-2}\right)$

HL-LHC impact in detail

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

FCC-ee Energy runs

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

FCC-ee Energy runs

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

Fisher Information matrix

- Quantifies which datasets have more sensitivity to given operator
- Proxy for linear individual fit
- FCC-ee dominates nearly all operators except 4-quark operators, only accessible in pp collisions (tree level)
- Combination of 91 GeV and 240 GeV runs important to pin down 2-fermion and gauge operators
- FCC-ee run at 161 GeV is the least useful for the SMEFT

$$I_{ij} = \sum_{m=1}^{n_{\text{dat}}} \frac{\sigma_{m,i}^{(\text{eft})} \sigma_{m,j}^{(\text{eft})}}{\delta_{\exp,m}^2}, \qquad i, j = 1, \dots, n_{\text{eft}},$$

The power of multi(di)-boson

The special case of EW quadruplets

Kappa-Framework fit, a SMEFiT child

HL-LHC baseline

