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Simple EFT expressions

(Maybe a more fitting cover slide)



Operators, Wilson coefficients and fields as tensors

Operators and Wilson coefficients (WC)

() (1) (2) ~(2) (3) ~»(3) e
Y wij'"oijk"' i wij'-'oijk"' L wij"'o'ijk"' it are often tensors in flavor space

Amplitudes in perturbation theory are polynomials in these WCs

The operators themselves are polynomials
in the fields, which in turn are tensors with several indices: gauge, Dirac, flavor

Therefore, in computations with functional methods the fields
are also extra tensors which appear in the expressions
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Wilson coefficients have symmetries

... and they become more complicated for high-dim operators

None of the Standard Model couplings have symmetries in flavor space
The WC w;; = wj; of the Weinberg operator L;,L;HH is the one with a symmetry

Nonetheless, this is still a ‘simple’ one.

The symmetries become more and more complicated as

the number of repeated (flavored) fields increases

e Ozjkl = Eaﬁﬂyenmepq (QzanCQg,@p) (Qz,quLl,m)

O,-jk;, -|— Ojik[ T (’)k,-,:,-;, 3 iju =) Wijkl —|— Wiikl — Wikil — Wkjil — (I describe the symmetry of this
interaction. Not unique!

This is one possible way to

the operator the coupling
£33
5= )
What is going one? Symmetry of group contractions Flavor symmetry of Flavor symmetry of
. (Lorentz, gauge) operator Wilson coefficient
propagates to propagates to
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Example of a complicated expressions

1 1 1 1 1
— a6¢D [i1, i2, x1, x2] Derg[il, u] Derd[i2, u] += a6¢D[il, i2, x2, x1] Derg[il, u] Derd[i2, u] -= a6¢D[il, x1, i3, x2] Der¢[il, u] Der¢[i3, u] -— a6¢D[il, x2, i3, x1] Derg[il, u] Derg[i3, u] - = abgD[x1, i2, i3, x2] Der¢[i2, ] ~Der¢[i3, u] -— a6¢D[x2, i2, i3, x1] - Der¢[i2, u] - Der¢
6

3 3 6 3
.

il il 1 1 il 1

—a6¢D[i1, x2, x1, i4] Derg[il, u] Derd[i4, u] -— a6¢D[x1, i2, x2, i4] Der¢[i2, ] Der¢[id, u] -— a6¢D[x2, i2, x1, i4]  Der¢[i2, u] Der¢[id, u] +— a6pD[x1, x2, i3, i4]  Derd[i3, u] - Derg[i4, u] +— a6¢D[x2, x1, i3, i4] Der¢[i3, u] Derg[id, u] +=— ab6pF[i7, i8, x1, x2] - F[i7, u, v] - F[i EXample Of a compllcat ed
6 6 6 3 3 4

i 1 1 1 . .
— a6¢Ftil[i7, i8, x1, X2] - Eps[i, v, ($12388, 1$12389]  F[i7, 4, v] - F[i8, 1$12388, i$12389] + — a6pFtil[i7, i8, X2, X1] - Eps [, v, u$12388, 1$12389] < F[i7, 4, v] - F[i8, .$12388, 11$12389] + = DP[{u}, {il, X2}] - DP[{u}, (12, x1}] - Ko [il, i2] += DP[{u}, (i1, X1}] - DP[{u}, {2, x2}] - K¢ [il, i2 p 148

: : ; ” expression monomiais
1 il 1 1 1

—a6¢D[i1, i2, X2, i4] - Der¢[i4, u] «DP[{u}, {i2, x1}] - ¢[i1] -— a6¢D[il, i2, i3, x1] ~Derd[i3, u] ~DP[{u}, (i2, x2}] ~ #[il] -= a6@D[il, i2, x1, i4] - Der¢[id, u] «DP[{u}, {i2, x2}] - ®[i1] ~= a6¢D[i1, i2, i3, x2] ~Derd[i2, u] « DP[{u}, {i3, x1}] ~ ¢[il] += a6#D[il, x2, i3, i4] - Dero[id, u]

6 6 6 6 3 6

0 1 1 1 1 1

—a6¢D (i1, x1, i3, i4] - Derg(i4, u] -DP[{u}, {i3, x2}] -6 [il1] -— a6¢D[i1, i2, x2, i4] -Derd[i2, u] <DP[{u}, (i4, x1}] - ®[i1] += a6¢D[il, x2, i3, 4] - Der¢[i3, u] ~DP[{u}, {i4, x1}] « ¢[i1] -— a6¢D[i1, i2, x1, i4] - Derd[i2, u] - DP[{u}, {i4, x2}] - [i1] +— a6¢D[il, x1, i3, i4] - Derd[i3, u] - DP[(u}, (i4, x;

3 6 3 6 3

1 1 " 1 1 it

—ko[il, x2, x1] ~ $[i1] - = a6¢D[il, i2, i3, x2] » Dere[i3, u] «DP[{u}, {il, x1}] - [i2] -— a6¢D[il, i2, x2, i4] «Derd[i4, u] - DP[{u}, (il, x1}] - ¢[i2] ~— a6@D[il, i2, i3, x1] Derp[i3, u] - DP[{u}, {il, x2}] - }[i2] -— a6¢D[il, i2, x1, i4] - Derp[id, u] - DP[{u}, {il, x2}] - ¢[i2] -— a6¢D[il, i2, i3, x2] - D 62

6 6 6 6 6 6 2

o 1 1 1 1

- 260D(x2, 12, 13, 14] Dera(i4, u] DP[{u), (13, x1}] @[12] -= a6ID[iL, 12, 13, x1] Derd[il, u] DP[(4), (13, x2)] 0[12] += a64D[xL, 12, i3, 4] Derg(id, u] DP[(u}, (13, x2)] 0[12] -= a64D[1L, 12, x2, 14] Dero[i1, u] DP[(u}, (14, x1}]  @[12] += 260D[x2, 12, 13, 14] Ders [43, u] - DP[ (), (i4, — 10r a moae

3 3 3 6

s 1 1 kY 1 1 6 . 6 .

—a6¢D (i1, i2, x1, i4] ~Derg(il, u] «DP[{u}, {i4, x2}] - 6[i2] +=— a6#D[x1, i2, i3, i4] Derd[i3, u] <DP[{u}, (i4, x2}] - $[i2] -= ko [x1, i2, x2] - ¢[i2] = ko ([x2, 12, x1] - ¢[i2] +=— a64D[il, i2, i3, 14] - DP[{u}, {i3, x2}] <DP[{u}, {i4, x1}] ~#[i1] - ¢[i2] += a6#D[il, i2, i3, i4] - DP[{u}, (i3, x1}] < DP[{u} 1 J

6 3 6 6 3 3

1 1 1 1 1 1

— 2¢[i1, 12, x2, x1] $[i1] < ¢[i2] += a6¢D[i1, i2, i3, x2] »Derd[i2, u] <DP[{u}, {i1, x1}] ~¢[i3] -= a6¢D[il1, x2, i3, i4] ~Der¢[i4, u] ~DP[{u}, {il, x1}] < $[i3] += a6¢D[i1, i2, i3, x1] < Der¢[i2, u] «DP[{u)}, {il, x2}] - ®[i3] - = a6¢D[il, x1, i3, i4] - Der¢[i4, u] ~DP[{u}, {il, x2}] ~ $[i3] +=— a6¢D[i1, 12, i3, x2] - Derd[il, u] < DP[{u}, {i2, x1}] < #[i3] -

24 3 6 3 6 3

3 1 1 1 1
2 aouninz, 12, 13, 1a] < vera(ta, 4l < OPLUN), (12, 1) - O[43] <= a68D(L1, 12, 13, x1] - Derd (41, 4] DR L(u}, (12, x2}] < $[13] = 64D [xL, 12, 13, 14] - Derg(1d, i) - DP( (), {42, x2)] - [13] ~ a69DI1L, x2, 13, 14] - Dero (11, 4] - DPL{k}, (14, x1)] - O[43] = a60D(x2, 12, 13, 1a] - veroraz, ) - 0o (), (14, [N O AR A4 LETE 0111 fOI‘ you to be able to
6

3 6 6 6
.

1 1 L 1 1 1
= a6¢D[i1, x1, 13, 14] Der(i1, u] DP[{u}, {14, x2}] @[i3] -= a60D[x1, 12, i3, 14] Derd[i2, u) DP[ {1}, (14, x2}] 0[i3] -= ko[x1, x2, 13] $[i3) -= k&[x2, x1, 13] - §[13] - = a6¢D[11, 12, 13, 14] DP[{u}, {12, x2)] - DP[{u}, (14, x1}] - #[41] [43] -= a66D[i1, 12, 13, 4] - OP[{u}, (12, x1}] DP{} read lt? ObVIOUSIY
6 6 6 6 6 6

1 1 1 1 1 1 1
— AP (i1, x1, i3, x2] ¢ [il] < P[i3] -=— AP [il1, x2, i3, x1] - ¢[i1] ~ ¢[i3] -=— a6¢D[il, i2, i3, i4] “DP[{u}, {i1, x2}] - DP[{u}, {i4, x1}] - ¢[i2] < ¢[i3] -=— a6¢D[il, i2, i3, i4] ~DP[{u}, {i1l, x1}] -DP[{u}, {i4, x2}] - o[i2] - #[i3] -=— A& [x1, i2, i3, x2] - p[i2] ~ P[i3] - = AP[x2, i2, i3, x1] - @[i2] ¢[i3] += aSp[il, i2, i3, x1, x2] - P [i1] - @[i2] < P[i3] +

24 24 6 6 24 24 120

1 1 1 1 1 1
— aS5¢[il1, i2, i3, x2, x1] - ¢[i1] - ¢[i2] P [i3] += a6¢D[i1, i2, x2, i4] - Derd[i2, u] ~DP[{u}, (i1, x1}] ~ ¢[i4] -=— a6¢D[il, x2, i3, i4] Derd[i3, u]  DP[{u}, {i1, x1}] - ¢[i4] +=— a6¢D[il, i2, x1, i4] Derd[i2, u] - DP[{u}, {i1, x2}] &[i4] -= a6éD[il, x1, i3, i4] - Der¢[i3, u] < DP[{u}, (i1, x2}] @[i4] += a64D[i1, i2, x2, i4] - Der¢[il1, u]  DP[{u}, {i2, x1}] ¢[i4] -
120 3 6 3 6 3

1 1 L 3

1 1 1
= a6¢D[x2, i2, i3, i4] Der¢[i3, u] DP[{u}, {i2, x1}] - #[i4] += a6¢D[il, i2, x1, i4] Derd[il, u] ~DP[{u}, {i2, x2}] - #[i4] -= a6¢D[x1, i2, i3, i4] Derd[i3, u] DP[{u}, {i2, x2}] #[i4] -= a6¢D[il, x2, i3, i4] - Derd[i1, u] DP[{u}, {i3, x1}] - @[i4] -= a6¢D[x2, i2, i3, i4] Derd[i2, u] - DP[{u}, {13, x1}] - ¢[i4] -= a6#D[i1, x1, i3, i4] - Derd[il, u] DP[{u}, {i3, x2}] ¢[i4] -
6 3 6 6 6

1 1 1 0 1
= a6¢D[x1, i2, i3, i4] Der¢[i2, u] DP[{u}, {i3, x2}] - #[i4] -= a6¢D[il1, i2, i3, i4] ~DP[{u}, {i2, x2}] DP[{u}, {i3, x1}] ¢&[il] - ¢[i4]) -=— a6¢D[il, i2, i3, i4] DP[{u}, {i2, x1}] DP[{u}, (i3, x2}] ~&[i1] ¢[i4] -=— Ad[il1, x1, x2, i4] &[i1l] ¢[i4] -=— Ad[i1, x2, x1, i4] $[i1] - #[i4] -=— a6éD[i1, i2, i3, i4] - DP[{u}, {i1, x2}] - DP[{u}, {i3, x1}] - &[i2] ¢[i4] -
6 6 6 24 24
1
as¢[i1, 12, x2, 14, x1] ¢[i1] «¢[i2] - ¢[i4] += a6eD[i1, i2, i3, i4] - DP[{u}, {i1, x2}] < DP[{u}, {i2, x1}] - &[i3] - ¢[i4] +
3

1 1 1 1
= a6¢D (i1, i2, i3, i4] DP[{u}, {i1, x1}] DP[{u}, {i3, x2}] @¢[i2] ¢@[i4] -=— @ [x1, i2, x2, i4] @[i2] P[i4] -— AP[x2, i2, x1, i4] - P[i2] < ¢[i4] + = aS0[il, 12, x1, i4, x2] - &[i1] @[i2] P[i4] +
6 24 24 120 120

o 1 1 ) ) 1
= a6¢D[i1, i2, i3, i4] DP[{u}, {i1, x1}] DP[{un}, {i2, x2}] @[i3] - ¢[i4] - = A@[x1, x2, i3, i4] ~ @[i3] < P[i4] -=— AP[x2, x1, i3, i8] P[i3] ¢[i4] +=—— aS0[i1, x1, i3, i4, x2] @[i1] - ¢[i3] - @[i4] + as¢[i1, x2, i3, i4, x1] ¢[i1] - ¢[i3] @[i4] +=— aSP[x1, i2, i3, i4, x2] - ¢[1i2] $[i3] - ¢[i4] +=— aS®[x2, 12, i3, i4, x1] - ¢[12] @[i3] P[i4] +

3 24 2 120 120 120 120
1 1 1 1 1 1
— a6d[il1, i2, i3, i4, x1, x2] «¢[i1] - #[i2] ¢[i3] - #[i4] +=— a6d[il, i2, i3, i4, x2, x1] ~ &[i1] - #[i2] < #[i3] - ¢ [i4] + as¢[i1, 12, x1, x2, i5] ~#[i1] - ¢[i2]  ¢[i5] += a5#[i1, i2, x2, x1, i5] < d[i1] - #[i2] - #[i5] += a5¢[i1, x1, i3, x2, i5] <d[i1] < &[i3] H[i5] + aso[i1, x2, i3, x1, i5] - & [i1] ~¢[4i3]) - #[i5] +
720 720 120 120 120 120
1 1 1 1 1 it
— a5¢[x1, i2, i3, x2, i5] < é[i2] » 6[i3] ~ $[i5] +—— a5é[x2, 12, i3, x1, i5] ~ ¢[i2] ~ ¢[i3] « 6 [i5] + — a66[i1, 12, i3, x1, i5, x2] < 6[i1] - ¢[i2] ~ S[i3] ~ &[i5] + a6¢[i1, 12, i3, x2, i5, x1] < #[i1] ~ @[42] <$[i3] « #[i5] +—— a54[il, x1, x2, i4, i5] <@[i1] < A[i4] «@[i5] + a5¢[i1, x2, x1, i4, i5] « @ [i1] - ¢[i4] «S[i5] +
120 120 720 720 120 120
1 1 1 R 1 1
— a5¢[x1, i2, x2, i4, i5] - #[i2] - ¢[i4] - @[i5] +— a5¢([x2, i2, x1, i4, i5] - ¢[i2] ~@[i4] - ¢[i5] +— a6d[il, i2, x1, i4, i5, x2] < ¢[i1] ~ @[i2] - @ [i4] - @[i5] + a6 (i1, i2, x2, i4, i5, x1]) < @[i1] ~ ¢[i2] ~@[i4] - ¢[i5] +— aSd[x1, x2, i3, i4, i5] - #[i3] « @[i4] - @[i5] +—— a5[x2, x1, i3, i4, i5] ~¢[i3] <@ [i4] ~H[i5] +
120 120 720 720 120 120
1 1 1 1 i 1
— a6¢[i1, x1, i3, i4, i5, x2] < ¢[i1] ~ @[i3] <@ [i4]) < d[i5] +— a6®[il, x2, i3, i4, i5, x1] « #[il] ~ @[i3] < d[i4] ~H[i5] + a6¢[x1, i2, i3, i4, i5, x2] < ¢[i2] - #[i3] - ¢[i4] <@ [i5] +=— a6d[x2, i2, i3, i4, i5, x1] - #[i2] - @[i3] - ¢[id4] - H[i5] + a6 [i1, i2, i3, x1, x2, i6] - @[i1] < é[i2] ~¢[i3] ~¢[i6] +=— a6d[il, i2, i3, x2, x1, i6] #[i1] - d[i2] ~&[i3] - P[i6] +
720 720 720 720 720 720
1 1 i 1 1 1
— a0 [i1, 12, x1, i4, x2, i6] *¢[i1] ~é[i2] <@ [i4] ~d[i6] +— a6d[il, i2, x2, i4, x1, i6] * B[i1] < d[i2] <d[i4] ~d[i6] + a6 (i1, x1, i3, i4, x2, i6] ~@[i1) ~¢[i3] ~é[i4] ~d[i6] +— a6d[il1, x2, i3, i4, x1, i6) ~d[i1] ~&[i3] ~&[i4] <d[i6] + a6d(x1, i2, i3, i4, x2, i6] ~é[i2) <¢[i3] ~#[i4] ~d[i6] +— aed[x2, i2, i3, i4, x1, i6) < d[i2] ~ #[i3] ~d[i4] «d[i6] +
720 720 720 720 720 720
1 1 1 1 1 1
— a6¢[i1, i2, x1, x2, i5, i6] x ¢[i1] ~d[i2] < @[i5] ~d[i6] +— a60[il, i2, x2, x1, i5, i6] ~d[i1] » &[i2] < d[i5] » ¢[i6] +— a6¢[i1, x1, i3, x2, i5, i6] « ¢[i1] ~@[i3] < @[i5] ~ d[i6] +— a6d[il, x2, i3, x1, i5, i6] ~&[i1] ~&[i3] » #[i5] < d[i6] +— a6d[x1, i2, i3, x2, i5, i6] < ®[i2] <& [i3] < @[i5] < d[i6] +—— a6d[x2, i2, i3, x1, i5, i6] <P[i2] « &[i3] ~d[i5] « ¢[i6] +
720 720 720 720 720 720
1 1 ar 1 1
— a6¢[il, x1, x2, i4, i5, i6] < ¢[i1] ¢[i4] - ¢[i5] - @[i6] +—— a6 [il, x2, x1, i4, i5, i6] ~ @[i1] - P[i4] < P[i5] - ¢[i6] + a6¢ [x1, i2, x2, i4, i5, i6] < ¢[i2] ~¢[i4] < @[i5] ~ #[i6] +—— a6¢[x2, i2, x1, i4, i5, i6] ~ #[i2] < d[i4] ~¢[i5] - d[i6] + a6p[x1, x2, i3, i4, i5, i6] < ¢ [i3] <P[i4] < @[i5] < @[i6] +— a6®[x2, x1, i3, i4, i5, i6] <@[i3] » ¢[i4] ~ P[i5] ~ P[i6]
70 70 770 70 70 770

ot
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Example of a complicated expressions

1
-4a6¢D[11, x1, i2, x2] ~Der¢[il, u] ~Der¢p[i2, u] + E a6bopF [17, 18, x1, X2] x'F[1i7, 1, v] x F[18, u, v] +
1
Z_l a6oFtil[i7, i8, x1, x2] < Eps[u, v, «$12388, .$12389] - F[i7, u, v] - F[1i8, $12388, .$12389] +

1
DP[{u}, {i1, x1}] DP[{u}, {i2, x2}] <Ko [il, 12] - m¢2[x1, x2] - k¢[1l, x1, x2] ~ ¢ [i1] - 5 Ap[il, 12, X1, x2] ~¢[11] ~ [12] -

4 a6pD[il, i3, i2, x2] <Deré[il, u] <DP[{u}, {i2, x1}] ~#[i3] - 4a64D[il, x2, i2, i3] <Der¢[il, u] ~DP[{u}, {i2, x1}] ~ $[i3] -
4 ab6pD[il, i3, i2, x1] - Deré[il, u] ~DP[{u}, {i2, x2}] - #[i3] - 4a64D[il, x1, i2, i3] ~Der¢[il, u] - DP[{u}, {i2, x2}] - $[i3] +

1
ga5<b[il, i2, i3, x1, x2] < [il] ~¢[i2] - $[i3] - 4a6¢D[il, i3, i2, i4] ~DP[{u}, {il, x1}] ~DP[{u}, {i2, x2}] - ¢[i3] <P [i4] +

1
= a6p[il, i2, i3, i4, x1, x2] < ¢[il] ~[i2] - ¢[i3] - H[i4]

Simplifies to a more manageable 14 terms

Renato Fonseca Simplifying complicated tensor expressions arising in the study of EFTs
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Simplifying complicated tensors polynomials

The problem of simplifying complicated tensor expressions is two-fold:

Tli.a]U[a,j] aT;aUaj + BTiUjp
is not recognized as the same as only simplifies to
T[i,b]U[b,j] (o = B) TiaUa;

if, for example, U is antisymmetric

I will introduce a recent code, SimTeEx, to put tensor expressions
in canonical form, for arbitrarily complicated symmetries Sim Te EX
(It has other functions to analyze tensor symmetries) X

RF 2412.14390

Renato Fonseca Simplifying complicated tensor expressions arising in the study of EFTs



Origin of the code: Study of a general EFT

Decouple the task of calculating amplitudes (RGEs, evanescent shifts, matching,

regularization schemes issues, ...) from the details of a model, by studying a general EFT

(K
\ SMEFT-Todls
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Origin of the code: Study of a general EFT

Decouple the task of calculating amplitudes (RGEs, evanescent shifts, matching,

regularization schemes issues, ...) from the details of a model, by studying a general EFT

Idea: remove the gauge structure

The problem of flavor is more acute if there are
few distinctions (other than flavor) among the fields

Best model to study flavor Model contains arbitrary number
(most stringent test): of copies/flavors of a left-handed
A model with no gauge symmetry Weyl spinors, real scalars, F,,,’s

|

SLEL 00
2022 Zirich

This also describes the most general EFT one can have

SMEFT and other EFTs can be obtained from it by imposing

gauge invariant on the various Wilson coefficients

Renato Fonseca Renato Fonseca Automatic generation of EFT operators 29
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Origin of the code: Study of a general EFT

Decouple the task of calculating amplitudes (RGEs, evanescent shifts, matching,

regularization schemes issues, ...) from the details of a model, by studying a general EFT

Why not do the for EFTs?

Matchmakereft

¢ . With José Santiago and using
s EF Tols Carmona, Lazopoulos,
[S(,( his t dlk] Olgoso, Santiago, 2112.10787

we are in the process of computing the general 1-loop RGEs up to dimension 6 EFT
57:“;%5790}5 [See also the talk by Mikolaj Misiak and Nalecz Ignacy tomorrow on this topic]
\ SMEFT- TOO PN
PAULI CENTER En lE'nIn
Zunch But one can go beyond |
| LS LTI

RGEs with this approach
i
In the same spirit, why not calculate the matching for a general

Matching light+heavy set of fields? (Diagrammatic vs functional vs ‘do the
matching once and for all’ method?)
Maybe one do the same with Sym2Int to generate operators (main topic
Generate of this talk): run it once to get the results for a general EFT, and from
operators there just deal with gauge invariance on a model-by model basis
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What is this general RGE idea?

Collect all scalars, fermions and vector fields into 3 multiplets. Be agnostic
about the gauge group and how these fields transform under it

For a renormalizable model, this was done long ago Jack, Osborn (1982,1983,1985) : Martin, Vaughn, hep-ph/9311340 (1994)
: o9 Machacek, Vaughn (1983,1984,1985 Yamada, hep-ph/9401241 (1994)
together the the computation of its 2-loop RGEs Luo, Wang, Xiao, hep-ph/0211440 (2003) ) Sk

1 155 1
Zi<a =~ ZFﬁzFB e Du%D“ﬁbb + i — 5 [(mf)iﬂ/)r-fc"mbj = h-C-]

abc a c
i §(m¢,)ab¢’a¢b iy [Eja¢?C¢j¢a + h.c.] T Padode — PaPbPcPa
S
Dyibi = Opbi —igt;; V), v, t*and 6 are Hermitian matrices
Dy¢a = upa — g0, V.2 0y (64 are also anti-symmetric)
In a particular model one must specify the In practice, this usually involves simply enforcing
shape of generic tensor coefficients shown here gauge invariance on these tensor coefficients

The RGEs were given

E.g.: in SM one has 45 Weyl fermions and 4 real scalars: the ¢ are 45-dim;
the 8 are 4-dim. The Yukawa couplings are given by the most general Y tensor
obeying

for these tensors

A In the SM, Y has 27 complex
%'Y’Ja’ i t z’-"'a " Baa' TJad 7= =9 degrees of freedom
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Dimension 5 Green basis

(a&5;)AzJ¢TCan¢J it (aifq{z)ijabzpfcwj PaPb + h.c.]

¢F

1 1 o

T R e g(a@)ABGFAWF,f;qsa 5 (05) apodebabsbetade
i
2

(1$2) e (DuD"$a) e + | 5(r2) (D)) TCDM 5 + (r50) . FiiBs b+ .

(5) (5)
(a’d)F)zg (a’lf)F)jz (agfq)ﬁg)ijab i (a'ffq)bz)jia.b T (afjiiz)ijba
ABa — B

(5) ( ) :
(@ar)g00 = (298] 5 (a08) ape = (58) .1 (059) sy = Flly symmetric
(o) = () o

Integration-by-parts (IBPs) equations of motion (EOM) redundancies may affect only

parts of these tensors (e.g. they can remove the symmetric part of some WC and leave untouched
the anti-symmetric)
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Dimension 6 Green basis
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L5t = _(TLE?)AB(DMFA“ )(DPF;E») = i(TJ(fT?I)qu)Aab(DVFA’“ ) [(Duga) d — (a < b)]
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(150 ap(DuD¥$a) (Dy D" $5) + 22(15D) 1pea(Du D" ba) Pocta

3!
s

These tensors also have flavor symmetries

Note: not exactly the basis we
used in the end
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Complicated symmetries

Here are the ones of dimension 6 operators:

(agﬁF)) apc = fully anti-symmetric, € R ( (6) iy
(6) e e . TﬁbD)zj o) (rlbD)gz
( ) apc = Mully anti-symmetric, € R ( ( 6)) ( ( 6)) 5
T r (3
(6) (6) (6) 7 D¢/ ab D¢/ ba
(aﬁb’ﬁb)zjab (a¢¢)zjba Pl [( ¢71b)3iab] (7"(6)) 14 (T(G)) cR
(6) (6) (6) i (6) L 2F/AB 2F /BA
(a qm)mkt ( mp)knz (a@w)zqu’ e [(a@w)nlk] (Tg?w)A b [(TJ(DGI)“_'”lP)A *
(6) (6) (6) (6) ] Jji
( GbD)abcd ( )bacd ( (bD)abdc . (a'qu)cdab and (rgfm)b)A i [(TESZJ)A ]*
(a’g—')ﬁé)abc o ( (6) )adbc ( gfg)acdb 0 (afbﬁg)abcd €R (6) & Y (6) * *
(CL(G)) - (CL(G)) e, (a(ﬁ)) eR (Tﬁ*w)Atj T [(Tﬁql;)Ajt]
¢F/) ABab $F/BAab  \"¢F) ABba (6) (6) R
Some of them are (a(ﬁl) = (a (6)) — (a (6)) cR ( FD(;"J*)Aab ks FDc,b)Ab 5
quite complicated pldeEBotias shaeh @iinaibo (6) (6) i esen) ek ks
((1(6)) all fluV S R (T¢¢$)zgab ( (j‘ﬁl,b:l:)gjba, G {(T(bd)m).?zab} orr=1,2
s ymmetric € ( (6)) s t (b d) e
¢ (6) (6) ) O) ToD) abeq = Lully symme ric in c:
) (@ ”%L”'P)zgkt (a ¢w)gmc (a¢¢)zjlk 5 (aww)kuj and (6) i (6)
(6) (6) (6) i S (T’lflqul)zga (T’Lb(ﬁ)Dl)jza
(@ ¢¢)zgkt + (a 1&1&);5;& (a’(,b’l/))ik:lj D (T(S) ), (r(ﬁ) 7
(a(ﬁ) ) i (a(ﬁ) ) YopD2/ija Yo D2/ jia
Staae R (7‘(6) ) = no restrictions
(6) YpD3/ija Tk :

(aqpqs)”abc fully symmetric in (2, 7) and also (a, b, c)
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What do these tensors look like (in the SM)

¥ = (u[R], u¢[C], u¢[B], d°[R], d°[C], d°[B], Q[R, 1], Q[R, 2], Q[C, 1], Q[G, 2], Q[B, 1], Q[B, 2], €%, L[1], L[2])T

T T
= (11 1 12) Fuo = (GGG Gy G G G Gl Wi W2 W3, B

SU(3)
© 000 (00O O © 00 0 © 0 0 0 © 0 0 0 © 0 0 0
P O0O0O| 0000 © 00 0 © 0 0 0 © 0 0 0 ® 0 0 0
P 0O00| 0000 © 0 0 0 © 0 0 0 © 0 0 0 © 0 0 0
A ©000) (0000 © 00 0 © 0 0 0 © 00 0 © 0 0 0
6 R e S L el e e R By
© 00 0) (06000 L AR z s
pEEgR bt stgian<n gRiEg o s el @Erorbgtaet
scalar representation 60 000 9 000 2 2 2 2
matrices © 0 0 0 © 0 0 0 2 BT S e B, S e LR gt ey Aoy g i gy
000 (0000 ; . i T
T Bty QEiutg g et I
2 2 2
SU(3) SU(2) U(1)

Renato Fonseca Renormalization group equations of a general effective field theory



What do these tensors look like (in the SM

¥ = (u[R], u¢[C], u¢[B], d°[R], d°[C], d°[B], Q[R, 1], Q[R, 2], Q[C, 1], Q[G, 2], Q[B, 1], Q[B, 2], €%, L[1], L[2])T

T T
G iHs B PRI e e ey e e en el e el e I s T

[12%
26 0/0000000000 0 O
1
B 0 D119.:0..19,0110..9,.9.10: 0.9 @ 0 0 0 e 0000 000 ¢
1
Esaiiagl © 0.:.9..0:10: 0.:9:10:0.0.0 B 0 0 0 ¢ 000000 0 @
tA eeeeleeeeeeeeee EEERNERE DA A G et
© 0 06 06 000606000000 3
hapes © 0 0 061000000000 0
e e o6 -1 000006000000 hp
fermionrepresentation 0 @ 0 © © O 0 0 O 0 0 O 0O O 0 0 0 605 ST L L s 0
Matrices (1 flavor) 5. 9.6 9 o o SRR o o e o 6 0002000000 0 o
2 (XX ]
6 8 0 6 o o CEGECHISESER ) o LR e 6 o 6000 o000600 0 o
2
. 1 1
Nosurprlse: 9 © 9 © 93399@@@09@ 000000006000000
1
These are|block diagonal matrices 0 0 @ 0 o o EEEEEEIREE0 0 0 € 91180 0.0 EEE . 0P
L I e e © © 06 6 0 600606000060 e oo ‘o o ofEEEEEGEENE o o o
i : © © 0 0 6 00 0 0 000000 .
reducible representation of the L S e S sy L R 0 DD . 0. -2
gauge group R e e e e Y T © © © 60000000010 0
© © 0 0 0 00 0 0 000000 @@ @ b'6.0 0 000 0 00
© o 0 6 0000060000 B -1
i B 5 o e gD ik
A=1 [first SU(3) generator] A=12 [U(1) generator]
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What do these tensors look like (in the SM

¥ = (u[R], u¢[C], u¢[B], d°[R], d°[C], d°[B], Q[R, 1], Q[R, 2], Q[C, 1], Q[G, 2], Q[B, 1], Q[B, 2], €%, L[1], L[2])T
T
Cb:(H;Z_aHg{:H}l_:H?)T FMV:(Gl GG G G GG LG WiyaijwﬁwBuu>

(U il s e s Pl TS At T i 7 i Vi el 1

. . i
YLJ a M [Yijaqbfcquqba + h.c.

Yukawa couplings

gﬁ
O

[ ) 0 0 ) 0 0 ) “Yu[f2, f1] ) 0 ) ) 0 0 0
) 0 0 ) 0 0 ) 0 ) “Yu[f2, f1] ) ) 0 0 0
) 0 0 ) 0 0 ) 0 ) 0 ) “Yu[f2, f1] 0 0 0
) 0 0 ) 0 0 Yd (2, f1] 0 ) 0 ) ) 0 0 0
G hAEra ) 0 0 ) 0 0 ) 0 Yd[f2, f1] 0 ) 0 0 ® °
) 0 0 ) 0 0 3¢ ) 0 ) 0 Yd[f2, f1] 0 0 0 °
1 2 uQ ) 0 0 Yd[f1, f2] ) sl ), 0 ) 0 ) 0 0 0 0
et 1 y _Yu[f1, 2] 0 0 ) 0 0 ) 0 ) 0 ) 0 0 0 0
\/E vl ) 0 0 ) Yd[f1, f2] 0 ) 0 ) 0 ) 0 0 ° 0
) “Yu[fl, f2] 0 ) ) 0 ) 0 ) 0 ) 0 0 0 0
i.e. the interactions e 0 0 Z e Yd[f1, £2] 2 0 7 ) 7 0 o 0 0
of Hi ) 0 “Yu[f1, f2] ) 0 0 ) 0 ) 0 ) 0 0 0 0
) 0 0 ) 0 0 ) 0 ) 0 ) 0 0 Ye[f2, f1] ©
) 0 0 ) 0 0 ) 0 ) 0 ) 0 Ye[f1, f2] 0 0
) 0 0 ) ) 0 ) 0 ) 0 ) 0 0 0 0
\
e‘L

Flavor is unexpanded (f1,f2 indices); otherwise, Y would be a 45x45x4 tensor
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Our work

Write down a basis of operators for a general EFT up to
dimension 6 (for now).

Derive the 1-loop (for now) RGEs for the physical Wilson
coefficients

With these results, there will be no need to Only some algebra is needed in order to
ever do physics again (calculate amplitudes of compute the the Wilson coefficient
diagrams) to compute RGEs for a specific EFT tensors (Y;ja » Aabeds €tc)

RGEs of the bosonic
Renormalization of general Effective Field Theories: | U Ui R i8R 0 (8
Formalism and renormalization of bosonic operators

Renato M. Fonseca, Pablo Olgoso, José Santiago

2501.13185 [hep-ph] We describe the most general local, Lorentz-invariant, effective field theory of scalars, fermions and

gauge bosons up to mass dimension 6. We first obtain both a Green and a physical basis for such an Llligi Carlo Bresciani Will also talk
effective theory, together with the on-shell reduction of the former to the latter. We then proceed to

compute the renormalization group equations for the bosonic operators of this general effective theory at ab out thlS tOplC on WedneSday
one-loop order.
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The package SimTeEx
Sim Te Ex

ssssssssssss



CanonicalForm

Main function of the program: Puts tensor polynomials in a canonical form

. . In[]:= CanonicalForm[a T[1i, @] <U[a, j] +B T[i, b] ~U[]J, b]l, {U[X, y] + ULy, X]}]
With symmetries \

outfe]= (o= B) T[i, al xU[a, j]

. In[ ]:= CanonicalForm[T[i, a] <U[a, j] + T[i, b] ~U[b, j1]
No symmetries
Out[]= 2T[i, a] xU[a, j]

U:r:y e Uya: =0

Format for the symmetries is a list of expressions which are =0
(but no need to write the “=0")

Renato Fonseca Simplifying complicated tensor expressions arising in the study of EFTs 20




Renato Fonseca

Fully general and simple input

Arbitrarily complicated symmetries can be fed into

this function. I.e. fully general in this aspect.

Input needed is as
intuitive as it gets

in my opinion

No need to figure out what
are the Young projectors

No need to declare tensors

No need to declare indices used

(important aspect; more on this later)

Simplifying complicated tensor expressions arising in the study of EFTs
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On the generality

Box symmetry
Riemann tensor symmetries Rainr=— Ry R = = Ranand Repr = Rpis A~ Rapg ==

Known quartic relation

Peeters 2018

Possible input

qurs Rptr'u, Rtvqw Ru'usw p qurs qutu R’r'ut'w Rsvu'w

1
_RmnabRnpbcRmscdRspda ‘I’ ZRmnabRpsbaRmpcansdc =0

In[ ]:= expressionToSimplify =R[p, q, r, s] “R[p, t, r, u] “R[t, Vv, q, W] “R[u, v, s, W] -
R[p, q, I, s] “R[pP, q, t, u] <R[r, v, t, w] <R[S, V, U, w] -
R[m, n, a, b] “R[n, p, b, ¢] “R[m, s, ¢, d] <R[s, p, d, a] +
x R[m, n, a, b] ~R[p, S, b, a] <R[m, p, ¢, d] “R[n, s, d, c];
symmetries = {R[f1l, f2, f3, f4] +R[f2, f1, f3, f4], R[f1, f2, f3, f4] + R[f1, f2, f4, 3],
R[f1, f2, 3, f4] +R[f1, f3, f4, f2] +R[f1, f4, f2, f3]};
CanonicalForm[expressionToSimplify, symmetries]

1
Out[e]= g (-2+8x) R[m, n, a, b] <R[m, p, ¢, d] <R[n, s, d, c] ~R[p, S, b, a]

Even symmetries

which make little
sense can be given

Renato Fonseca

In[ ]:= CanonicalForm[x1H[i, j] T[], k] +x2H[i, a] ~T[k, a], {T[a, b] -2T[b, a]}]

Out[<]- @ Ty — 2Ty, = 0 implies that T is identically 0

The algorithm used is sufficiently robust to deal with even these cases (no special code was needed)

V)
(\)

Simplifying complicated tensor expressions arising in the study of EFTs



On the simplicity

Other codes don’t allow the user
to give symmetries directly as
equations

Hymal e ey el R s an d A R e T e e e i)

Users must first figure out the associated Young tableaux

(non-trivial and in fact not always possible)

If there are equivalent ways of expressing
a tensor’s symmetry which one is the
appropriate one for SimTeEx?

It is up to the you, the user! SimTeEx doesn’t care. Any

equivalent set of equations is the same for the program

symmetries2 = {R[f1, f2, f3, f4] + R[f3, f4, f2, f1],

Same example with the Riemann tensor R[f1, f2, 3, f4] +R[f1, 3, f4, 2] +R[f1, f4, f2, 3]};
as in the last slide, but using an CanonicalForm[expressionToSimplify, symmetries2]

equivalent set of symmetry equations

1
Out[«]= g (-2+8x) R[my n, a, b] <R[m, p, ¢, d] <R[n, s, d, c] <R[p, S, b, a]
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Program also works for

‘Grassmann tensors’

Anti-commuting tensors

Just think for example of fermions,

But why?
% which can have many indices

SM(EFT) as an example:
i=Dirac/Weyl; c=color; o =isospin; f=flavor

Very simple example

Majorana mass for gauge
singlets is symmetric

mi; ] Cp;

Renato Fonseca

Necessary to declare the list
of ‘fermionic tensors’

In[ ]:= $CanonicalFormFermions = {¥};
Necessary to use non-commutative
multiplication

expressionl = e[a, B] “¥[a, i] **x ¥ [B, j] ~m[i, j];
expression2 = e[a, B] “¥[a, i] ** ¥ [B, j1 ~m[], il;
CanonicalForm[expressionl - expression2, {e[fl, f2] +e[f2, f1]}]

Out[+]= ©

Simplifying complicated tensor expressions arising in the study of EFTs



Simplifying complicated tensor expressions
arising in the study of EFTs

Renato Fonseca
renatofonseca@ugr.es

High-Energy Physics Group, University of Granada

SHEFT-Tools 2025 MITF,
Mz, January 2025

. AST22 65
TP T ransting e oty PID2019-106087GB-C22
3 DE CENCIA INNOVACION. PD023 17 Sl
S T v wisToo  PID2022 139466NB-C21
a Union Eurcges

Junta de Andalucia P21-00199

Second comment: the function I presented you
does not have this property!

In[ ]:= CanonicalForm[T[1i]

3 " CanonicalForm[T[]j]
For example, since it

preserves the dummy index
labels given by the user ...

% === %%
out[+]= T[i]?
(This is not the only reason)  Out[-J= T[j]>
Out[«]= False

Renato Fonseca

Lies

Simplify expression

T[i]]
T[Jj]]

i B

Simplifying complicated tensor expressions arising in the study of EFTs 2

Subjective; could involve for example
minimizing the number of terms

Should involve a function I' which for two
equivalent expressions expr, and expr,

F (expry) = F (expry)

However, it does obey the property
F (expr; — expry) = 0

A function with this property is called in

the literature a normal form

Ot



Reason for this: convenience of the user

This behavior of the function CanonicalForm in SimTeEx was deliberate.

In order not to introduce new symbols, it reuses Ensure that the result never has more

dummy index labels given by the user monomials than the input

A canonical function F, as sometimes defined,
does not need to have this property

Want a ‘true’ canonical function? Use the flag $TrueCanonicalForm

in[ ]:= $TrueCanonicalForm = True;

Out[+]=

Outl[s]=

Out[«]=

Renato Fonseca

sym= {T[a, b, c] +T[b, ¢, a] +T[c, a, b]};

Dummy indices (f1,f2,...) are

CanonicalForm[T[c, a, b] «X[a, b], sym] re-labelled by the code

CanonicalForm[ (-T[a, b, c] -T[b, c, a]) X[a, b], sym]

% === %%

—T [, S, C

X [f15 [F2) - T (f1, c, F2] < X [¥2, [F1] Output may have more

=T S, S, C |

True

monomials than the input

X [RRES ER - T [N, C, SRS < X [N, SN

Simplifying complicated tensor expressions arising in the study of EFTs
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Some extra tools in

Sim Te Ex

Simplify Tensor

(Functions beyond CanonicalForm)



Renato Fonseca

Analyzing tensors with symmetries

SimTeEx

YoungSymmetrize Tensor

SnlrrepsinTensor

SingleProjector

SameEquationsQ

comes with the following extra functions (GroupMath is needed)

Applies Young symmetrizer to a tensor

Returns the S irreps associated to a particular tensor symmetry

Returns an Hermitian projector which contains the same symmetry
as an input set of equations (condenses many conditions with one)

Compares two sets of symmetry relations, symmetries 1 vs symmetries 2

Extracts a set of equations which describes the

Simplifying complicated tensor expressions arising in the study of EFTs
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YoungSymmetrizeTensor and SymmetriesOfNumericalTensor

1(3
v 2
In[-]:= YoungSymmetrizeTensor[Y[p, q, r], {{1, 3}, {2}}]
Out[+] 1Y[ ] 1Y[ ] 1Y[ ] 1Y[ ]
Uthe ==z 376 WS ey Ho d, p, r] - ¢ q, r, p] + < r, q, p
3 3 3 3 ST YoungSymmetrize Tensor
v
In[]:= YoungSymmetrizeTensor[S[x1, x2], {{1, 2}}]
1 1
Outlel= = STXE ;= X210 =525 X1
2 2
In[ ]:= SymmetriesOfNumericalTensor[LeviCivitaTensor[3]]
out[ ]= {tensor[idl, id2, id3] + tensor[id3, id2, id1l], SymmetriesOfNumerical Tensor

tensor[idl, id3, id2] - tensor[id3, id2, id1l]}

In[ ]:= SymmetriesOfNumericalTensor[TensorProduct[LeviCivitaTensor[2], LeviCivitaTensor[2]]]
Out/ ]= {tensor[idl, id2, id3, id4] - tensor[id4, id3, id2, idl],

tensor[idl, id2, id4, id3] + tensor[id4, id3, id2, idl],

tensor[idl, id4, id2, id3] - tensor[id4, id2, id3, idl] + tensor[id4, id3, id2, idl]}

Tries to return a set of simple equations which together completely characterize the symmetries of a numerical tensor

Renato Fonseca Simplifying complicated tensor expressions arising in the study of EFTs



SnirrepsinTensor

-quick summary

E.g.: general 3-index tensor

Irreps of S, can be identified with A general tensor with n equal indices, (with | |
partitions X of n, or graphically with  no symmetries at all) can be split into d(\) B o it
. . . \-/
Young diagrams with n boxes parts transforming as A ~

A tensor with symmetries is obviously not a general one; It will contain only some of these components

in[-]:= SnIrrepsInTensor[{R[f2, f1, 3, f4] + R[f1, f2, f3, f4],
R[f1, f2, 3, f4] +R[f1, f2, f4, f3], R[f1, f2, f3, f4] -R[f3, f4, f1, f2], Riemann tensor:
R[f1, f2, 3, f4] + R[f1, 3, f4, f2] + R[f1, f4, f2, f3]}] has a box symmetry

out - {{EH, 1})

In[]:= SnIrrepsInTensor[{YoungSymmetrizeTensor[Y[p, q, r]l, {{1, 2}, {3}}]1}]

Rank-3 tensor with a mixed
| symmetry component removed
.13 {5 1))

outl-J= {{I, 1}, {H

in[ ]:= SnIrrepsInTensor [ {YoungSymmetrizeTensor[X[p, q, r], {{1, 2}, {3}}], YoungSymmetrizeTensor[X[p, q, '], {{1, 3}, {2}}1}]

Out[«]= { {EEESy - 13 {H; 1}} Rank-3 tensor with both mixed symmetry components removed

With this info it is trivial, for example, to compute the number of independent tensor components
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Imagine having a set of equations E={eq;, eq,, ..., eq;} describing ‘/,0,0,0.0,\0‘,\‘
what you think are the symmetries of a tensor. Someone else comes
along with a different set of equations, E’={eq’;, eq’y, ..., €q’;}.

Are they the same? Maybe E contains all of the restrictions in E’
and more, or vice-versa. Ou maybe they are just different.

Out[«]=

Outf[«]=

Outf[e#]=

Renato Fonseca

SameEquationsQ

l"’;’;”
PRRRRRRN
QRRRRKS
RRRRRKN
RRRKRY
XXX

@.

eqsl = {P[k1, k2] -Q[k1, k2]};

eqs2 = {P[k1, k2] +P[k2, k1] - (Q[k1, k2] +Q[k2, k1]),
P[k1l, k2] -P[k2, k1] - (Q[k1, k2] -Q[k2, k1])};

eqs3 = {P[k1, k2] +P[k2, k1] - (Q[k1, k2] + Q[k2, k1]) };

eqs4 = {P[k1, k2] -Q[k2, k1]};

SameEquationsQ[eqsl, eqs2]
SameEquationsQ[eqsl, eqs3]

SameEquationsQ[eqsl, eqs4] This function is a bit more general than others in SimTeEx

Same system of equations
Equations #1 are more restrictive
Equations #1 and &2 are different

Simplifying complicated tensor expressions arising in the study of EFTs

in the sense that it allows symmetry conditions between
different tensors (P and Q in this example)
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SameEquationsQ

That was a very simple example (to illustrate what is at stake)
But note that in general it can be non-trivial to see that two sets

of conditions are (non)equivalent
RiemannSymsl = {R[f2, f1, f3, f4] + R[f1, f2, 3, f4],

R[f1, f2, f3, f4] +R[f1, f2, f4, 3], R[f1, f2, f3, f4] - R[f3, f4, f1, f2],
R[f1, f2, f3, f4] +R[f1, 3, f4, 2] + R[f1, f4, f2, f3]};
RiemannSyms2 = {R[f1, f2, f3, f4] + R[f1, f2, f4, f3], E.c.: Ri
-R[f2, f1, f3, f4] +R[f1, f3, f4, f2] + R[f1, f4, f2, £3]}; -g- Riemann tensor
SameEquationsQ[RiemannSyms1l, RiemannSyms2]

Same system of equations
11 1 1 1 1

RiemannSyms3 = {— R[f1l, f2, 3, f4] + — R[f1, f2, f4, f3] - — R[f1, f3, 2, f4] + — R[f1, f3, f4, f2] + — R[f1, f4, 2, 3] -
12 12 24 24 24

1 1 1 1 1 1
— R[f1, f4, f3, f2] + — R[f2, f1, f3, f4] - — R[f2, f1, f4, f3] + — R[f2, f3, f1, f4] - — R[f2, f3, f4, f1] - — R[f2, f4, f1, 3] +
12 12 24 24 24

24

1 1 1 1 1 1

— R[f2, f4, f3, f1] + — R[f3, f1, f2, f4] - — R[f3, f1, f4, f2] - — R[f3, f2, f1, f4] + — R[f3, f2, f4, f1] - — R[f3, f4, f1, 2] +
24 24 24 24 24 12

1 1 1 1 1 1

— R[f3, f4, f2, f1] - — R[f4, f1, f2, f3] + — R[f4, f1, f3, f2] + — R[f4, f2, f1, f3] - — R[f4, f2, f3, f1] + — R[f4, f3, f1, f2] -
12 24 24 24 24 12

1
— R[f4, f3, f2, -Fl]}; \
12

SameEquationsQ[RiemannSyms1, RiemannSyms3] One can always condense the information in a list of symmetry conditions
e A e T e into just 1. This leads me to a final function included in SimTeEx.

Renato Fonseca Simplifying complicated tensor expressions arising in the study of EFTs

o

[\



SingleProjector

SingleProjector[<null conditions with the tensor symmetries>]

Returns the unique hermitian projector P such that the condition P(tensor)=tensor is
equivalent to the set of null equations given as input.

° Output is a projector P, i.e. P(tensor)=tensor [note: not P(tensor)=0] with P2=P

Q-

There is always one, and only one, P € S,, algebra which fully describes a Convinced myself of this with a

’ ¥ . i . . s o constructive argument
tensor’s symmetry via de relation P(tensor)=tensor and satisfying P" = P* = P (therefore not particularly elegant)

On this last point, in relation to the uniqueless one can see, for example, that

P?=P is important. Just take a symmetry 2-index tensor T: its symmetry can be
described by

1 1
P(T;;) =T;; for P = Ps+aP4 with Ps= = (e (E2)) i RPa = 5 (e — (12))
A

any ‘a’ different from 1 will do
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SingleProjector

Q pPl=pP - What does is an adjoint projector?

For two tensors A and B of equal ... and take some P in the S algebra,
rank define the inner product
(Av B) e Azliz---inBiliz'--in P = Z Laih
TES,

(A,P(B)) = (PY(A),B) = Y ciA}, i Briiizin)

TES,
thald * d i x
pa Z CWA‘JT_]'(?:11:2--'1:”)le7’2""511,
TES,
S s Pl= Y cum
= ) [ Aniznin)]” Biyigin Pl
TESH

So note: if there is a term w;jk...Ojjk... and the operator has a symmetry P (O;jk...) = O;jk... then

the Wilson coefficient can (not unique!) be taken to have a symmetry pi* (Wijke..) = Wijk-..

But if P is Hermitian (and real, as it is extremely often the case) then this is

Not P (wijk...) = wijie... o true: the coefficient can be taken to have the same symmetry as the operator
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SingleProjector

SingleProjector[{R[f2, f1, f3, f4] +R[f1, f2, f3, f4],
R[f1, f2, f3, f4] +R[f1, f2, f4, f3], R[f1, f2, f3, f4] - R[f3, f4, f1, f2],
R[f1, f2, f3, f4] +R[f1, f3, f4, f2] + R[f1, f4, f2, f3]}]

1 1 1 1
— R{fl, f2, 3, f4] - — R[f1, f2, f4, 3] + — R[f1, 3, f2, f4] - — R[F1, f3, f4, f2] -
12 12 24 24

1 1 1 1

— R[f1, f4, f2, 3] + — R[f1, f4, f3, f2] - —— R[f2, f1, f3, f4] + — R[f2, f1, f4, 3] -
24 24 12 12

1 i 1 1

— R[f2, f3, f1, f4] + — R[f2, f3, f4, f1] + — R[f2, f4, f1, £3] - — R[f2, f4, 3, f1] -
24 24 24 24

1 1 1 1

— R[f3, f1, 2, f4] + — R[f3, f1, f4, f2] + — R[3, f2, f1, f4] - — R[F3, f2, f4, f1] +
24 24 24 24

1 1 1 1

— R[f3, f4, f1, f2] - — R[f3, f4, f2, f1] + — R[4, f1, f2, 3] - — R[f4, f1, 3, f2] -
12 1% 24 24

1 1 1 1

— R[f4, f2, f1, 3] + — R[f4, f2, 3, f1] - — R[4, 3, 1, f2] + — R[F4, f3, f2, 1]
24 24 12 12

YoungSymmetrizeTensor[Y[p, q, r], {{1, 3}, {2}}] <= 173
SingleProjector[{Y[p, q, r] - %}]

1 1 1 1

s Y [ [ MGy R | bt Y (G kD By s Y 1 Oyt el g e A o
3[pOI]3[qP]3[q p]3[qp]

Note: Normal Young projectors

are usually not Hermitian

Y[p) CI) :| Y[p) J CI] Y[CI.’ p) :I Y[q) J p] Y[ J p) CI] Y[ J q) p]
e @ = o r o r g T r = iy r + — r
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Other codes

ATENSOR Redberry Cadabra xPerm (in xAct)
Ilyin, Kryukov (1996)  Bolotin, Poslavsky (2013) Peeters (2018) Martn-Garéa (2008)

All handle dummy indices and mono-term symmetries (more on this in a bit). I think that from this list
only Cadabra can handle multi-term symmetries (the complicated symmetries)

Declare the symmetry of the tensors via Young projectors

A_{m n p}::TableauSymmetry(shape={2,1}, indices={0,2,1}).
ex:= A_{m n pJ};
Simplification of expressions with

A [ .
P multi-term symmetries: Replace
1 1 1 1 More info on this:
E Amnp + E A — E Anmp — E Apmﬂ cadabra.science/notebooks/tensor _monomials.html

cadabra.science/manual /young_ project_ tensor.html

But note: some tensor symmetries cannot be expression with Young projectors (if I have time I’ll talk about it later)
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SimTeEx: dummy indices and graphs

Graphs are a natural way to deal with dummy indices in tensor monomials

qu'r's R'pt'r"u, Rtvqw Ru'u Sa0} e qurstqtu Rrvt'w Rsvuw

Take the first monomial of 1
_RmnabRn'pbcRmscdRs'pda H ZRmnabRpsbaRmpcansdc =0

If we assume for a moment that R is a fully symmetric tensor (so order of the
indices is irrelevant), we could represent the first monomial as follows

p
R o R One must label the vertices of the diagram(the
v monomial might involve more than one rank-4 tensor)
A But edges are unlabeled. That is the whole point of
R o R using a graph: the dummy labels are irrelevant
w

quTstt'ru Rt'vqw R'u,'vsw

Renato Fonseca Simplifying complicated tensor expressions arising in the study of EFTs
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... but not all tensor are fully symmetric

In general one must distinguish the indices of each vertex (index #1, #2, ...).
In a graph representation, this can be achieved by labelling the edges (and giving them a direction).

Let us work with the simpler example U;jkUkimTnjip

Edge labels (11, n2) indicate that the index in slot #n, of the departing tensor
contracts with the index in slot # n, of the incident tensor. For example the
(3,2) implies that the third index of T contract with the second index of one of
the U tensors (the one with the external m index).

It is important to give a direction to the edges so that one can interpret the
two numbers which label each edge.

External indices:
vertices with 1 line

Renato Fonseca Stmplifying complicated tensor expressions arising in the study of EF'Ts 39

(This is just one possible possibility of doing things)




How to represent these graphs?

(0111100)
1010010
1100001
Using an adjacency matrix for example: #=11000000
1000000
0100000
\0010000)
/(0000\ (000 000\ /0\ /1) /0 0
0000 010 000 0 0 0 0
However, because the vertices and edges need to be 0000 000 010 0 0 0 0
labelled, this must be generalized. I used the 0000/ \000O 0ooo/) \1/ \o/ \o 0
following representation for each graph 0000\ /000 000\ /0) /0) /1 0
0100 000 000 0 0 0 0
0000/ \000O 100/ \o/ \o/ \o 0
() — 0000 001 000 0 0 0 0
{{T,U,U,p,n,i,m},/f{(ge“)} 0010 000 000 0 0 0 0
0000 000 000 0 0 0 1
(boo01) (0o00) (000) (0) (0) (0) (0)
t (Looo) (0o00) (000) (0) (0) (0) (0)
(bo00) (100) (000) (0) (0) (0) (0)
R tati e T BEL A
gt bttt bt L e BT (0000) (000) (001) (0) (0) (0) (0)

T
\_;

Renato Fonseca Simplifying complicated tensor expressions arising in the study of EFTs
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‘ {{ﬂ@p, n,i,m} ,//{(ge“)} ‘

Representation of U, jxUrimTnjip

Let’s not loose sight of the goal: the purpose of all this work is to have
a representation which allows us to put each monomial in a canonical
form.

If there are no tensor symmetries, we can do that by permuting
rows/columns associated to equal tensors and systematically picking a
‘minimal’ adjacency matrix.

)

(0000\ 000 000\ /0O LA\ 0 0
0000 010 000 0 0 0 0
0000 000 010 0 0 0 0
(0000) (000) (000) (1) (0) \0) (0)
0000\ /000 000\ /0 Oy 0

0100 000 000 0 0 0 0
(0000) (000) (100) (0) (0) \0) (0)

i - (0000) (001) (000) (0) (0) (0) (0)
0010 000 000 0 0 0 0

0000 000 000 0 0 0 1

(oA N I eyl B0 il S A e T e A i e (|
(osozofiEosoNpEFR oA EUR e DR ORI )

(T TV el A T U R Vbt (R0 W T R bl (T B gl el )
K(OUOO) [ ORD2OATEE O R G i) s O TR (20

\



Polynomials: vector space spanned by graphs

Tensor polynomials are linear If we find that some graphs are equivalent, say g,—g.,
combinations of these graphs then we can simplify the polynomial
PZZCT‘,Q@ c1g1 +c292 + -+ — (c1 +c2)g1 + - .
i

Very simple example: 2 m[a,q,q,b] T[la,b] + A m[cl,m,m,c2] T[cl,c2]

: (0000 10 \\
0010 00
0100 00
1000 00
0001 00

\ \ i

So we could simplify the original expression to

(2+A) mla,q,q,b] T[a,b] (reusing index names) ... or maybe (2+A) m[c1,m,m,c2] T[cl,c2]
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Symmetries

This was to deal with dummy indices, assuming tensors have symmetries

Mono-term symmetries i

Tﬂ(iliz...z‘n) = O'Tz'lz'g---in

Tab e _Tba

Tabcd =5 Tbadc

Tabcd — Tbacd and Tabcd — —dLabde

They can be accounted for by allowing

the exchange of some graph edges
(and maybe tracking a sign/phase while doing so)

Renato Fonseca Simplifying complicated tensor expressions arising in the study of EFTs

What if they do?

ones Multi-term symmetries

T‘J‘l']_ (’l..]_?:z '--’in) —I_ T7T2 (7:17:2 "'in)

R Tﬂ.p(iliz...f;n) = 0 withp > 2

Tove = wTpeq With w = exp (213”) These are the complicated ones
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The hard ones: multiterm symmetries

The expression to simplify
TTabe + YToca + 2Tcas (note: no dummy indices)

Let us take a simple example

Plan: assign an order of preference among the monomials, e.g. Thbe < Thea < Teab

is the least preferred, so it should be replaced by the other monomials whenever it appears

T obo - YThea FizToap > (U =) Tpeg (2 — ) Tens

G Result depends on order of preference among the different permutations of T

a Strategy can lead to more monomial in the output than in the input (e.g. x = 1,y = 2 =0)

a Now take Ugpe (T abe + YTbca + 2Tcap) where the new U tensor has no symmetries. Since
these are now dummy indices, one cannot just use the simple strategy of setting some order

like Tobe < Theca < Teab - Instead one should order/set a preference for the graphs we have
been discussing (associated to each monomial)

Renato Fonseca Simplifying complicated tensor expressions arising in the study of EFTs
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The rest is then linear algebra

Multi-term symmetries are null relations among graphs g;

k
= Z nga)gi
=

k k k
P = Zc@-gi Ly NS R Zwaana)gi = ZC;Q'L
]l a ge—i]. =]’

Original expression New expression obtained by adding the null relations

Aim could be, for example, to set as many of the

¢} coefficients to 0
g1 g2 °°° Gk 1 SR R Rt
ril [E—— ES T v ’ e
4 S0 ) Ck lla ¢ i For a given ordering of the
0 ngl) ngl) o ng) e Ofcve coe eoe oo graphs g, the problem is solved
0 ngz) ngz) L n’(c?) ot [ 0 T S P e R by putting a matrix reduced

row echelon form (RREF)

(Getting the absolute minimum number of terms in the final
Renato Fonseca

expression might require testing all graph ordering)
Simplifying complicated tensor expressions arising in the study of EFTs
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Renato Fonseca

Having tools to understand and handle tensor expressions can be important in the
study of EFTs

I've described SimTeEx, which can be used to simplify tensor expressions

It was created to help study the general EFT (RGEs, evanescent operators,
matching, ...), where operator symmetries are particularly complicated

This last part (study of the general EFT) is a work in progress.
SimTeEx is now public and can be used for other applications.

Think o

Simplifying complicated tensor expressions arising in the study of EFTs
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