

Universidad de Granada

Efficient on-shell matching

Javier López Miras

with M. Chala, J. Santiago and F. Vilches [2411.12798]

SMEFT-Tools | 2025

OFF-SHELL	\mathcal{VS}	ON-SHELL
Small number of diagrams (one-light-particle-irreducible)	1 - 0	All diagrams (light bridges too)
Large set of operators (Green's basis)	1 - 1	Smaller set of operators (physical basis)
Reduction to the physical basis	1 - 2	No reduction is needed
Contribution directly local in momenta		Delicate cancelation of non-local contributions

OFF-SHELL	\mathcal{VS}	ON-SHELL
Small number of diagrams (one-light-particle-irreducible)	1 - 0	All diagrams (light bridges too)
Large set of operators (Green's basis)	1 - 1	Smaller set of operators (physical basis)
Reduction to the physical basis	1 - 2	No reduction is needed
Contribution directly local in momenta		Delication of non-log
	SMEFT-Tools 2025	4

On-shell matching: *non-localities*

On-shell matching: the matching condition

On-shell matching: evanescent shifts

An example: finite one-loop matching to SMEFT

We solve for effective couplings perturbatively in the EFT order:

$$\begin{split} \lambda & \rightarrow \lambda + \frac{g_{2}^{4}m_{H}^{2}}{960\pi^{2}M^{2}}, \\ y_{e}^{pr} & \rightarrow y_{e}^{pr} - \frac{1}{128\pi^{2}} \left(\mathcal{Y}\mathcal{Y}^{\dagger}y_{e} + 2y_{e}\mathcal{Y}^{\dagger}\mathcal{Y}\right)^{pr} + \frac{m_{H}^{2}}{32\pi^{2}M^{2}} \mathcal{Y}^{pr} \left(\mathcal{Y}^{\dagger}\right)^{st} y_{e}^{ts}, \\ c_{HD} & \rightarrow -\frac{g_{1}^{4}}{1920\pi^{2}M^{2}}, \\ c_{HD} & \rightarrow -\frac{g_{1}^{4}}{1680\pi^{2}M^{2}} \left(g_{1}^{4} + 3g_{2}^{4}\right), \\ c_{HD} & \rightarrow -\frac{1}{7680\pi^{2}M^{2}} \left(g_{1}^{4} + 3g_{2}^{4}\right), \\ c_{HD} & \rightarrow -\frac{g_{1}^{4}}{1920\pi^{2}M^{2}} \delta^{pr} + \frac{7g_{2}^{2}}{576\pi^{2}M^{2}} \left(\mathcal{Y}^{\dagger}\mathcal{Y}\right)^{pr} + \frac{1}{192\pi^{2}M^{2}} \left(6\mathcal{Y}^{\dagger}y_{e}y_{e}^{\dagger}\mathcal{Y} + y^{\dagger}\mathcal{Y}\mathcal{Y}^{\dagger}y_{e}\right)^{pr}, \\ c_{He}^{(1)} & \rightarrow \frac{g_{1}^{4}}{1920\pi^{2}M^{2}} \delta^{pr} + \frac{7g_{2}^{2}}{1752\pi^{2}M^{2}} \left(\mathcal{Y}\mathcal{Y}^{\dagger}\right)^{pr} - \frac{1}{192\pi^{2}M^{2}} \left(6\mathcal{Y}^{\dagger}y_{e}y_{e}^{\dagger}\mathcal{Y} + y^{\dagger}\mathcal{Y}\mathcal{Y}^{\dagger}y_{e}\right)^{pr}, \\ s_{(1)}^{(1)} & \rightarrow \frac{g_{1}^{4}}{3840\pi^{2}M^{2}} \delta^{pr} + \frac{17g_{1}^{2}}{1152\pi^{2}M^{2}} \left(\mathcal{Y}\mathcal{Y}^{\dagger}\right)^{pr} - \frac{1}{192\pi^{2}M^{2}} \left(6\mathcal{Y}^{\dagger}y_{e}y_{e}^{\dagger}\mathcal{Y} + y_{e}\mathcal{Y}^{\dagger}\mathcal{Y}y_{e}^{\dagger}\right)^{pr}, \\ s_{(3)}^{(3)} & \rightarrow -\frac{g_{2}^{4}}{3840\pi^{2}M^{2}} \delta^{pr} + \frac{g_{2}^{2}}{1152\pi^{2}M^{2}} \left(\mathcal{Y}\mathcal{Y}^{\dagger}\right)^{pr} - \frac{1}{192\pi^{2}M^{2}} \left(g_{e}\mathcal{Y}^{\dagger}\mathcal{Y}y_{e}^{\dagger}\right)^{pr}, \\ c_{eB}^{eB} & \rightarrow -\frac{g_{1}}{768\pi^{2}M^{2}} \left(5\mathcal{Y}\mathcal{Y}^{\dagger}y_{e} + 2y_{e}\mathcal{Y}^{\dagger}\mathcal{Y}\right)^{pr} + \frac{3g_{1}}{128\pi^{2}M^{2}}} \mathcal{Y}^{pr} \left(\mathcal{Y}^{\dagger}\right)^{st} y_{e}^{ts}, \\ c_{eW}^{pr} & \rightarrow -\frac{5g_{2}}{768\pi^{2}M^{2}} \left(\mathcal{Y}\mathcal{Y}^{\dagger}y_{e}\right)^{pr} - \frac{g_{2}}{128\pi^{2}M^{2}} \mathcal{Y}^{pr} \left(\mathcal{Y}^{\dagger}\right)^{st} y_{e}^{ts}, \\ c_{eH}^{pr} & \rightarrow -\frac{g_{2}^{4}}{3840\pi^{2}M^{2}M^{2}} y_{e}^{pr} + \frac{1}{192\pi^{2}M^{2}} \left(y_{e}y_{e}^{\dagger}\mathcal{Y}\mathcal{Y}^{\dagger}y_{e} + 2y_{e}\mathcal{Y}^{\dagger}\mathcal{Y}y_{e}^{\dagger}y_{e}\mathcal{Y}^{\dagger}y_{e} - 3y_{e}\mathcal{Y}^{\dagger}y_{e}^{\dagger}y_{e}\mathcal{Y}^{pr} \left(y_{e}^{\dagger}\right)^{ts} y_{e}^{ts} \right)^{pr} \right)^{st} y_{e}^{ts} \right)^{st}$$

A second example: reduction of Green's basis

Green's basis: minimal set of operators to match amplitudes off-shell.

Physical basis: minimal set of operators to match amplitudes on-shell.

- $\mathcal{L}_{\mathrm{full}}$ \supset operators in Green's basis
- \mathcal{L}_{phys} \supset operators in physical basis

We find the couplings of $\,\mathcal{L}_{
m phys}$ in terms of those in $\,\mathcal{L}_{
m full}$.

Example II: Bosonic sector in the SMEFT up to dimension 8

Non systematic Hard to automate

Match both theories on-shell at tree level

REDUCTION OF GREEN'S BASIS

A second example: reduction of Green's basis

Cross-check with [2003.12525v5]

BOSONIC SECTOR

 X^2H^2

 $c_{HB} \to c_{HB} - 2m_0^2 c_{HB} r_{DH}$

 $c_{H\tilde{B}} \to c_{H\tilde{B}} - 2m_0^2 c_{H\tilde{B}} r_{DH}$

	X^3		$X^2 H^2$		H^2D^4
\mathcal{O}_{3G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{HG}	$G^A_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{DH}	$(D_{\mu}D^{\mu}H)^{\dagger}(D_{\nu}D^{\nu}H)$
$\mathcal{O}_{\widetilde{3G}}$	$f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B ho}_{\nu}G^{C\mu}_{ ho}$	$\mathcal{O}_{H\widetilde{G}}$	$\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$		H^4D^2
\mathcal{O}_{3W}	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	\mathcal{O}_{HW}	$W^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$
$\mathcal{O}_{\widetilde{3W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$\mathcal{O}_{H\widetilde{W}}$	$\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}	$(H^{\dagger}D^{\mu}H)^{\dagger}(H^{\dagger}D_{\mu}H)$
	$X^2 D^2$	\mathcal{O}_{HB}	$B_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}'	$(H^{\dagger}H)(D_{\mu}H)^{\dagger}(D^{\mu}H)$
\mathcal{O}_{2G}	$-\frac{1}{2}(D_{\mu}G^{A\mu\nu})(D^{\rho}G^{A}_{\rho\nu})$	$\mathcal{O}_{H\widetilde{B}}$	$\widetilde{B}_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{O}''_{HD}	$(H^{\dagger}H)D_{\mu}(H^{\dagger}i\overleftrightarrow{D}^{\mu}H)$
\mathcal{O}_{2W}	$-\frac{1}{2}(D_{\mu}W^{I\mu\nu})(D^{\rho}W^{I}_{\rho\nu})$	\mathcal{O}_{HWB}	$W^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$		H^6
\mathcal{O}_{2B}	$-\frac{1}{2}(\partial_{\mu}B^{\mu\nu})(\partial^{\rho}B_{\rho\nu})$	$\mathcal{O}_{H\widetilde{W}B}$	$\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$	\mathcal{O}_H	$(H^{\dagger}H)^3$
	-		$H^2 X D^2$		
		\mathcal{O}_{WDH}	$D_{\nu}W^{I\mu\nu}(H^{\dagger}i\overset{\frown}{D}{}^{I}_{\mu}H)$		
		\mathcal{O}_{BDH}	$\partial_{\nu}B^{\mu\nu}(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$		

V. Gherardi, D. Marzocca y E. Venturini (2021) [2003.12525v5]

$$H^{4}D^{2} \qquad \begin{array}{c} c_{H\Box} \rightarrow c_{H\Box} - \frac{1}{8}g'^{2}r_{2B} + \frac{1}{2}g'r_{BDH} - m_{0}^{2}(4c_{H\Box}r_{DH} + g'r_{BDH}r_{DH} + 2r_{DH}r'_{HD}) \\ c_{HD} \rightarrow c_{HD} - \frac{1}{2}g'^{2}r_{2B} + 2g'r_{BDH} - m_{0}^{2}(4c_{HD}r_{DH} + 4g'r_{BDH}r_{DH}) \\ H^{6} \qquad c_{H} \rightarrow c_{H} + \lambda^{2}r_{DH} + \lambda r'_{HD} + \left[m_{0}^{2} \left(\frac{1}{4}g'^{2}c_{HD}r_{2B} - \frac{1}{16}g'^{4}r_{2B}^{2} - \frac{1}{2}g'c_{HD}r_{BDH} + \frac{1}{2}g'^{3}r_{2B}r_{BDH} \right) \\ - \frac{3}{4}g'^{2}r_{BDH}^{2} - 6c_{H}r_{DH} - \lambda c_{HD}r_{DH} + 8\lambda c_{H\Box}r_{DH} + g'\lambda r_{BDH}r_{DH} - 11\lambda^{2}r_{DH}^{2} \\ - \frac{1}{2}c_{HD}r'_{HD} + 4c_{H\Box}r'_{HD} + \frac{1}{2}g'r_{BDH}r'_{HD} - 9\lambda r_{DH}r'_{HD} - \frac{1}{4}r'_{HD}^{2} - r''_{HD} \right) \end{array}$$

SMEFT-Tools | 2025

Creating a tool: MOSCA

MOSCA: A **M**ATCHING **O**N-**S**HELL **CA**LCULATOR

MOSCA: A **M**ATCHING **O**N-**S**HELL **CA**LCULATOR

Let us consider a Green's basis for a Z_2 -symmetric scalar theory up to dimension 8. A suitable choice is given by

$$\mathcal{L} = \mathcal{L}_4 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^4} \mathcal{L}_8, \qquad (10)$$

where

$$\mathcal{L}_4 = -\frac{1}{2}\phi(\partial^2 + m^2)\phi - \lambda\phi^4,\tag{11}$$

$$\mathcal{L}_6 = \alpha_{61}\phi^6 + \beta_{61}\partial^2\phi\partial^2\phi + \beta_{62}\phi^3\partial^2\phi, \tag{12}$$

$$\mathcal{L}_8 = \alpha_{81}\phi^8 + \alpha_{82}\phi^2\partial_\mu\partial_\nu\phi\partial^\mu\partial^\nu\phi + \beta_{81}\phi\partial^6\phi + \beta_{82}\phi^3\partial^4\phi + \beta_{83}\phi^2\partial^2\phi\partial^2\phi + \beta_{84}\phi^5\partial^2\phi.$$
(13)

 β are the redundant WCs (they are in the Green's basis but not in the physical one)

Conclusions

On-shell matching is a **diagrammatic alternative** that allows to compute the **coefficients directly into the physical basis**.

More diagrams to be computed in a single amplitude, but several operators can be matched at the same time.

No need of defining evanescent operators or using background field method for finite matching.

Useful for renormalization and computing beta functions (see [arXiv:2409.15408]).

Can be used to compute the **reduction to any physical basis** from any redundant basis.

Universidad de Granada

THANKS FOR YOUR ATTENTION !

Green's basis vs physical basis

Some operators are still redundant on-shell

Applications: on-shell RGEs

A theory expressed in terms of the physical basis can still generate redundant operators at the loop level through RGEs.

Mixing of H^4D^4 into H^4BD^2

Off-shell

Some results in the SMEFT

Dimension 4 up to dimension 8 (H and B)

$$\begin{split} m_0^2 &\to m_0^2 - m_0^4 r_{DH} + 2m_0^6 r_{DH}^2 \\ \lambda &\to \lambda - m_0^2 (4\lambda r_{DH} + 2r_{HD}') + m_0^4 (16\lambda r_{DH}^2 + 10r_{DH}r_{HD}') \\ y_E &\to y_E (1 - m_o^2 r_{DH} + \frac{5}{2}m_0^4 r_{DH}^2) \end{split}$$

Dimension 6 up to dimension 8 (H and B)

$$\begin{array}{ll} X^2 H^2 & c_{HB} \rightarrow c_{HB} - 2m_0^2 c_{HB} r_{DH} \\ c_{H\widetilde{B}} \rightarrow c_{H\widetilde{B}} - 2m_0^2 c_{H\widetilde{B}} r_{DH} \end{array}$$

$$H^{4}D^{2} \qquad c_{H\Box} \to c_{H\Box} - \frac{1}{8}g'^{2}r_{2B} + \frac{1}{2}g'r_{BDH} - m_{0}^{2}(4c_{H\Box}r_{DH} + g'r_{BDH}r_{DH} + 2r_{DH}r'_{HD})$$

$$c_{HD} \to c_{HD} - \frac{1}{2}g'^{2}r_{2B} + 2g'r_{BDH} - m_{0}^{2}(4c_{HD}r_{DH} + 4g'r_{BDH}r_{DH})$$

$$H^{6} \qquad c_{H} \to c_{H} + \lambda^{2} r_{DH} + \lambda r'_{HD} + m_{0}^{2} \left(\frac{1}{4} g'^{2} c_{HD} r_{2B} - \frac{1}{16} g'^{4} r_{2B}^{2} - \frac{1}{2} g' c_{HD} r_{BDH} + \frac{1}{2} g'^{3} r_{2B} r_{BDH} \right. \\ \left. - \frac{3}{4} g'^{2} r_{BDH}^{2} - 6 c_{H} r_{DH} - \lambda c_{HD} r_{DH} + 8 \lambda c_{H\Box} r_{DH} + g' \lambda r_{BDH} r_{DH} - 11 \lambda^{2} r_{DH}^{2} \right. \\ \left. - \frac{1}{2} c_{HD} r'_{HD} + 4 c_{H\Box} r'_{HD} + \frac{1}{2} g' r_{BDH} r'_{HD} - 9 \lambda r_{DH} r'_{HD} - \frac{1}{4} r'_{HD}^{2} - r''_{HD} \right)$$

Dimension 8 (H and B)

 XH^4D^2

$$c_{BH^4D^2}^{(1)} \to c_{BH^4D^2}^{(1)} - 4g'c_{HB}r_{2B} + \frac{1}{2}g'^3r_{2B}^2 + 8c_{HB}r_{BDH} - 2g'^2r_{2B}r_{BDH} + 2g'r_{BDH}^2$$

$$c_{BH^4D^2}^{(2)} \to -4g'c_{H\tilde{B}}r_{2B} + 8c_{H\tilde{B}}r_{BDH}$$

 $\begin{array}{lll} X^2 H^2 D^2 & X^4 & X^2 H^4 \\ c^{(1)}_{B^2 H^2 D^2} \to 0 & c^{(1)}_{B^4} \to 0 & c^{(1)}_{B^2 H^4} \to -c_{HB} g'^2 r_{2B} + \frac{1}{16} g'^4 r_{2B}^2 + 2c_{HB} g' r_{BDH} - \frac{1}{4} g'^3 r_{2B} r_{BDH} + \frac{1}{4} g'^2 r_{BDH}^2 \\ c^{(2)}_{B^2 H^2 D^2} \to 0 & c^{(2)}_{B^4} \to 0 & -2c_{HB} \lambda r_{DH} - c_{HB} r'_{HD} \\ c^{(3)}_{B^2 H^2 D^2} \to 0 & c^{(3)}_{B^4} \to 0 & c^{(2)}_{B^2 H^4} \to -g'^2 c_{H\tilde{B}} r_{2B} + 2g' c_{H\tilde{B}} r_{BDH} - 2\lambda c_{H\tilde{B}} r_{BDH} - c_{H\tilde{B}} r'_{HD} \end{array}$

Dimension 8 (H and B)

$$\begin{split} H^4 D^4 \\ c^{(1)}_{H^4} &\to \frac{1}{2} g'^2 r^2_{2B} - 2g' r_{2B} r_{BDH} + 2r^2_{BDH} \\ c^{(2)}_{H^4} &\to -\frac{1}{2} g'^2 r^2_{2B} + 2g' r_{2B} r_{BDH} - 2r^2_{BDH} \\ c^{(3)}_{H^4} &\to 0 \end{split}$$

 H^6D^2

$$\begin{split} c^{(1)}_{H^6} &\to -\frac{3}{4} g'^2 c_{HD} r_{2B} + \frac{3}{16} g'^4 r_{2B}^2 + \frac{3}{2} g' c_{HD} r_{BDH} - \frac{3}{2} g'^3 r_{2B} r_{BDH} + \frac{9}{4} g'^2 r_{BDH}^2 - \lambda c_{HD} r_{DH} \\ &- 8\lambda c_{H\Box} r_{DH} - 3g' \lambda r_{BDH} r_{DH} + \lambda^2 r_{DH}^2 - \frac{1}{2} c_{HD} r'_{HD} - 4c_{H\Box} r'_{HD} - \frac{3}{2} g' r_{BDH} r'_{HD} \\ &- 3\lambda r_{DH} r'_{HD} - \frac{7}{4} r'_{HD}^2 + r''_{HD} \\ c^{(2)}_{H^6} &\to -\frac{1}{2} g'^2 c_{HD} r_{2B} + \frac{1}{8} g'^4 r_{2B}^2 + g' c_{HD} r_{BDH} - g'^3 r_{2B} r_{BDH} + \frac{3}{2} g'^2 r_{BDH}^2 - 2\lambda c_{HD} r_{DH} \\ &- 2g' \lambda r_{BDH} r_{DH} - c_{HD} r'_{HD} - g' r_{BDH} r'_{HD} \end{split}$$

Generation of random momenta

$$SL(2,\mathbb{C}) \cong SU(2)_L \times SU(2)_R \quad \left\{ \begin{array}{l} \lambda \in SU(2)_L \\ \tilde{\lambda} \in SU(2)_R \end{array} \right\} \quad \begin{array}{l} \lambda^{\alpha} = \varepsilon^{\alpha\beta} \lambda_{\beta} \\ \tilde{\lambda}_{\dot{\alpha}} = \varepsilon_{\dot{\alpha}\dot{\beta}} \tilde{\lambda}^{\dot{\beta}} \end{array}$$

Massless
$$P_{\alpha\dot{\alpha}} = \lambda_{\alpha}\tilde{\lambda}_{\dot{\alpha}} \Rightarrow P = p_{\mu}\sigma^{\mu} = \begin{pmatrix} p_0 + p_3 & p_1 - ip_2 \\ p_1 + ip_2 & p_0 - p_3 \end{pmatrix}$$
momenta :

Massive momenta :

$$P^{\mu} := q^{\mu} + \frac{m^2}{2q \cdot k} k^{\mu} \qquad \begin{vmatrix} q^2, k^2 &= 0 \\ q_{\alpha\dot{\alpha}} &= \lambda_{\alpha}\lambda_{\dot{\alpha}} \\ k_{\alpha\dot{\alpha}} &= \mu_{\alpha}\tilde{\mu}_{\dot{\alpha}} \end{vmatrix}$$

· \

Evanescent operators

 \mathcal{VS} ON-SHELL OFF-SHELL

Small number of diagrams (1lPI in UV, 1PI in IR)

All diagrams (light bridges too)

$$\mathcal{L}_{\rm int} = \eta \phi^2 \Phi^2 + \lambda \phi^4$$

OFF-SHELL

ON-SHELL

φ Φ φ φ φ φ φ \rightarrow φ Φ Φ Φ Ф Φ Φ ወ

In[66]:= Length [diags1lPIHeavy]

Out[66]= 315

In[65]:= Length [diagsHeavy]

Out[65]= 6475

SMEFT-Tools | 2025

OFF-SHELL	\mathcal{VS}	ON-SHELL		
Small number of diagrams (one-light-particle-irreducible)	1 - 0	All diagrams (light bridges too)		

OFF-SHELL	VS	ON-SHELL
Small number of diagrams (one-light-particle-irreducible)	1 - 0	All diagrams (light bridges too)
Large set of operators (Green's basis)		Smaller set of operators (physical basis)

[2003.12525]

	$\psi^2 D^3$		$\psi^2 X D$		$\psi^2 D H^2$		X^3		1	X^2H	2	1	H^2D^4	
\mathcal{O}_{qD}	$\frac{i}{2}\overline{q}\left\{ D_{\mu}D^{\mu},D^{\mu},D^{\mu} ight\} q$	\mathcal{O}_{Gq}	$(\overline{q}T^A\gamma^\mu q)D^\nu G^A_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(\overline{q}\gamma^{\mu}q)(H^{\dagger}i\overleftarrow{D}_{\mu}H)$	Oac	$f^{ABC}G^{A\nu}G^{B\rho}G^{$	$C\mu$	OHC	$G^A G$	$A\mu\nu(H^{\dagger}H)$	Ори	$(D_{\mu}D^{\mu}H)^{\dagger}(D_{\nu}D^{\nu}H)$	
\mathcal{O}_{uD}	$\frac{i}{2}\overline{u}\left\{ D_{\mu}D^{\mu},D^{\mu}\right\} u$	\mathcal{O}_{Gq}'	$\frac{1}{2}(\overline{q}T^A\gamma^{\mu}i\overleftrightarrow{D}^{\nu}q)G^A_{\mu\nu}$	$\mathcal{O}_{Hq}^{\prime(1)}$	$(\overline{q}i \not D q)(H^{\dagger}H)$	0~	$f^{ABC}\widetilde{G}^{A\nu}G^{B\rho}G$	$C\mu$	0~	$\widetilde{G}^{A} G$	$A\mu\nu(H^{\dagger}H)$		$\frac{H^4 D^2}{H^4 D^2}$	
\mathcal{O}_{dD}	$\frac{i}{2}\overline{d}\left\{D_{\mu}D^{\mu},\not\!\!\!D\right\}d$	$\mathcal{O}'_{\widetilde{G}q}$	$\frac{1}{2} (\overline{q} T^A \gamma^\mu i \overleftrightarrow{D}^\nu q) \widetilde{G}^A_{\mu\nu}$	$\mathcal{O}_{Hq}^{\prime\prime(1)}$	$(\overline{q}\gamma^{\mu}q)\partial_{\mu}(H^{\dagger}H)$	\mathcal{O}_{2W}	$\epsilon^{IJK}W^{I\nu}W^{J\rho}W$	ρ 7Κμ	\mathcal{O}_{HG}	$W^{I}W$	$T^{I\mu\nu}(H^{\dagger}H)$	Ou	$(H^{\dagger}H)\Box(H^{\dagger}H)$	
$\mathcal{O}_{\ell D}$	$\frac{i}{2}\overline{\ell}\left\{ D_{\mu}D^{\mu},D^{\mu},D^{\mu} ight\} \ell$	\mathcal{O}_{Wq}	$(\overline{q}\sigma^I\gamma^\mu q)D^\nu W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(3)}$	$(\overline{q}\sigma^{I}\gamma^{\mu}q)(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)$	0-	cIJKWIVWJPW	ρ 7Κμ	$\mathcal{O} \sim$	$\widetilde{W}^{\mu\nu}$	$T_{\mu\nu}(H^{\dagger}H)$	Oup	$(H^{\dagger}D^{\mu}H)^{\dagger}(H^{\dagger}D^{\mu}H)$	
\mathcal{O}_{eD}	$\frac{i}{2}\overline{e}\left\{ D_{\mu}D^{\mu},D^{\mu},D^{\mu} ight\} e$	\mathcal{O}'_{Wq}	$\frac{1}{2}(\overline{q}\sigma^I\gamma^\mu i\overleftrightarrow{D}^\nu q)W^I_{\mu\nu}$	${\cal O}_{Hq}^{\prime(3)}$	$(\overline{q}i \not D^I q)(H^{\dagger} \sigma^I H)$	U _{3W}	$\frac{1}{\mathbf{X}^2 \mathbf{D}^2}$	ρ	Our Charles	R F	$R^{\mu\nu}(H^{\dagger}H)$	O'	$(H^{\dagger}H)(D^{\dagger}H)^{\dagger}(D^{\mu}H)$	
ψ^2	$HD^2 + h.c.$	$\mathcal{O}'_{\widetilde{W}q}$	$\frac{1}{2} (\overline{q} \sigma^I \gamma^\mu i D^\nu q) \widetilde{W}^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{\prime\prime(3)}$	$\left(\overline{q}\sigma^{I}\gamma^{\mu}q)D_{\mu}(H^{\dagger}\sigma^{I}H)\right)$	Ø	1(D CAuv)(D)	(CA)	O HB	$\tilde{D}_{\mu\nu}L$	$\mathcal{D}_{\mu\nu}(\mathbf{H}^{\dagger}\mathbf{H})$		$(H^{\dagger}H)D(H^{\dagger};D^{\mu}H)$	
\mathcal{O}_{uHD1}	$(\overline{q}u)D_{\mu}D^{\mu}\widetilde{H}$	\mathcal{O}_{Bq}	$(\overline{q}\gamma^{\mu}q)\partial^{\nu}B_{\mu\nu}$	\mathcal{O}_{Hu}	$(\overline{u}\gamma^{\mu}u)(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$	O _{2G}	$-\frac{1}{2}(D_{\mu}G^{\mu}\mu^{\mu})(D^{\mu})$	$G_{\rho\nu}$	$O_{H\tilde{B}}$	$D_{\mu\nu}L$	$\mathcal{O}^{(\Pi^{\dagger}\Pi)}$	U _{HD}	$\frac{(\Pi,\Pi)D_{\mu}(\Pi,\Omega,\Gamma,\Pi)}{\mathbf{\Pi}6}$	
\mathcal{O}_{uHD2}	$(\overline{q}i\sigma_{\mu\nu}D^{\mu}u)D^{\nu}\widetilde{H}$	\mathcal{O}_{Bq}'	$\frac{1}{2}(\overline{q}\gamma^{\mu}i\overleftrightarrow{D}^{\nu}q)B_{\mu\nu}$	\mathcal{O}'_{Hu}	$(\overline{u}i \not\!\!\!D u)(H^{\dagger}H)$	O_{2W}	$-\frac{1}{2}(D_{\mu}W^{\mu\nu})(D^{\mu\nu})$	$W_{\rho\nu}$)	O _{HWB}	W in B	$(H \sigma H)$		n -	
\mathcal{O}_{uHD3}	$(\overline{q}D_{\mu}D^{\mu}u)\widetilde{H}$	$\mathcal{O}'_{\widetilde{B}q}$	$\frac{1}{2}(\overline{q}\gamma^{\mu}iD^{\nu}q)\widetilde{B}_{\mu\nu}$	\mathcal{O}''_{Hu}	$(\overline{u}\gamma^{\mu}u)\partial_{\mu}(H^{\dagger}H)$	\mathcal{O}_{2B}	$-\frac{1}{2}(\partial_{\mu}B^{\mu\nu})(\partial^{\rho}I)$	$\beta_{\rho\nu})$	$\mathcal{O}_{H\widetilde{W}B}$	$W^{I}_{\mu\nu}B^{\prime}$	$W(H'\sigma'H)$	\mathcal{O}_H	$(H^{\dagger}H)^{3}$	
\mathcal{O}_{uHD4}	$(\overline{q}D_{\mu}u)D^{\mu}\widetilde{H}$	\mathcal{O}_{Gu}	$(\overline{u}T^A\gamma^\mu u)D^\nu G^A_{\mu\nu}$	\mathcal{O}_{Hd}	$(\overline{d}\gamma^{\mu}d)(H^{\dagger}i\overleftarrow{D}_{\mu}H)$				_	$H^{2}X$	$D^2 \leftrightarrow \cdots$	1		
\mathcal{O}_{dHD1}	$(\overline{q}d)D_{\mu}D^{\mu}H$	\mathcal{O}_{Gu}'	$\frac{1}{2}(\overline{u}T^A\gamma^{\mu}i\overleftrightarrow{D}^{\nu}u)G^A_{\mu\nu}$	\mathcal{O}'_{Hd}	$(\overline{di} \not D d)(H^{\dagger}H)$				\mathcal{O}_{WDH} .	$D_{\nu}W^{I\mu\nu}$	$(H^{\dagger}iD_{\mu}^{I}H)$			
\mathcal{O}_{dHD2}	$(\overline{q}i\sigma_{\mu\nu}D^{\mu}d)D^{\nu}H$	$\mathcal{O}'_{\widetilde{G}u}$	$\frac{1}{2} (\overline{u} T^A \gamma^\mu i D^\nu u) \widetilde{G}^A_{\mu\nu}$	\mathcal{O}''_{Hd}	$(\overline{d}\gamma^{\mu}d)\partial_{\mu}(H^{\dagger}H)$				\mathcal{O}_{BDH}	$\partial_{\nu}B^{\mu\nu}$	$(H^{\dagger}i\overleftarrow{D}_{\mu}H)$			
\mathcal{O}_{dHD3}	$(\overline{q}D_{\mu}D^{\mu}d)H$	\mathcal{O}_{Bu}	$(\overline{u}\gamma^{\mu}u)\partial^{\nu}B_{\mu\nu}$	\mathcal{O}_{Hud}	$(\overline{u}\gamma^{\mu}d)(H^{\dagger}iD_{\mu}H)$		P 1		1	1 0				
\mathcal{O}_{dHD4}	$(\overline{q}D_{\mu}d)D^{\mu}H$	\mathcal{O}_{Bu}'	$\frac{1}{2}(\overline{u}\gamma^{\mu}iD^{\nu}u)B_{\mu\nu}$	$\mathcal{O}_{H\ell}^{(1)}$	$(\ell \gamma^{\mu} \ell) (H^{\dagger} i D_{\mu} H)$	a (1)	Four-quark	FO	our-lepton		emileptonic			
\mathcal{O}_{eHD1}	$(\overline{\ell}e)D_{\mu}D^{\mu}H$	$\mathcal{O}'_{\widetilde{B}u}$	$\frac{1}{2}(\overline{u}\gamma^{\mu}iD^{\nu}u)\widetilde{B}_{\mu\nu}$	$\mathcal{O}_{H\ell}^{\prime(1)}$	$(\overline{\ell}i \not\!\!\!D \ell)(H^{\dagger}H)$	$\mathcal{O}_{qq}^{(1)}$	$(\overline{q}\gamma^{\mu}q)(\overline{q}\gamma_{\mu}q)$	$\mathcal{O}_{\ell\ell}$	$(\ell \gamma^{\mu} \ell) (\ell \gamma_{\mu} \ell)$	$O_{\ell q}^{(1)}$	$(\ell \gamma^{\mu} \ell) (\overline{q} \gamma_{\mu} \ell)$	(1)		
\mathcal{O}_{eHD2}	$(\bar{\ell} i \sigma_{\mu\nu} D^{\mu} e) D^{\nu} H$	\mathcal{O}_{Gd}	$(\overline{d}T^A\gamma^\mu d)D^\nu G^A_{\mu\nu}$	$\mathcal{O}_{H\ell}^{\prime\prime(1)}$	$(\bar{\ell}\gamma^{\mu}\ell)\partial_{\mu}(H^{\dagger}H)$	O _{qq}	$(\overline{q}\gamma^{\mu}\sigma^{\prime}q)(\overline{q}\gamma_{\mu}\sigma^{\prime}q)$	Oee	$(e\gamma^{\mu}e)(e\gamma_{\mu}e)$	$O_{\ell q}$	$(\ell \gamma^{\mu} \sigma^{\prime} \ell) (\bar{q} \gamma_{\mu} \bar{q} \gamma_{\mu} \bar$	(τ, q)		
\mathcal{O}_{eHD3}	$(\overline{\ell}D_{\mu}D^{\mu}e)H$	\mathcal{O}_{Gd}'	$ \begin{array}{c} \frac{1}{2} (\overline{d}T^A \gamma^\mu i D^\nu d) G^A_{\mu\nu} \\ \hookrightarrow \\ \widetilde{} \end{array} $	$\mathcal{O}_{H\ell}^{(3)}$	$(\bar{\ell}\sigma^{I}\gamma^{\mu}\ell)(H^{\dagger}iD_{\mu}^{I}H)$	\mathcal{O}_{uu}	$(u\gamma^{\mu}u)(u\gamma_{\mu}u)$ $(\overline{d}\gamma^{\mu}d)(\overline{d}\gamma_{\mu}d)$	$O_{\ell e}$	$(\ell \gamma^{r} \ell)(e \gamma_{\mu} e)$	O _{eu}	$(e\gamma^{\mu}e)(u\gamma_{\mu})$	d		
\mathcal{O}_{eHD4}	$(\bar{\ell}D_{\mu}e)D^{\mu}H$	$\mathcal{O}'_{\widetilde{G}d}$	$\frac{1}{2} (\overline{d} T^A \gamma^{\mu} i D^{\nu} d) G^A_{\mu\nu}$	$\mathcal{O}_{H\ell}^{\prime(3)}$	$(\bar{\ell}iD\!\!\!/^I\ell)(H^{\dagger}\sigma^I H)$	$\mathcal{O}^{(1)}$	$(\overline{u}\gamma^{\mu}u)(\overline{d}\gamma_{\mu}u)$			O ed	$(\overline{a}\gamma^{\mu}a)(\overline{e}\gamma)$	a)		
ψ^2	XH + h.c.	\mathcal{O}_{Bd}	$(\overline{d}\gamma^{\mu}d)\partial^{\nu}B_{\mu\nu}$	$\mathcal{O}_{H\ell}^{\prime\prime(3)}$	$\left (\bar{\ell}\sigma^{I}\gamma^{\mu}\ell)D_{\mu}(H^{\dagger}\sigma^{I}H) \right \longleftrightarrow$	$\mathcal{O}^{(8)}$	$(\overline{u}\gamma^{\mu}T^{A}u)(\overline{d}\gamma,T^{A}d)$			\mathcal{O}_{qe}	$(\overline{\ell}\gamma^{\mu}\ell)(\overline{u}\gamma_{\mu})$	() ()		
\mathcal{O}_{uG}	$(\overline{q}T^A\sigma^{\mu\nu}u)HG^A_{\mu\nu}$	\mathcal{O}_{Bd}'	$\frac{1}{2}(d\gamma^{\mu}iD^{\nu}d)B_{\mu\nu}$	\mathcal{O}_{He}	$(\overline{e}\gamma^{\mu}e)(H^{\dagger}i\widetilde{D}_{\mu}H)$	\mathcal{O}_{au}^{ud}	$(\overline{a}\gamma^{\mu}a)(\overline{u}\gamma_{\mu}u)$			Old	$(\bar{\ell}\gamma^{\mu}\ell)(\bar{d}\gamma_{\mu}\ell)$	1)		
\mathcal{O}_{uW}	$(\overline{q}\sigma^{\mu\nu}u)\sigma^{I}HW^{I}_{\mu\nu}$	$\mathcal{O}'_{\widetilde{B}d}$	$\frac{1}{2}(\overline{d}\gamma^{\mu}iD^{\nu}d)B_{\mu\nu}$	\mathcal{O}'_{He}	$(\overline{e}i \not\!\!\!D e)(H^{\dagger}H)$	$\mathcal{O}_{au}^{(8)}$	$(\overline{a}\gamma^{\mu}T^{A}a)(\overline{u}\gamma_{}T^{A}u)$			Olada	$(\overline{\ell}e)(\overline{d}a)$	~)		
\mathcal{O}_{uB}	$(\overline{q}\sigma^{\mu\nu}u)HB_{\mu\nu}$	$\mathcal{O}_{W\ell}$	$(\bar{\ell}\sigma^{I}\gamma^{\mu}\ell)D^{\nu}W^{I}_{\mu\nu}$	\mathcal{O}''_{He}	$(\bar{e}\gamma^{\mu}e)\partial_{\mu}(H^{\dagger}H)$	$\mathcal{O}^{(1)}$	$(\overline{q}\gamma^{\mu}q)(\overline{d}\gamma_{\mu}d)$			$\mathcal{O}_{\ell}^{(1)}$	$(\overline{\ell}^r e) \epsilon_{rs} (\overline{q}^s u)$	()		
\mathcal{O}_{dG}	$(\overline{q}T^A\sigma^{\mu\nu}d)HG^A_{\mu\nu}$	$\mathcal{O}'_{W\ell}$	$\frac{1}{2}(\ell\sigma^{I}\gamma^{\mu}i\overset{D}{\overset{\nu}} \ell)\overset{V}{\overset{\mu}}_{\mu\nu}$		$\psi^2 H^3 + ext{h.c.}$	$\mathcal{O}^{(8)}_{-1}$	$(\overline{q}\gamma^{\mu}T^{A}q)(\overline{d}\gamma_{\mu}T^{A}d)$			$\mathcal{O}_{e}^{(3)}$	$(\overline{\ell}^r \sigma^{\mu\nu} e) \epsilon_{rs} (\overline{q}^s a)$	(u)		
\mathcal{O}_{dW}	$(\overline{q}\sigma^{\mu\nu}d)\sigma^{I}HW^{I}_{\mu\nu}$	$\mathcal{O}'_{\widetilde{W}\ell}$	$\frac{1}{2}(\ell\sigma^{I}\gamma^{\mu}iD^{\nu}\ell)W^{I}_{\mu\nu}$	\mathcal{O}_{uH}	$(H^{\dagger}H)\overline{q}Hu$	$\mathcal{O}^{(1)}$	$(\overline{q}^r u)\epsilon_{rs}(\overline{q}^s d)$			Lequ	, , , , , , , , , , , , , , , , , , , ,	40		. – – –
\mathcal{O}_{dB}	$(\overline{q}\sigma^{\mu\nu}d)HB_{\mu\nu}$	$\mathcal{O}_{B\ell}$	$(\ell \gamma^{\mu} \ell) \partial^{\nu} B_{\mu\nu}$	O _{dH}	$(H^{\dagger}H)\overline{q}Hd$	$\mathcal{O}^{(8)}_{}$	$(\overline{q}^r T^A u) \epsilon_{rs} (\overline{q}^s T^A d)$						# Physical bas	is ops: 59
OeW	$(\ell\sigma^{\mu\nu}e)\sigma^{T}HW^{T}_{\mu\nu}$	$\mathcal{O}'_{B\ell}$	$\frac{1}{2} (\ell \gamma^{\mu} i D^{\nu} \ell) B_{\mu\nu}$	\mathcal{O}_{eH}	$(H'H)\ell He$	quqa	(1) (0(1 -)							
O_{eB}	$(\ell\sigma^{\mu\nu}e)HB_{\mu\nu}$	$\mathcal{O}_{\tilde{B}\ell}$	$\frac{1}{2}(\ell\gamma^{\mu}i D^{\nu}\ell)B_{\mu\nu}$										# Green's basi	s ops: 129
		\mathcal{O}'_{Be}	$1 (\overline{e} \gamma^{\mu} i \overrightarrow{D}^{\nu} e) R$				SMEET-Tools 2025							27
		$\mathcal{O}'_{\widetilde{P}}$	$\frac{1}{2}(\overline{e}\gamma^{\mu}i\overleftrightarrow{D}^{\nu}e)\widetilde{B}_{\mu\nu}$				5141EF 1 10015 2023	7				-		

OFF-SHELL	\mathcal{VS}	ON-SHELL
Small number of diagrams one-light-particle-irreducible)	1 - 0	All diagrams (light bridges too)
Large set of operators (Green's basis)	1 - 1	Smaller set of operators (physical basis)

OFF-SHELL	VS	ON-SHELL
Small number of diagrams (one-light-particle-irreducible)	1 - 0	All diagrams (light bridges too)
Large set of operators (Green's basis)	1 - 1	Smaller set of operators (physical basis)

Reduction to the physical basis

No reduction is needed

Elimination of redundant operators in Green's basis via:

EOMs:

$$\begin{split} (D_{\mu}D^{\mu}H)^{a} &= m^{2}H^{a} - \lambda(H^{\dagger}H)H^{a} - \bar{e}y_{E}^{\dagger}\ell^{a} + i(\sigma_{2})^{ab}\bar{q}^{b}y_{U}u - \bar{d}y_{D}^{\dagger}q^{a} , \qquad i\not\!\!\!D\ell = y_{E}eH , \\ (D^{\nu}G_{\mu\nu})^{A} &= g_{s}(\bar{q}_{i}\gamma_{\mu}T^{A}q_{i} + \bar{u}_{i}\gamma_{\mu}T^{A}u_{i} + \bar{d}_{i}\gamma_{\mu}T^{A}d_{i}) , \qquad \qquad i\not\!\!\!De = y_{E}^{\dagger}H^{\dagger}\ell , \\ (D^{\nu}W_{\mu\nu})^{I} &= \frac{g}{2}(H^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}^{I}H + \bar{\ell}_{\alpha}\gamma_{\mu}\sigma^{I}\ell_{\alpha} + \bar{q}_{i}\gamma_{\mu}\sigma^{I}q_{i}) , \qquad \qquad i\not\!\!\!Dq = y_{U}u\vec{H} + y_{D}dH , \\ (\partial^{\nu}B_{\mu\nu}) &= g'(Y_{H}H^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}H + \sum_{f}Y_{f}\bar{f}\gamma_{\mu}f) , \qquad \qquad i\not\!\!\!Dd = y_{D}^{\dagger}H^{\dagger}q . \end{split}$$

Straightfoward *but* ... only valid up to linear order! [1811.09413]

Modified EOMs: [2210.14761]

OFF-SHELL	VS	ON-SHELL
Small number of diagrams (one-light-particle-irreducible)	1 - 0	All diagrams (light bridges too)
Large set of operators (Green's basis)	1 - 1	Smaller set of operators (physical basis)
Reduction to the physical basis	1 - 2	No reduction is needed